AMETHYST: Image Registration Engine for Multiframe Processing

Mohammed Shoaib, Rich Stoakley, Matt Uyttendayle, and Jie Liu

> Sensing and Energy Research Group Microsoft Research

MFP: Why should you care?

e.g., high-dynamic range (HDR) imaging, de-noising, image stabilization, de-blurring, super-resolution imaging, de-hazing, panoramic stitching, *etc.*

Multiframe processing (MFP) enables advanced algorithms for image analysis

Why is it hard?

E.g., HDR Photography

Typically, serial processing → f<u>rame delays cause issues:</u>

1. Moving objects create artifacts

~ 2 seconds/frame

2. Moving camera also creates artifacts

Frame misalignments lead to artifacts in fused image

What are some existing solutions?

Solution 1: HDR Capture, e.g., Toshiba T4K05

Solution 2: Algorithmic

Algorithmic solution is more interesting → needs <u>no hardware</u> <u>change</u> and <u>scales to other applications</u>

What are others doing about it?

E.g., NVIDIA: Tegra 4 (2014)

Fig: Camera architecture in current high-end mobile devices

Fig: Chimera: The NVIDIA computational photography arch.

1st real-time HDR, 1st HDR panorama, 1st object tracking

Proprietary ISP-embedded algorithms use GPU for acceleration $\rightarrow \sim 10x$ speedup and cost power

What are their limitations?

- **1. Current solutions:** Modest speedups. Not generally applicable.
- 2. Current algorithmic solutions: slow on CPUs

Our target: ~100x speedup compared to software

Image registration is a computational bottleneck \rightarrow <u>needs acceleration</u>

What have we done about it?

Fig: Proposed architecture for multi-frame image processing (MFP)

We propose an architecture for MFP that has a dedicated accelerator for image registration

What are our findings?

AWILITTIST PERIOTIALICE Summary	
Technology	45 nm SOI
Area	0.15 mm ² (30k gates)
Memory	< 2 MB
Frequency	1.1 GHz
Power	62.7 mW
Exec. Time	30ms/frame
Speed-up ^{\$}	37x over CPU

AMETHVST+ Dorformanco Summary

AMETHYST shows speed-up of : <u>8x</u> over GPU and <u>5x</u> over FPGA at a power lower by : <u>14x</u> than GPU and <u>3x</u> than FPGA

7

^{\$} assuming 60% cost due to (IPD + DFE)

* synthesis results for (IPD+DFE) blocks only

What are our findings? Contd...

<u>Highlights</u>

- State-of-the-art algorithm^{\$} (from Photosynth)
- 1st MFP engine for re-targetable applications
- Extensively configurable parallelism
- Multi-level data pipelining and interleaving
- Systolic ops w/ 2-level vector reduction

Next

Technical steps:

- Finish implementing RTL for HE and IWP modules
- Verify full-design on FPGA-based programmable SoCs (e.g., Zynq)
- Develop HW-SW co-design with ARM core towards custom SoC
- Perform physical design and post-layout validation of SoC
- Integrate silicon-proven design IP with ISP core

