
Inferring Traffic Cascading Patterns
Yuxuan Liang1,2, Zhongyuan Jiang1, Yu Zheng2,1,3∗

1Xidian University, Xi’an, China
2Urban Computing Group, Microsoft Research, Beijing, China

3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
{v-yuxuli,yuzheng}@microsoft.com,zyjiang@xidian.edu.cn

ABSTRACT
There is an underlying cascading behavior over road networks.
Traffic cascading patterns are of great importance to easing traffic
and improving urban planning. However, what we can observe is
individual traffic conditions on different road segments at discrete
time intervals, rather than explicit interactions or propagation (e.g.,
A→B) between road segments. Additionally, the traffic from multi-
ple sources and the geospatial correlations between road segments
make it more challenging to infer the patterns. In this paper, we first
model the three-fold influences existing in traffic propagation and
then propose a data-driven approach, which finds the cascading
patterns through maximizing the likelihood of observed traffic data.
As this is equivalent to a submodular function maximization prob-
lem, we solve it by using an approximate algorithm with provable
near-optimal performance guarantees based on its submodular-
ity. Extensive experiments on real-world datasets demonstrate the
advantages of our approach in both effectiveness and efficiency.
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1 INTRODUCTION
Traffic is an important part of urban lives, affecting a city’s sustain-
ability. Traffic congestion in a city’s road network usually spreads
or relieves through the cascading patterns [11]. For example, based
on the traffic conditions on road segments over a period of day (as
shown in Figure 1(a)), we can find the cascading pattern (depicted
in Figure 1(c)) that r1 first gets congested leading to a possible
congestion on r2 and r3; r3 further results in the congestion on r4
and r5 possibly. Knowing such cascading patterns can help predict
future traffic conditions and identify bottlenecks of road networks,
thereby improving urban planning. However, mining traffic cascad-
ing patterns is challenging due to the following three reasons:
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Figure 1: A simple example of traffic cascading pattern.

1) Implicit interaction: Different from the explicit interactions
(e.g. user A forwards a tweet from B) in social networks, the real
propagation path of traffic conditions is implicit. What we can
only observe is traffic conditions (e.g., travel speed) on individual
road segments at discrete time intervals, i.e., we note when and
where traffic congestion occurs but not how it reaches the specific
road segments. Moreover, inferring traffic cascading pattern is not
equivalent to mining frequent subgraphs over the graph consisting
of real propagation paths. For example, the congestion on r1 appears
rarely in our observed data; But as long as r1 gets congested, r2
gets congested successively; Although the interaction from r1 to r2
occurs rarely, it has relatively high dependency.
2)Multiple sources: The traffic on a road segment comprises of
two parts: the traffic flowing from other road segments and traffic
originating from the neighboring road segments. Thus, there are
two categories of factors affecting the traffic conditions on a road
segment: a) Neighboring traffic: Traffic conditions on a road seg-
ment depend on that of its neighbors which may be physically con-
nected like r1 → r2 shown in Figure 2, or several-hops connected
to the road segment, e.g., r2 d r4. We define these two categories
of influence from neighboring traffic as direct influence and indirect
influence. b) Surrounding environment. Traffic originated from a
road segment is influenced by its surrounding environment, such as
POIs. For instance, the congestion on r1 in Figure 2 derives from the
environmental influence like the shopping malls. It is challenging to
simultaneously capture both of them into the inference of traffic
cascading patterns.
3) Geospatial correlations: In social networks, the information
spreading is strongly correlated to the waiting time [7, 11], e.g., the
time difference between two persons’ tweet time. Besides the time
difference of traffic congestion, there are geospatial correlations
over traffic networks. We use a series of road segments in Figure
1 for an illustration. Suppose r1 first gets congested, r3 is easier to
be impacted by r1 than r5 because of the spatial distances. Hence,
how to integrate the temporal and geospatial correlations remains
a challenge.
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Figure 2: Illustration of two factors affecting traffic condi-
tions, where the lines with different colors denote traffic
congestion occurs at different time intervals. For example,
we observe that r1, r2 and r3 get congested at 8:20 am, 8:40
am, 9:00 am respectively.

There are no existing methods that can address these challenges
simultaneously. To this end, we propose a generative probabilis-
tic approach CasInf for the inference of traffic cascading patterns,
which consists of three main components: an Individual Trans-
mission Likelihood (ITL) model, an EnvironMental inTensity (EMT)
model and a Cascading Pattern Construction algorithm. The contri-
butions of our study lie in the following three aspects:

• Modeling three-fold influences: The ITL model captures the
temporal and geospatial correlations to describe the direct
and indirect influence between a pair of road segments. In-
corporating the temporally- and spatially-related features,
the EMT model utilizes a SVM-based method to infer the
intensity of environmental influence.

• Cascading pattern inference: We propose a two-step genera-
tive probabilistic model that first formulates the influences
from multiple sources into propagation trees over a graph
and then applies an approximate algorithm with provable
near-optimal guarantees to solve the NP-hard problem.

• Real evaluation & case study: We evaluate ourmethod based
on the real-world datasets over a period of nine months.
Extensive experiments show the advantages of our method.
We also present a case study to support our method.

2 OVERVIEW
Due to the equivalence between the spreading and relief process of
traffic congestion, we take the spreading process as an example to
illustrate how to infer the underlying cascading patterns.

2.1 Preliminary
Definition 1 (Road network): A road network R is composed of a
set of road segments r , connecting each other in the format of a
directed graph. Each road segment r is a directed edge having two
terminal nodes, a length r .len, a level r .lev denoting its capacity.
Definition 2 (Traffic condition): Following the state-of-the-art ap-
proach for congestion propagation detection [17], we assume the
traffic condition on a road segment r at a specific time interval has
a unique status: congested or smooth. If the travel speed on r at a
given time slot exceeds 20km/h, we say r is congested [1].
Definition 3 (Cascade): A cascade c = {t1, t2, . . . , tn } is a n-D
(n-dimensional) vector extracted from one day’s observed traffic

conditions where ti records when ri gets congested and ri ∈ R.
In fact, most cascades hit not all road segments, so we set ti = ∞
when ri is not hit by a cascade.
Definition 4 (Cascading Pattern): A cascading pattern G is consid-
ered as an underlying network over which traffic congestion spreads
in a given time span. In fact, the cascading pattern is time-evolving,
thus we assume the cascading pattern in a specific time span (e.g.,
morning rush hours) is uniform. We denote the directed edges con-
necting two different road segments in the cascading pattern as
casual links, which represent the casual correlations between them.

2.2 Problem Statement
Given a road network R, a time span ts including several time
intervals from ts to te , and the discrete traffic conditions at each
time interval during a period ofm days, we extract a set of cascades
C = {c1, . . . , cm }, where ci denotes the cascade extracted from the
traffic conditions in ts of the i-th day. Based on the set of cascadesC ,
POIs located over R and the meteorological data, we aim to infer the
cascading patternG in ts that maximizes the likelihood of occurring
cascades C , i.e., best explains the observed traffic conditions.

2.3 Framework
Figure 3 presents the framework of our approach, which consists
of four major parts: 1) Data acquisition. We acquire four real-world
datasets including POIs data, meteorological data, road networks
data and taxi trajectories data from urban areas. 2) Multiple sources
modeling. We propose the ITL model to infer the transmission like-
lihoods between road pairs. Meanwhile, we extract spatio-temporal
features from real-world datasets and employ the EMT model to
infer the intensity of environmental influence. (we use environ-
mental intensity for short in the following writing) 3) Cascading
pattern inference. We formulate the likelihoods and intensity from
multiple sources into many propagation trees over a graph and
use an approximate algorithm to efficiently solve the maximum
likelihood problem. 4) Evaluation. We justify the effectiveness and
efficiency of our approach in this part. We will detail the last three
major parts in the following sections respectively.
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Figure 3: The framework of our approach.

3 MULTIPLE SOURCES MODELING
In this section, we first outline the general idea of the individual
transmission likelihood, applying this model to infer the direct and
indirect influence. Second, we analyze the spatio-temporal factors
correlations and address the inference of environmental intensity.
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3.1 Individual Transmission Likelihood
In general, traffic spreading between road segments can be ex-
pressed by the Independent Cascading model [7, 11] based on the
congested time difference, which ignores the geospatial correla-
tion between them. Here we develop an Individual Transmission
Likelihood (ITL) model to infer both direct influence and indirect
influence based on the spatio-temporal distances.

We consider the time difference between a pair of congested road
segments as the waiting time that passed between the congestion
appearance times ti and tj . Generally, more waiting time results in
a less probability of spreading. e.g., as shown in Figure 2, though
probability p1,2 and p1,5 are both induced by direct influence, it is
more likely to see that r1 infects r2 than the latter pair. Moreover,
the risk of direct influence is much higher than indirect influence
owing to the spatial distance between roads, such as p2,3 > p2,4.

Suppose r j gets congested at time tj and ri gets congested at time
ti successively, i.e., tj < ti . Inspired by a well-studied monotonic
exponential model in social networks [2, 11], here we combine
the spatial and temporal distances into the exponential model to
describe the conditional likelihood of transmission (i.e., individual
transmission likelihood) from r j to ri as follows:

f (ti |tj ;aj,i , λ) ∝ e−aj,i (∆j,i+λ∗di, j ), (1)

where ∆j,i = ti − tj denotes the time difference (i.e., temporal
distance) between the road congested time, di, j denotes the road
network distance from ri to r j (i.e., spatial distance), aj,i is the
transmission rate assumed to be a constant value α for all pairs,
and λ controls the importance of spatial distance as a trade-off. In
particular, ∆j,i and di, j need to be normalized.

3.2 Environmental Intensity Inference
When inferring the environmental intensity, we face two challenges:
1) Uncertain correlations between traffic congestion and multiple
environmental factors. 2) No available ground truths. It is a non-
trivial task to obtain the congestion’s occurring probability on a
fixed road segment caused by the environmental factors.

3.2.1 Environmental Factors Correlation. To analyze the correla-
tions between the traffic and the surrounding environment, we use
the congestion ratio (CR) as the main indicator to show the long-
term traffic conditions on each road, which describes the average
frequency of a road segment in congested status during a day.

It has been well studied in the traffic-related researches [23,
24, 28] that the traffic condition has a strong correlation with the
spatial factors, such as road networks (e.g., r .len, r .lev). Besides,
the categories and density of POIs in a region indicate not only the
land use and the function of the region but also the traffic patterns
in the region [27]. As depicted in Figure 4(a), CR was decreased by
the density of vehicle-related places since they are usually deployed
in the remote areas instead of downtown. From Figure 4(b), it can
be seen that denser human activity related POIs will lead to heavier
traffic, which meets our common knowledge.

Besides spatial factors, temporal factors have indirect impacts on
traffic flows, which provide complementary information of human
behaviors. For example, the number of congested roads changing
over time of day in Figure 4(c) reveals that the persons’ commuting
between their workplace and home causes the busy traffic. Likewise,
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Figure 4: Correlations between traffic conditions and the en-
vironmental factors.

the meteorology is correlated to the traffic conditions indirectly.
For example, when it goes rainy, people prefer driving their cars
to where they want rather than travelling on foots. In Figure 4(d)
where color, x- and y-axis denote CR, pressure and temperature
respectively, there is an interesting observation that more instances
with higher CR occur when temperature is increased by pressure,
especially in the oval-shaped area.

In summary, we identify the following spatial features of a region:
the POIs density in most related categories as the POIs features,
total lengths and road density as the road networks features. We
also extract temperature, pressure, and time of day as the temporal
features. Single-view data may only tell us a part of the panoramic
view of traffic. That is the reason why we need to incorporate
multiple source features to infer the environmental intensity.

3.2.2 Supervised Learning. Due to the spatial dependency, we
divide a city into disjoint grids (0.5 km * 0.5 km) denoting the
different regions, assuming the environmental intensity (denoted
as εд ) is uniform for all road segments in a given grid д. To address
the second challenge, we notice that the percentage of congested
road segments in a small region д still reflects the magnitude of
the environmental intensity in д. As detailed in Figure 5, suppose
there is no diffusion between road segments, the percentage value
can approximately denote the occurring likelihood of congestion
on each road in the region. Hence, given a grid д and the spatio-
temporal features, inferring the environmental intensity in д is
approximately equivalent to predicting the percentage of congested
road segments in д at that time interval.

We extract spatio-temporal features of different grids during a
series of days and obtain the aforementioned percentage data from
the historical traffic data. Incorporate the spatio-temporal features
as the input of a supervised learning approach (we use SVM in this
study), we try to predict the percentage value, so as to infer εд .
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Figure 5: Traffic condition at 18:00, where red lines denote
congested road segments. Traffic condition in д1 is heavier
than д2, i.e., the environmental intensity in д1 is stronger
due to (1) POIs and time of day. People are more likely to
go for dinner at that time. (2) Weather. In the rainy day, hu-
man’s traveling mainly depends on vehicles. Here we can
compare the environmental intensity in different regions by
their congested roads percentage approximately.

4 CASCADING PATTERN CONSTRUCTION
In this section, we detail how to combine the three-fold influences
into a cascading pattern through a generative probabilistic model.
We use the word graph or network to denote the cascading pattern
and edge to denote the casual link in the cascading pattern for short.

4.1 Model Formulation
The previous works consider the traffic congestion diffuses in the
format of directed trees such as STCTree [17]. i.e., a road segment
gets congested because of another single road segment. Following
this propagation tree assumption, given a propagation tree T , we
compute the likelihood of a single cascade c as follows:

f (c |T ) =
∏
(j,i)∈ET

f (ti |tj ;α , λ), (2)

where ET is the edge set of propagation tree T . Generally, there
are many possible propagation trees in a given cascading pattern
G, i.e., an underlying graph G. For a given network G, considering
all possible propagation trees T supported by G, we compute the
likelihood of a cascade as follows:

f (c |G) =
∑

T ∈Tc (G)

f (c |T )P(T |G), (3)

where Tc (G) denotes the set of all the directed connected spanning
trees over the subnetworks of G. Suppose we obtain a cascade
c , there are many possible propagation trees that can create this
cascade as illustrated in Figure 6. We assume r j impacts ri with a
constant prior probability, hence P(T |G) is equal for all trees T in
cascade c and we simplify Equation 3 as follows:

f (c |G) ∝
∑

T ∈Tc (G)

∏
(j,i)∈ET

f (ti |tj ;α , λ), (4)

For simplicity, we assume the cascades are conditional indepen-
dent over a given network G, therefore the joint likelihood of a set
of cascades C taking place in network G can be easily denoted as:

f (C |G) =
∏
c ∈C

f (c |G). (5)

Given the observed traffic data including a set of cascades C
obtained from a given time span of each day and pairwise transmis-
sion likelihoods based on spatio-temporal distances, we formulate
this problem as a Network inference problem [4]. Our target is to
find a network Ĝ such that

Ĝ = arg max
|G | ≤k

f (C |G), (6)

where Ĝ best explains the observed cascades, and the maximization
is over all probable graphs G of at most k edges since real-world
networks are always sparse such as road networks.

4.2 Alternative Target
Since it is intractable to directly optimize the target function in
Equation 6, it can be changed into an alternative target [20]. The
matrix tree theorem [3] states that the number of nonidentical
spanning trees of a graph G is equal to any cofactor of its Laplacian
matrix. Through this theorem, Equation 4 can be simplified into

f (c |G) ∝
∏
ti ∈c

∑
tj ∈c :tj ≤ti

f (ti |tj ;α , λ). (7)

Remember the environmental influence, which can induce the
first congested road segment and create disjoint cascades, occurs
everywhere in a graph even an empty graph. To address this issue,
the general network inference problem considers the external fac-
tors as an additional node that can infect any nodes with a constant
probability ε [4, 20], but in reality it is time- and location-varying.
Different from conventional studies, we infer the environmental
intensity in different grids detailed in Section 3.2. Then we compute
the improvement of log-likelihood for cascade c under graphG over
an empty graph K̄ as follows:

F (c |G) =
∑
ti ∈c

loд
∑

ti ∈c :tj ≤ti
wc (j, i), (8)

where wc (j, i) = θε−1
д f (ti |tj ;aj,i , λ), which can be considered as

the weight of edge (r j , ri ) in c . The variable εд denotes the environ-
mental intensity of grid д where ri locates in, and θ is a trade-off
parameter between the three-fold influences in the log-likelihood
function. Finally, the optimization target in Equation 6 is equivalent
to maximizing the following objective function:

Ĝ = arg max
|G | ≤k

F (C |G) (9)

where F (C |G) =
∑
c ∈C F (c |G) is non-negative monotonic and the

maximization is over all probable graphsG of at most k edges. Next,
we will present an approximate algorithm based on submodular
function optimization to maximize the objective function F (C |G).

Propagation Tree 1 Propagation Tree 2

t1
t2 t3

t4t5t6
t1

t2 t3
t4t5t6

Figure 6: Two simple examples of possible propagation trees
of a cascade c = {t1, t2, . . . , tn }, where ti > ti−1.
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4.3 Optimization
It is proved that finding the optimal solution to a network infer-
ence problem is NP-hard [4, 20]. Equivalent to the MAX-k-COVER
problem, it satisfies submodularity, a natural diminishing returns
property. The proof is stated as follows:

Given a cascade c , we first prove the submodularity of F (c |G), i.e,
prove F (c |G∪e)−F (c |G) ≥ F (c |G

′

∪e)−F (c |G
′

), where graphG ⊆ G
′

and edge e = (r1, r2) is not contained in G
′ . Let wc (r1, r2) be the

weight of edge (r1, r2) inG . We notice thatwc (r1, r2) is never more
than its weightw ′c (r1, r2) inG

′ . i.e.,w ′c (r1, r2) ≥ wc (r1, r2) ≥ 0. Par-
ticularly if (r1, r2) is contained in bothG and G′ , thenwc (r1, r2) =
w
′

c (r1, r2). LetTA,e =
∑
i ∈A\{r1 }wc (i, r2) and it satisfies thatTG′,e ≥

TG,e . Thus, we have

F (c |G ∪ e) − F (c |G) = loд
TG,e +wc (r1, r2)

TG,e

≥ loд
TG′,e +wc (r1, r2)

TG′,e

= F (c |G
′

∪ e) − F (c |G
′

).

(10)

Since the conditional likelihood F (c |G) satisfies submodularity, the
objective function F (C |G), which is a nonnegative linear combina-
tion of F (c |G), is also submodular. This function is provable to be
optimized through an approximate algorithm like MultiTree [20]
that obtains at least a constant fraction of (1 − 1/e) of the optimal
value achievable using k edges [15].

In reality, traffic congestion occurs frequently on core road seg-
ments. It means that there are massive potential casual links as
candidates, which lead to a low speed of optimization. Common
sense tells us that if ri is far away from r j , the potential edge (ri , r j )
exists with just a tiny probability. Hence, as described in Algorithm

Algorithm 1 Approximate algorithm for CasInf
Input:

k : the number of edges in cascading patterns we infer.
C : the set of cascades obtained in a time span.
D: a constant denoting the spatial constraint.

Output: G: the inferred cascading pattern.
1: G ← K̄ ;
2: P ← all pairs (j, i): ∃c ∈ C with tj < ti and dj,i < D
3: while |G | ≤ k do
4: for all (j, i) ∈ P\G do
5: δj,i = 0;
6: for all c : tj < ti do
7: εд ← environmental intensity inference
8: wc (m,n) ← weight of (m,n) in G ∪ (j, i);
9: for allm : tm < ti andm , j do
10: δc, j,i = δc, j,i +wc (m, i);
11: end for
12: δj,i = δj,i + loд(

δc, j,i+wc (j,i)
δc, j,i

);
13: end for
14: end for
15: (j∗, i∗) ← arдmax(j,i)<Gδj,i ;
16: G ← G ∪ (j∗, i∗);
17: end while

1, we propose an approximate algorithm as an extension of Mul-
tiTree with spatial constraints in line 2. G starts with an empty
graph K̄ (line 1), and it adds edges from the potential edge set P that
maximize the marginal gain δj,i sequentially (line 15-16). That is
to say, in each iteration i , we select the best edge ei which satisfies

ei = arg max
e ∈Gi \Gi−1

F (C |Gi−1 ∪ e) − F (C |Gi−1). (11)

We further study the time complexity of Algorithm 1. Utilizing
the submodularity property of the objective function, each iteration
stage is able to be finished in time O(|C | ∗ N 2) instead of super-
exponential time, where N denotes the size of the largest cascade.
Moreover, Algorithm 1 also allows two speeds-up: localized updates
and lazy evaluation [4].

5 EVALUATION
In this section, we describe the real-world datasets and evaluate
the effectiveness and efficiency of our approach.

5.1 Datasets
We use the following real-world datasets as detailed in Table 1:
Taxi Trajectories. We employ a GPS trajectory dataset generated
by 32,670 taxicabs in Beijing from two time periods. GPS-equipped
taxis can be regarded as mobile sensors probing the travel speed on
road segments. Due to data sparsity, we fill in the missing values
through Context-Aware Tensor Decomposition [23], i.e., we estimate
the historical travel speed on each road at per 20 minutes.
Road networks. We employ a road network database from Bing
Maps. Since people are more concerned about traffic conditions on
the major roads instead of small lanes, we conduct our experiment
on the road segments with level ranging from 0 to 2 (i.e., with high
capacity). Additionally, road segments with CR more than 0.5 (i.e.,
there is often heavy traffic jam) are removed because the congestion
on these road segments is more likely to be originated from the
surrounding environment instead of its neighbors.
Meteorological data. We collect the fine-grained meteorological
data, consisting of weather, temperature, humidity, pressure, wind
speed from a public website every hour.
POIs. The POIs data is also obtained from Bing Maps, where each
POI has a name, a category, and geo-coordinates.

Table 1: Details of the datasets

Datasets Values

Taxi Trajectories
Number of Taxies 32,670

Time Spans
03/01/2015-06/30/2015
11/01/2015-03/31/2016

Road Networks
Number of Segments 249,080
Number of Nodes 186,266
Total Length 25,638 km

POIs
Number of POIs 651,016
Number of Categories 20

Meteorological Data
Number of Stations 16
Time Spans 01/01/2015-12/31/2016
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5.2 Baselines and Variants
We compare our approach with several baselines in the following
two areas: 1) Diffusion network inference. 2) Congestion propaga-
tion detection. We first introduce the following three approaches
for diffusion network inference:

• NetInf [4]: Since Equation 6 is intractable to optimize, this
algorithm proposes an alternative target as follows: for
each cascade, only the most likely propagation tree is con-
sidered, instead of considering all possible trees.

• stNetInf : stNetInf is a spatio-temporal implement of NetInf
by integrating the ITL model and the EMT model.

• MultiTree [20]: It efficiently finds a solution to the network
inference problem with provable sub-optimality guaran-
tees by exploiting submodularity property.

Then we compare our methods with two approaches based on fre-
quent subgraph mining in congestion propagation area as follows:

• Frequency-Based Method (FBM): Inspired by the frequent
pattern mining, we simply select k casual links with top-k
occurring frequency during a number of consecutive days.

• STC-DBN [17]: The state-of-the-art approach for detecting
congestion propagation constructs STCTrees based on the
spatio-temporal information of identified congestions and
apply an Apriori-based algorithm to detect the frequent
substructures of the forests. It uses a Dynamic Bayesian
Network (DBN) to simulate the congestion propagation
process over road networks. In general, STC-DBN only
considers the diffusion between connected segments. Here
we apply a variant of it, which considers indirect influence.

To evaluate each component of our method, we also compare it
with different variants of CasInf :

• CasInf-gd: We use geometrical distance as the spatial dis-
tance instead of road network distance in the ITL model.

• CasInf-td: We can easily set λ = 0 to implement this variant,
where only the temporal distance is used. i.e., we ignore
the spatial relationship between road segments.

• CasInf-ne: There is no EMT model in this variant. We can
derive it by setting εд a constant ε for all urban grids.

• CasInf-ni: This variant does not consider the indirect influ-
ence. i.e., traffic congestion only spreads between adjacent
road segments instead of neighboring road segments.

A. China World 
Trade Center

B. Wanfeng Parks

C. Haidian 
Eduacational Areas

D. Wangjing DistrictSparse
C0
C1
C2
C3
C4
C5
C6
C7
C8
Road

AB

C D

Figure 7: Functional regions discovered by DRoF [27] where
C1, C3, C2, C8 denote developing commercial area, nature
and parks, education and science area and emerging residen-
tial area respectively. We select the 4 specific areas A to D ac-
cording to the aforementioned different function of regions.

5.3 Ground Truths & Parameter Settings
To justify the effectiveness of our method, we need to evaluate our
approach based on some ground truths. Suppose a road segment
gets congested at a specific time interval, we know which roads
will get congested successively according to the inferred cascading
patterns. For instance, there is a casual link (r1, r2) in the cascading
pattern. It means that if r1 gets congested at t1, r2 will get congested
with relatively high risk over a period of time ranging from t1 to
t1 + γ , where γ is the size of the time window. If a time span’s
observation satisfies the casual link, we say we have a hit. On the
contrary, if such sequential occurrence of congestion does not exist
in a time span’s observed data, it reveals that our inference makes a
non-hit (i.e., an error). Given the size of time window, we calculate
the number of hits based on the observations of time spans from
a series of M days, then use the metric occurring probability to
validate the effectiveness of each casual link as follows:

probj,i =
#hitj,i (γ )

mj
, (12)

where #hitj,i (γ ) denotes the number of hits detected duringM days
specified by the window size γ ,mj means how many times r j gets
congested during these days, and probj,i denotes the occurring
probability of the casual link (r j , ri ) in a cascading pattern Ĝ , i.e., if
we know a road segment gets congested, the accuracy of predicting
next congestion occurs on its neighboring road segments in a given
time window. To validate the correctness of the cascading pattern,
we define the score (i.e., correctness) of a cascading pattern Ĝ with
k casual links as follows:

score@k(Ĝ) =

∑
(j,i)∈EĜ

probj,i

k
, (13)

where EĜ is the edge set of Ĝ and k = |Ĝ |.
Particularly, to study the effectiveness and efficiency of our

method changing over both the scale of road networks and the
time spans, we evaluate our approach in the following four dif-
ferent sized areas of different functions shown in Figure 7 during
Morning rush hour (8:00-10:00), Noon lazy hour (11:00-13:00) and
Evening rush hour (17:00-19:00) respectively: A) The China World
Trade Center (CBD): A typical Central Business District with 769
road segments. B) Wanfeng Parks (NPA): There are 659 road seg-
ments with relatively smooth traffic in this Nature and Parks Area.
C) Haidian District (ESA): An Education and Science Area with
1,574 road segments, including many colleges and IT companies. D)
Wangjing District: We choose a small area composed of the residen-
tial places and business districts with 279 road segments to perform
a case study.

Since our approach is scalable and parametric, we need to find a
proper value for the number of inferred edges (i.e., k). As detailed
in Equation 9, our target is to infer a relatively sparse cascading
pattern over the road networks. We set k 500 to guarantee that the
sparseness of the graph ranges from 0.1% to 1% in each area. i.e., we
mainly use the metric score@500 for an experimental setting and
further study on the impacts of different value of k in next section.
In addition, we test different parameters for all baselines, finding
the best setting for each.
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5.4 Effectiveness Studies
5.4.1 Model Comparison. The upper half of Table 2 demon-

strates the effectiveness of different methods in term of the metric
score@500, where we set the parameter γ an hour. The result in Ta-
ble 2 is the average value of the score in the three time spans detailed
in the former section. The score seems small as compared to one
road’s congestion but relatively high with a 2-segment propagation.
For example, both r1 and r2 have 30% chances getting congested
in a day. The occurring probability of r1 → r2 during the day is
always less than 30% obviously. Moreover, we evaluate our method
based on the road segments with relatively small congestion ratio,
which increase the difficulty of the inference task.

Table 2 shows that our method outperforms the baselines on
the overall score as well as the results in each tested area. More
precisely, we divide the experimental analysis into two aspects as
follows:
Network inference perspective: Our approach outperforms the
temporal models including NetInf and MultiTree by 0.247 and 0.218
respectively. Besides, integrating the components including the ITL
model and the EMT model, spatio-temporal approaches like stNet-
Inf bring significant improvements (79.1%) beyond NetInf, which
reveals that the insight of our method contributes not only to our
model but also the general methods for network inference in spatio-
temporal space. Only considering the most likely propagation trees,
stNetInf performs slightly worse than CasInf.
Frequent subgraph perspective: CasInf shows great superiority
against FBM because the latter one focuses on the occurrence times
of frequent interactions but ignores the spatio-temporal depen-
dency between two congested road segments. Specifically, CasInf
achieves a better performance than STC-DBN by 0.172 (around
79.2% improvement). The reason is that DBN only captures the
spatio-temporal dependency between two consecutive time frames,
and it focuses on the frequent substructures of STCTrees.

We also get several interesting observations as follows. Firstly,
our approach achieves the highest performance among various
methods in both the large area (ESA) and the small areas (CBD and
NPA), which verifies that CasInf is a flexible method that can be
effectively applied to road networks with different scales. Secondly,
we notice that CasInf presents higher performance in the areas
with often busy and complex traffic like ESA since the congestion

Table 2: Predictive performance comparison among various
approaches over next 1 hour in the four areas.

Methods CBD NPA ESA Overall
NetInf 0.270 0.119 0.116 0.168
stNetInf 0.308 0.201 0.394 0.301
MultiTree 0.311 0.140 0.141 0.197
FBM 0.287 0.193 0.171 0.217
STC-DBN 0.307 0.198 0.225 0.243
CasInf-gd 0.359 0.258 0.488 0.368
CasInf-td 0.336 0.199 0.203 0.246
CasInf-ne 0.363 0.298 0.515 0.392
CasInf-ni 0.197 0.129 0.215 0.180
CasInf 0.384 0.317 0.545 0.415

occurs more densely and has more spatio-temporal correlations
than other smooth areas.

5.4.2 Variant Comparison. The experimental results in the bot-
tom half of Table 2 illustrate the strength of each component of our
method on the accuracy metric. From this table, we can draw the
following conclusion: (1) It is better to use road network distance
rather than geometrical distance according to the improvement of
performance between CasInf and CasInf-gd. It reveals that road
network distance truly describes the spatial correlation between dif-
ferent road segments. (2) Lack of spatial distance, CasInf-td achieves
a significantly worse performance than CasInf by 0.169, which illus-
trates the importance of the ITLmodel. That is because the diffusion
of traffic congestion depends on the spatio-temporal properties, not
only temporal properties. (3) Utilizing the EMT model, our approach
achieves a slight increase (5%) in the score since the environmental
factors are time- and location-varying in reality instead of constant
in the conventional methods. (4) Our combination method shows a
significantly better performance beyond CasInf-ni in term of accu-
racy, which reveals that the indirect influence plays an important
role in the diffusion process.

5.4.3 Impacts of Parameters. We further study on the impacts
of the model parameters including four parts as follows.
Different Time Spans. We discuss on the impacts of different
time spans on score@500. Figure 8(a) shows the results obtained
by CasInf in each area during the three time spans. There is a
similar trend in the three areas changing over time of days, where
CasInf shows the best performance at the noon time and the worst
performance in the morning time. And it is easy to find that the
results in the large area (ESA) with busy traffic during all the time
spans are higher than that in other areas, which is also mentioned
in Section 5.4.1.

(a) Impacts of time spans (b) Impacts of k

(c) Impacts of γ (d) Impacts of α

Figure 8: Impacts of the model parameters.
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Different k values.We present the score-k-curve of the four meth-
ods including NetInf, stNetInf, Multitree and our approach in Fig-
ure 8(b). As the number of added edges k increases, the metric
score@500 obtained by all the methods drop. i.e., the more edges
we add into the cascading pattern, the lower score we will get. The
reason is that our approach first selects the edges with relatively
high (not always the highest) occurring probability during the run-
ning time. These edges always take an important role in the traffic
congestion propagation process. In addition, it can be easily seen
that our approach shows superiority over other methods from the
beginning to the end of the curve.
Different Window Sizes. Figure 8(c) plots the performance of
CasInf changing over γ . As the window size increases, the pre-
dictive performance increases particularly in the evening, since a
higher γ allows a longer-term spreading process between a pair
of roads, which causes an increase to the number of hits. Figure
8(c) also indicates that our method achieves better performance
during the noon hours when the window size γ is lower than 1
hour. In section 5.4.1, we mainly choose γ = 1 hour to conduct the
experiments.
Different Transmission Rates. Figure 8(d) shows the impact of
transmission rate α on our approach based on the experiment dur-
ing the morning hours of CBD. A large α may lose the diversity of
individual transmission likelihoods between pairwise roads, but a
very small α makes our approach focus on the frequency instead
of our performance metric. That is why score@500 first increases
and then decreases after a threshold like α = 5.5. We also plot the
average occurring frequency of each casual links during a series of
days in Figure 8(d). The frequency seems small as compared to the
congestion on a road segment but is relatively high with a pair of
propagation. It can be seen that transmission rate α is a trade-off
between the values of score and frequency.

5.5 Efficiency Studies
Using a single core of a server (with a 3.4GHz CPU and 16 GB mem-
ory) and the configurations introduced in Section 5.3, we further
evaluate the efficiency of our approach against other methods in
this part. The experimental results are shown in Figure 9, where
we use the average running time per edge added as the metric.

We first compare our approach with the temporal models includ-
ing MultiTree and NetInf. While the computational complexity of
classical models in each iteration like MultiTree and NetInf is upper
bounded by O(|C | ∗ N 2), which is the same as CasInf, our method
runs much faster than classical ones. That is because there are less
potential links constrained by the spatial distanceD in algorithm 1.
To our surprise, NetInf only considers the most likely propagation
trees but runs slightly slower than MultiTree in our experiments.
Besides the temporal models, we observe that the spatio-temporal
models achieve significant improvement in efficiency study com-
pared to temporal models, which indicates that our components
can be practically applied to speed up classical models. Particularly,
STCTree-based methods are not discussed in this part since it is
not a scalable approach aiming at search k edges. This category of
methods uses quadratic running time to construct trees and spend
time on learning the whole network. The more potential links, the
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Figure 9: Efficiency of various approaches in the three areas.

more computational costs. This is why the running time per edge
added in ESA is much slower than other small areas.

We further study on the running time of two additional variants
including CasInf-ns (CasInf without speeds-up including localized
updates and lazy evaluation) and CasInf-ws (CasInf without spatial
constraints) to show the effectiveness of all these speeds-up com-
ponents. Figure 9 verifies the advantage of our method integrating
the the speeds-up components. Our method

6 CASE STUDY
Now we perform a case study in Wangjing District. In Figure 10(a),
there are many red lines denoting the road segments contained in
the pattern during the morning rush hours. Additionally, we notice
there exist several disjoint subnetworks in this figure. To explain
the inferred pattern, we specifically select a partitioned area shown
in Figure 10(d). According to the subfigure, it can be clearly seen
that we are able to partition this area into central business district
and residential areas due to the different functional POIs such as
New World Department Store (a shopping mall) and Central Palace
(an apartment). We will explain why and how the traffic congestion
spreads in this area based on the facts as follows.
Morning rush hours. We present the cascading pattern composed
of 21 road segments between 8 and 10 am in Figure 10(b-c). The
latter figure clearly shows us that how the traffic congestion diffuses
over this pattern. As it is known by us all that traffic conditions are
closely related to human behaviors, people are commuting from the
residential places to their workplaces in the morning, which results
in a strong traffic flow into the surrounding of workplaces such as
r2 and r9. With the time going on, we will see the traffic congestion
occurs on r3, r11 sequentially, following the pattern we inferred
(r2 → r3 → r11 → r12 → r13). Same goes for r5 → r6 → r8,
r15 → r20 and so on.
Evening rush hours. On the contrary, when reaching evening
rush hours, people are more likely to go back home. Supporting
this fact, our inferred pattern contains no congested roads (red lines)
around the workplaces just like r9, r5 in Figure 10(b). i.e., the casual
links between those road segments become less significant than it
used to be in the morning. As depicted in Figure 10(f), our result is
realistic and explainable since the traffic congestion spreads from
residential places to workplaces.

Hence, the cascading pattern inferred by our approach is signif-
icant to understand the process of traffic congestion propagation
according to the case study. Additionally, we can find the traffic
bottlenecks (e.g., r11 in Figure 10(b-c)) through our inferred pattern,
thereby improving urban planning.



Inferring Traffic Cascading Patterns SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA

(a) Wangjing district (b) Traffic cascading pattern 
between 8 and 10 am (c) Cascading pattern in (b)
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Figure 10: A case study inWangjing District. Figure (a) shows the traffic cascading patterns comprised of many road segments
(specified by red lines) during the morning rush hour. We select a small area of Wangjing shown in Figure (d) with different
functional POIs. Figure (b) and (e) illustrate a subnetwork of the pattern in different time spans. Figure (c) and (f) are the
visualization of the patterns. In the case study, the indirect influence is ignored because of the simplicity to visualization.

7 RELATEDWORK
7.1 Urban Computing
Traffic congestion in the urban areas has been one of the main
focuses for many years. M. Bando first presents a dynamical model
of traffic congestion based on the equation of motion of each vehicle
[1]. In reality, most instances of congestionmainly result from traffic
bottlenecks, therefore many researchers study on such bottlenecks
to alleviate traffic congestion [9, 16].

Besides finding the bottleneck, understanding the diffusion pro-
cess of traffic congestion is of great importance to easing traffic
condition and improving urban planning. Until now, there is a
lack of research focusing on the traffic congestion propagation.
W. Liu first studies causal interactions between different regions
through causality trees [12]. These trees based on temporal and
spatial information is able to be used for detecting the propagation
of congestion as well [17]. However, there still remains several limi-
tations in the previous studies: 1) Data sparsity. In general, previous
studies are deployed in the datasets including small regions with
sparse loop detectors under road segments during a short period of
time. 2) Multiple influential factors. The formulations of previous
works do not consider the influence of surrounding environment
such as POIs and meteorology. 3) Spatio-temporal correlations. The
previous work constructs propagation trees based on the traffic
conditions at two consecutive time intervals, which ignores the
long-term spreading process of traffic congestion. Additionally, the
spatial correlations in diffusion are not well addressed.

Nowadays, the increasing availability of GPS-embedded taxi-
cabs provides us with an unprecedented wealth to understand the

properties of traffic flow, e.g., the travel speed. Y. Wang proposes
a context-aware tensor decomposition approach to achieve a high
accuracy in speed estimation [23]. Incorporating spatio-temporal
features extracted from the real-world datasets, many data-driven
approaches demonstrate their advantages in both flexible and ex-
tendibility in many ubiquitous applications [13, 14, 29]. Based on
these studies, we propose a data-driven approach to solve aforemen-
tioned problems and infer the traffic cascading patterns efficiently.

7.2 Inferring Diffusion Networks
In the context of social networks, modeling how information spreads
as cascades is of importance to analyzing misinformation and stop-
ping the spread of virus [6, 18, 21]. How to infer the connectivity
of a network based on the diffusion traces has been extensively
studied these years [10, 22]. Assuming the nodes are only activated
by another single node, NetInf aims to maximize the likelihood
of observed data. MultiTree algorithm, which considers all possi-
ble propagation trees, directly solve this problem with provable
near-optimal guarantees based on submodularity property. Extend-
ing NetInf for generality, NetRate [19] infers the pairwise trans-
mission rates by solving a convex maximum likelihood problem.
Above methods assume that the hypothetical network is static
while InfoPath [5] infer a time-varying network changing over
time.However, to the best of our knowledge, based on network infer-
ence, our approach is the first work incorporating spatio-temporal
factors to infer the spreading of traffic congestion over road net-
works, which can also be applied into general spatio-temporal
applications.
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7.3 Frequent Subgraph Mining
Frequent Subgraph Mining (FSM) is a fundamental building block
of graph mining. The objective of FSM is to extract all the frequent
subgraphs that appear more number of times than a given thresh-
old in a graph dataset. Graph datasets can be divided into two
categories: datasets consisting of many stand-alone (small) graphs,
called transactional setting, and datasets with a single large graph.
The representative FSM methods with a transactional setting in-
clude the FSG [8], gSpan [25] and CloseGraph [26]. To discover
congestion propagation pattern in spatio-temporal data, Nguyen
first constructs causality trees based on the spatio-temporal datasets
and then apply Apriori Subtree(a variant of FSG) to detect the fre-
quent subtrees. But in reality, the underlying patterns may not only
contain the frequent substructures of observed correlation graphs.
The causal links with a low frequency but high dependency also
play an important role in the cascading patterns.

8 CONCLUSION AND FUTUREWORKS
In this paper, we propose a data-driven approach CasInf to infer the
traffic cascading patterns from multiple spatio-temporal datasets,
which is comprised of the ITL model, the EMT model, and the cas-
cading pattern construction algorithm. The first two models are
applied for the inference of three-fold influences existing in traf-
fic propagation process. Combining these influences into multiple
propagation trees over a graph, the last model maximizes the likeli-
hood of the observed traffic data through an approximate algorithm
with provable near-optimal guarantees. We evaluate our approach
based on four real-world datasets including taxi trajectories data,
road networks data, POIs data, and meteorological data in Beijing.
The experimental results show that our method outperforms the
baselines in terms of predictive score. Our method gets an overall
score around 0.415, which outperforms the temporal models includ-
ing NetInf and MultiTree. Besides, our method shows superiority
against the state-of-the-art methods STC-DBN, which is based on
frequent subgraph mining. We present a running time study as well
and the result experimentally verifies the efficiency of our approach.
The code has been released for research use.

In the future, we plan to infer the transmission rate a for each
casual link based on convex optimization instead of regarding it
as a constant. Additionally, we would like to extend our study
into general spatio-temporal problems, such as inferring cascading
patterns of human flows from an area to another area.
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