ACM SIGSPATIAL 2017

City-wide Traffic Volume Inference with Loop Detector Data and Taxi Trajectories

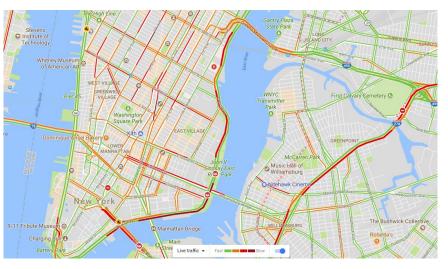
Chuishi Meng¹, Xiuwen Yi², Lu Su¹, Jing Gao¹, Yu Zheng²

- 1. University at Buffalo, State University of New York
- 2. Urban Computing Group, Microsoft Research, Beijing China

Urban Transportation Challenges

Traffic Volume

- Definition
 - Total number of vehicles traversing by a road segment during a time window
- A unique traffic condition metric
 - Most common measurement is Travel Speed
 - The volume reveals detailed condition information besides average speed
- Applications



Speed-based Traffic Conditions

Traffic Control

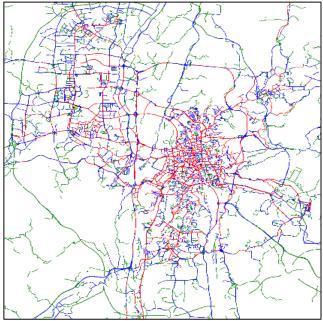
Pollution Emission

Loop Detectors

- Loop Detectors
 - Sensors buried under the pavements, can detect vehicles passing by
- Pro
 - Accurate
- Con
 - Expensive & not scalable
 - Extreme sparsity (155/19165 in Guiyang)

Taxi Trajectories

- GPS Trajectory
 - A sequence of time-ordered spatial points
- Pro
 - High coverage
- Con
 - Only a biased sample of all vehicles
 - no direct information about total volume

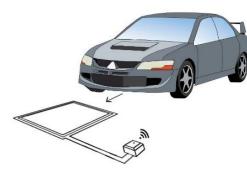


Loop Detectors & Taxi Trajectories

- High Accuracy
- Low Coverage

- High Coverage
- Low Accuracy

Loop Detectors & Taxi Trajectories

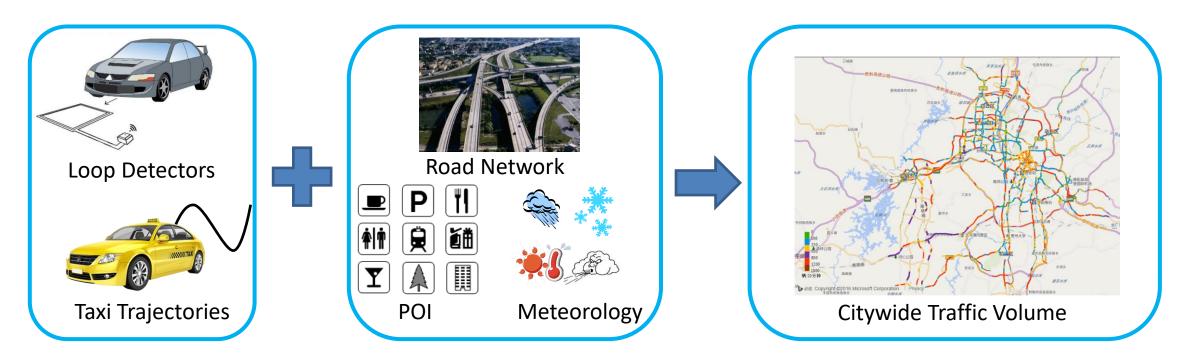


- High Accuracy
- Low Coverage

- High Coverage
- Low Accuracy

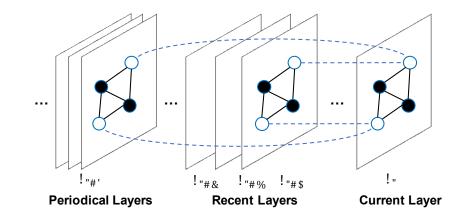
Goal

- Infer city-wide traffic volume on each road segment based on
 - Loop detector data
 - Taxi trajectories
 - Urban context



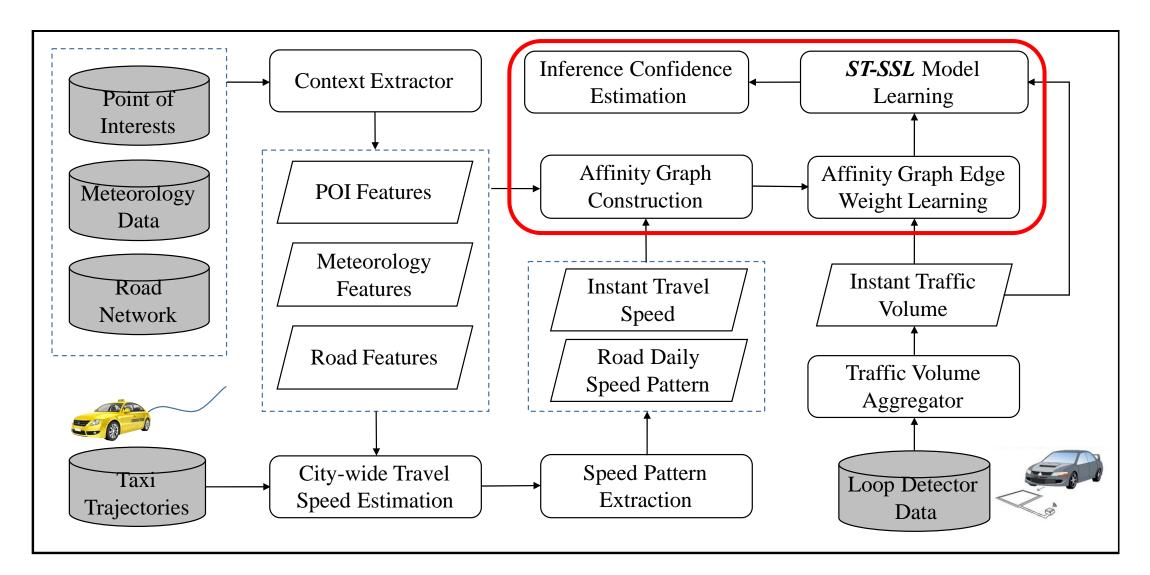
Main Idea

- Graph-based Semi-supervised learning
 - Take advantage of the benefits of both data sources
 - Construct traffic affinity graph with taxi trajectories
 - Estimate city-wide traffic volume with loop detector data
 - High coverage & High Accuracy



- Incorporate spatio-temporal properties of traffic volume
 - Constructing the road affinity graph
 - Inference on the semi-supervised learning model

Framework

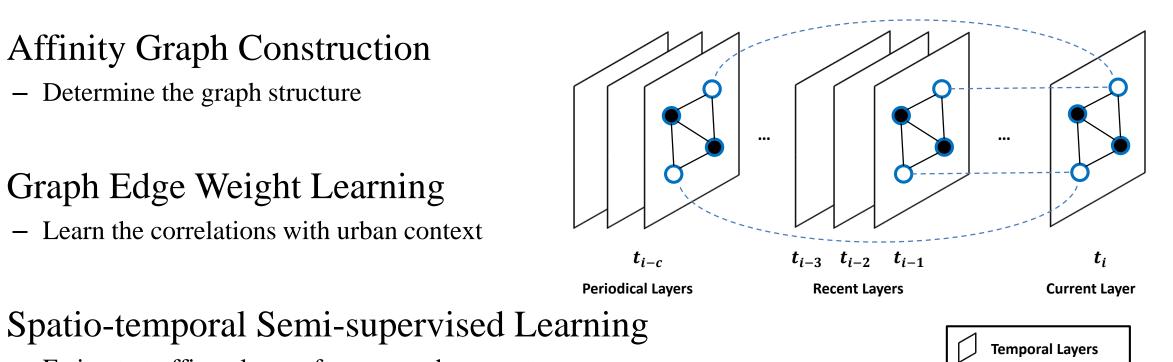


Main Procedures

- Affinity Graph Construction •
 - Determine the graph structure

ullet

- Graph Edge Weight Learning •
 - Learn the correlations with urban context

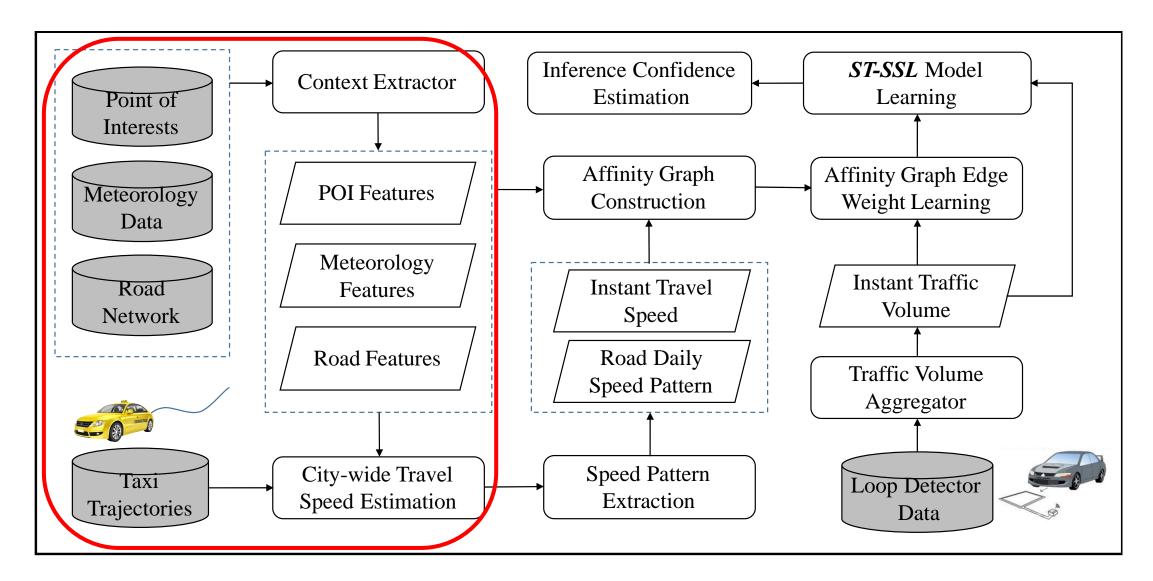


with loop detector

w/t loop detector

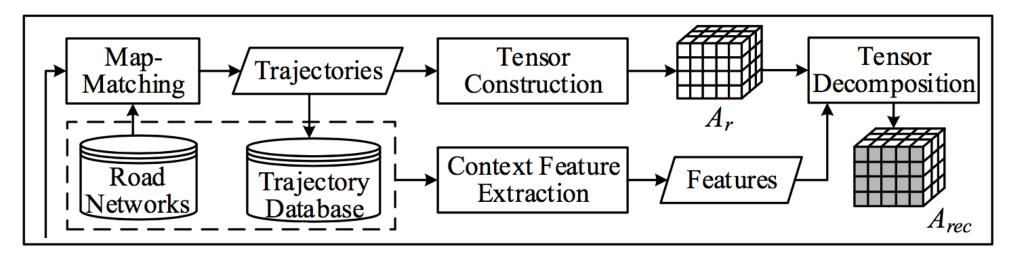
- Estimate traffic volume of every road segment

Framework



Preliminary: City-wide Travel Speed Estimation

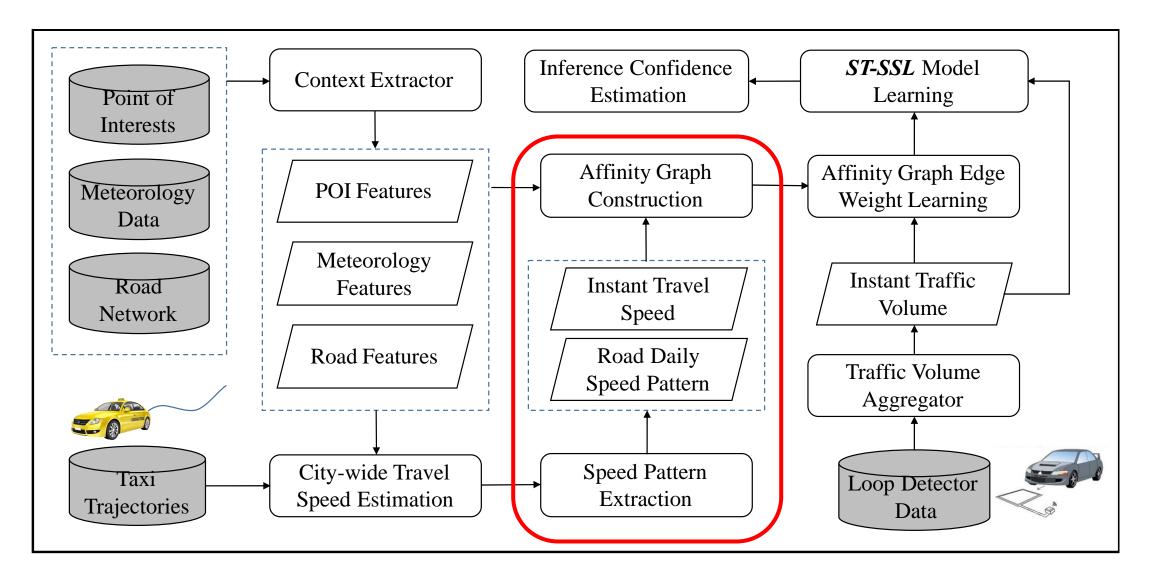
• Context-Aware Tensor Decomposition* (CATD)



• Output: travel speed on *every* road segment

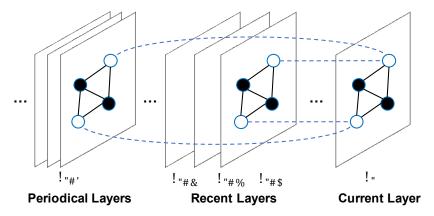
^{*} Wang, Yilun, Yu Zheng, and Yexiang Xue. "Travel time estimation of a path using sparse trajectories." *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*. ACM, 2014.

Framework



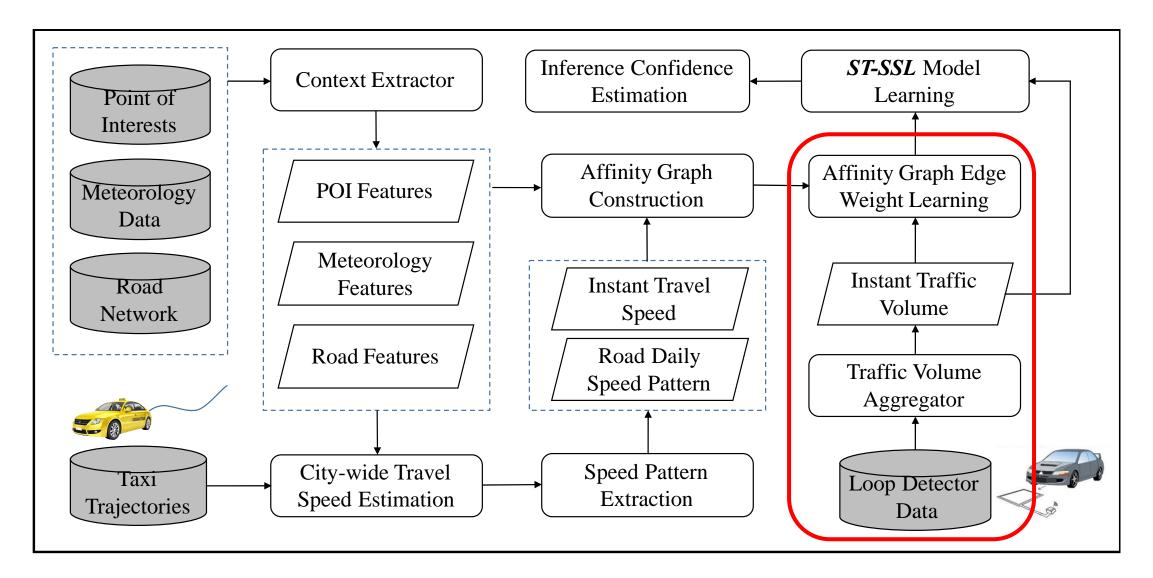
Traffic Affinity Graph Construction

- Affinity Graph
 - Node: per-lane volume on a road at one time slot
 - Edge: traffic condition similarity between two nodes



- Edge Construction with spatio-temporal knowledge
 - Spatial: connect to segments with similar traffic patterns
 - within a radius (e.g., 200m)
 - within several hops in the road network
 - with several similar roads equipped loop detectors
 - satisfies: 1) have similar average speed, 2) have similar daily speed patterns (characterized by Pearson correlations)
 - **Temporal**: connect to correlated temporal layers
 - connect to recent temporal layers
 - connect to periodical temporal layers (day/week)

Framework

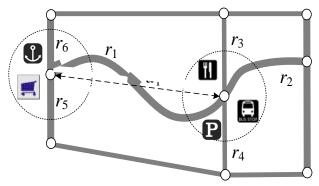


Graph Edge Weight Learning

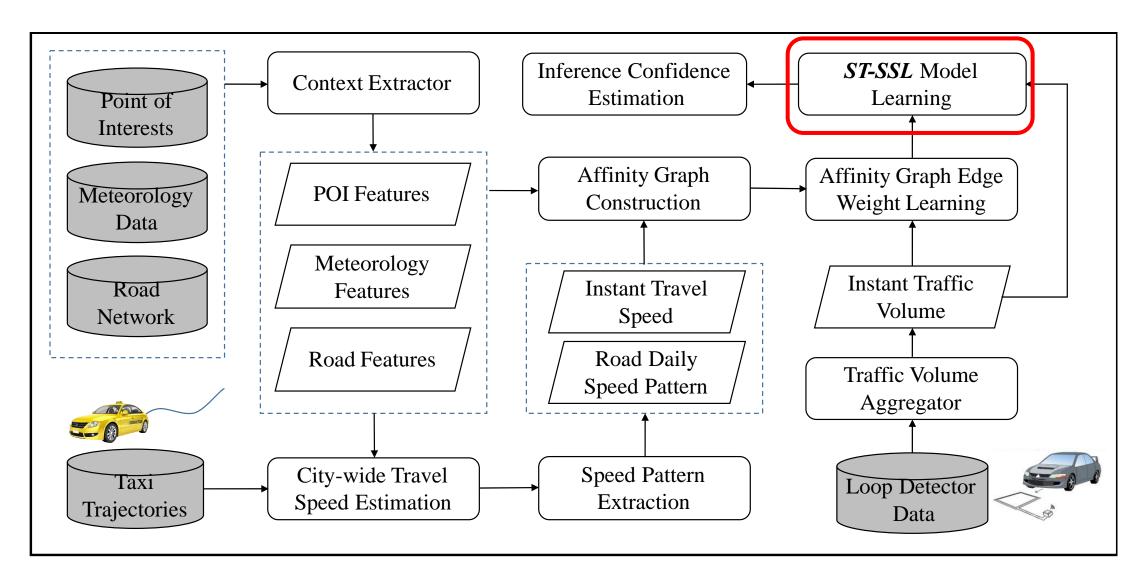
• Motivation

- Edge weight denotes the traffic condition similarities among road segments
- Roads are associated with many urban context features, e.g., POIs, road network.
- Representative features should co-evolves with the volume change
- Edge weight learning
 - Step 1: Normalize $|\Delta f_i|$ for all urban features *i*
 - Step 2: Calculate Pearson Correlation $corr_{f_i}$ between $|\Delta f_i|$ and $|\Delta Vol|$
 - Step 3: Define weight between two nodes u and v

 $a_{u,v} = \exp(-\sum_{i} corr_{f_i} \times |f_i(u) - f_i(v)|)$



Framework



Spatio-temporal Semi-supervised Learning

- Insights
 - Spatial property: volume changing rates are similar among roads nearby
 - Temporal property: volume on recent and periodical time slots should be similar
- Spatial change rate similarity

$$L_s = \sum_{t \in T} \sum_{(u,v) \in E} a_{u,v} \left(\frac{\Delta x_u(t)}{x_u(t-1)} - \frac{\Delta x_v(t)}{x_v(t-1)} \right)^2$$

• Temporal value similarity

$$L_{t} = \alpha_{1} \sum_{t \in T} \sum_{v \in V} (x_{v}(t) - x_{v}(t-1))^{2} + \alpha_{2} \sum_{t \in T} \sum_{v \in V} (x_{v}(t) - x_{v}(t-P))^{2}$$

Recent time Periodical time

Spatio-temporal Semi-supervised Learning

• Loss function

$$\mathcal{L}_{STSSL} = \mathcal{L}_s + \mathcal{L}_t$$

= $\sum_{t \in T} \sum_{(u,v) \in E} a_{u,v} \left(\frac{\Delta x_u(t)}{x_u(t-1)} - \frac{\Delta x_v(t)}{x_v(t-1)} \right)^2$
 $+ \alpha \sum_{t \in T} \sum_{c \in corr(t)} \sum_{u \in U} (x_u(t) - x_u(c))^2$

• Solution

$$X = \arg\min_{X} \mathcal{L}_{STSSL}$$

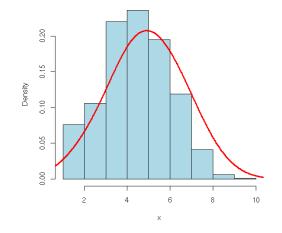
$$x_{\upsilon}(t) = \frac{\sum_{u \in N(\upsilon)} \frac{a_{u,\upsilon} x_u(t)}{x_u(t-1) x_{\upsilon}(t-1)} + \alpha \sum_{c \in corr(t)} x_{\upsilon}(t+c)}{\sum_{u \in N(\upsilon)} \frac{a_{u,\upsilon}}{x_{\upsilon}^2(t-1)} + \alpha C}$$

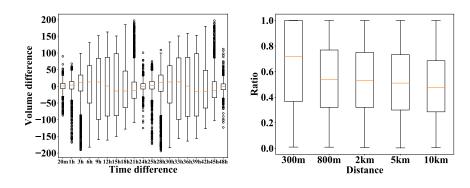
Inference Confidence Estimation

• Motivation

 inferred value should be statistically significant compared with its spatial & temporal neighbors

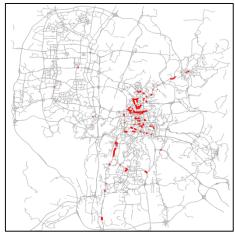
- Spatio-temporal Smoothness Confidence
 - volume should not change dramatically over both temporal and spatial dimensions
- Graph Structure Confidence
 - nodes connected to labelled data with higher weights should receive more confidence

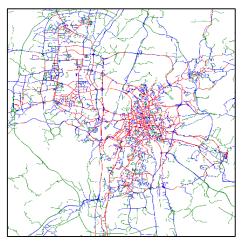




Experiment Data Sets

- Loop Detectors
 - Time span: 2016.3.16 -- 4.1 @Guiyang
 - Data sparsity: 155/19165
- Taxi Trajectories
 - Time span: 2016.3.16 -- 4.1 @Guiyang
 - 6918 taxis with 37.6s sample rate
- Road network features
 - Length, level, direction, #lanes, #connections, speed limit, etc.
- POIs features
 - Distribution and total numbers of POI categories





Taxi Trajectories

Baselines

ST-SSL is compared with the following baseline methods:

- LR: Linear regression.
- ANN: Artificial neural network.
- **RF:** Random forest regression.
- **Basic-SSL** [30]:
 - A classical semi-supervised learning model
 - Do not consider the spatio-temporal properties

Performance Measurements

- MSPE (Root Mean Square Percentage Errors)
- MAPE (Mean Absolute Percentage Errors)

Volume Inference Performance

	Undetected Road Inference				Missing Observation Recovery			
Method	MSPE	MAPE	Var _{MSPE}	Var _{MAPE}	MSPE	MAPE	Var _{MSPE}	Var _{MAPE}
LR	5.951	2.068	0.306	0.079	6.124	1.695	0.053	0.000
RF	2.542	1.116	0.169	0.043	1.054	0.357	0.007	0.000
ANN	7.887	2.356	0.407	0.608	2.058	0.646	0.174	0.003
Basic-SSL	3.215	1.342	0.257	0.044	0.759	0.288	0.002	0.000
ST-SSL	0.952	0.915	0.001	0.000	0.503	0.179	0.004	0.000

Table 1: Volume Inference Accuracy

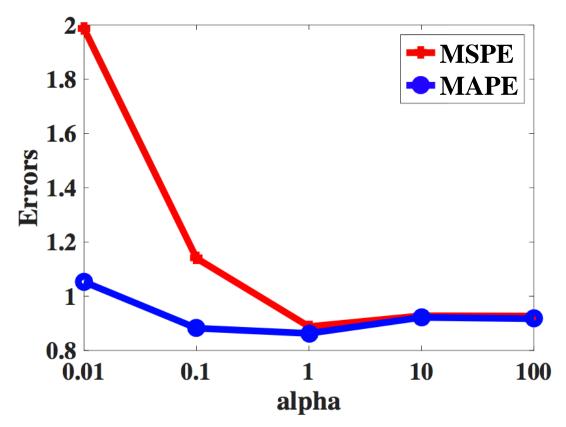
Varying Spatial Neighbors

 Table 2: Performance Varying # Spatial Neighbors

# Spatial Neighbors									
Method	10	20	30	40	50				
Basic-SSL	3.131	2.523	1.853	1.959	1.3988				
ST-SSL	0.895	0.940	0.886	0.906	0.887				

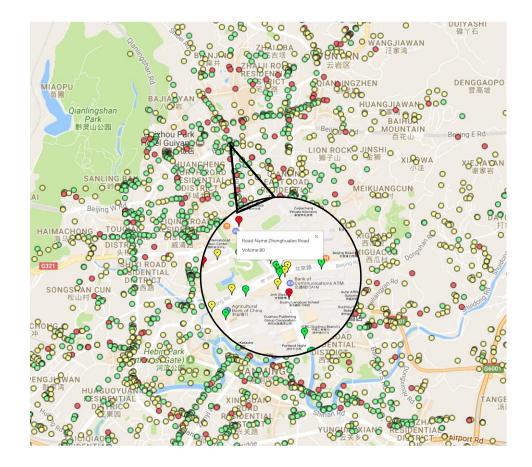
- Performance of Basic-SSL gets better when the graph has more spatial neighbors in the affinity graph
- Proposed Spatio-temporal semi-supervised learning requires less information passed through the graph, because it genuinely incorporates those prior knowledge

Vary Spatio-temporal Factor *α*



- hyper-parameter α is a factor that gives different weights on the spatial and temporal terms
- this factor is application dependent

Visualization of Inference Confidence



Conclusions

- We propose a Spatio-Temporal Semi-Supervised Learning model to tackle the challenges associated with loop detectors and taxi trajectories.
- The knowledge from two different domains are fused in this framework to infer a city-wide volume information.
- We conduct extensive experiments on real-world data. The results demonstrate the advantages of the proposed framework on correctly inferring the city-wide traffic volume.