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Abstract. Programming by Examples (PBE) involves synthesizing in-
tended programs in an underlying domain-specific language from example-
based specifications. PBE systems are already revolutionizing the ap-
plication domain of data wrangling and are set to significantly impact
several other domains including code refactoring.

There are three key components in a PBE system. (i) A search algo-
rithm that can efficiently search for programs that are consistent with
the examples provided by the user. We leverage a divide-and-conquer-
based deductive search paradigm that inductively reduces the problem
of synthesizing a program expression of a certain kind that satisfies a
given specification into sub-problems that refer to sub-expressions or
sub-specifications. (ii) Program ranking techniques to pick an intended
program from among the many that satisfy the examples provided by the
user. We leverage features of the program structure as well of the outputs
generated by the program on test inputs. (iii) User interaction models to
facilitate usability and debuggability. We leverage active-learning tech-
niques based on clustering inputs and synthesizing multiple programs.

Each of these PBE components leverage both symbolic reasoning and
heuristics. We make the case for synthesizing these heuristics from train-
ing data using appropriate machine learning methods. This can not only
lead to better heuristics, but can also enable easier development, main-
tenance, and even personalization of a PBE system.

1 Introduction

Program Synthesis is the task of synthesizing a program that satisfies a given
specification [1]. The traditional view of program synthesis has been to synthesize
programs from logical specifications that relate the inputs and outputs of the
program. Programming by Examples (PBE) is a sub-field of program synthesis,
where the specification consists of input-output examples, or more generally,
output properties over given input states [2]. PBE has emerged as a favorable
paradigm for two reasons: (i) the example-based specification in PBE makes it
more tractable than general program synthesis. (ii) Example-based specifications
are much easier for the users to provide in many scenarios.
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2 Applications

The two killer applications for programming by examples today are in the space
of data transformations/wrangling and code transformations.

2.1 Data wrangling

Data Wrangling refers to the process of transforming the data from its raw format
to a more structured format that is amenable to analysis and visualization. It is
estimated that data scientists spend 80% of their time wrangling data. Data is
locked up into documents of various types such as text/log files, semi-structured
spreadsheets, webpages, JSON/XML, and pdf documents. These documents of-
fer their creators great flexibility in storing and organizing hierarchical data
by combining presentation/formatting with the underlying data. However, this
makes it extremely hard to extract the underlying data for several tasks such
as processing, querying, altering the presentation view, or transforming data to
another storage format. PBE can make data wrangling a delightful experience
for the masses.

Extraction: A first step in a data wrangling pipeline is often that of ingesting
or extracting tabular data from semi-structured formats such as text/log files,
web pages, and XML/JSON documents. These documents offer their creators
great flexibility in storing and organizing hierarchical data by combining presen-
tation/formatting with the underlying data. However, this makes it extremely
hard to extract the relevant data. The FlashExtract PBE technology allows
extracting structured (tabular or hierarchical) data out of semi-structured doc-
uments from examples [3]. For each field in the output data schema, the user
provides positive/negative instances of that field and FlashExtract generates
a program to extract all instances of that field. The FlashExtract technology
ships as the ConvertFrom-String cmdlet in Powershell in Windows 10, wherein
the user provides examples of the strings to be extracted by inserting tags around
them in test. The FlashExtract technology also ships in Azure OMS (Operations
Management Suite), where it enables extraction of custom fields from log files.

Transformation: The Flash Fill feature, released in Excel 2013 and beyond,
is a PBE technology for automating syntactic string transformations, such as
converting “FirstName LastName” into “LastName, FirstName” [4]. PBE can
also facilitate more sophisticated string transformations that require lookup into
other tables [5]. PBE is also a very natural fit for automating transformations
of other data types such as numbers [6] and dates [7].

Formatting: Another useful application of PBE is in the space of formatting data
tables. This can be useful to convert semi-structured tables found commonly in
spreadsheets into proper relational tables [8], or for re-pivoting the underlying
hierarchical data that has been locked into a two-dimensional tabular format [9].
PBE can also be useful in automating repetitive formatting in a powerpoint slide
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deck such as converting all red colored text into green, or switching the direction
of all horizontal arrows [10].

2.2 Code Transformations

There are several situations where repetitive code transformations need to be
performed and examples can be used to automate this tedious task.

A standard scenario is that of general code refactoring. As software evolves,
developers edit program source code to add features, fix bugs, or refactor it for
readability, modularity, or performance improvements. For instance, to apply
an API update, a developer needs to locate all references to the old API and
consistently replace them with the new API. Examples can be used to infer such
edits from a few examples [11].

Another important scenario is that of application migration—whether it is
about moving from on prem to the cloud, or from one framework to another,
or simply moving from an old version of a framework to a newer version to
keep up with the march of technology. A significant effort is spent in performing
repetitive edits to the underlying application code. In particular, for database
migration, it is estimated that up to 40% of the developer effort can be spent in
performing repetitive code changes in the application code.

Yet another interesting scenario is in the space of feedback generation for
programming assignments in programming courses. For large classes such as
massive open online courses (MOOCs), manually providing feedback to different
students is an unfeasible burden on the teaching staff. We observe that student
submissions that exhibit the same fault often need similar fixes. The PBE tech-
nology can be used to learn the common fixes from corrections made by teachers
on few assignments, and then infer application of these fixes to the remaining
assignments, forming basis for automatic feedback [11].

3 PL meets ML

It is interesting to compare PBE with Machine learning (ML) since both involve
example-based training and prediction on new unseen data. PBE learns from
very few examples, while ML typically requires large amount of training data.
The models generated by PBE are human-readable (in fact, editable programs)
unlike many black-box models produced by ML. PBE generates small scripts that
are supposed to work with perfect precision on any new valid input, while ML can
generate sophisticated models that can achieve high, but not necessarily perfect,
precision on new varied inputs. Hence, given their complementary strengths, we
believe that PBE is better suited for relatively simple well-defined tasks, while
ML is better suited for sophisticated and fuzzy tasks.

Recently, neural program induction has been proposed as a fully ML-based
alternative to PBE. These techniques develop new neural architectures that learn
how to generate outputs for new inputs by using a latent program representation



4

Intelligent 
software

Logical 
strategies

Creative 
heuristics

Model

Features/Insights

Learned and maintained by 
ML-backed runtime

Written by developer

Fig. 1. A proposal for development of intelligent software that facilitates increased
developer productivity and increased software intelligence.

induced by learning some form of neural controller. Various forms of neural con-
trollers have been proposed such as ones that have the ability to read/write to
external memory tape [12], stack augmented neural controller [13], or even neural
networks augmented with basic arithmetic and logic operations [14]. These ap-
proaches typically involve developing a continuous representation of the atomic
operations of the network, and then using end-to-end training of a neural con-
troller or reinforcement learning to learn the program behavior. While this is
impressive, these techniques aren’t a good fit for the PBE task domains of rel-
atively simple well-defined tasks. This is because these techniques don’t gener-
ate an interpretable model of the learned program, and typically require large
computational resources and several thousands of input-output examples per
synthesis task. We believe that a big opportunity awaits in carefully combining
ML-based data-driven techniques with PL-based logical reasoning approaches to
improve a standard PBE system as opposed to replacing it.

3.1 A perspective on PL meets ML

AI software often contains two intermingled parts: logical strategies + creative
heuristics. Heuristics are difficult to author, debug, and maintain. Heuristics can
be decomposed into two parts: insights/features + model/scoring function over
those features. We propose that an AI-software developer refactors their intelli-
gent code into logical strategies and declarative features while ML techniques are
used to evolve an ideal model or scoring function over those insights with contin-
ued feedback from usage of the intelligent software. This has two advantages: (i)
Increase in developer’s productivity, (ii) Increase in system’s intelligence because
of better heuristics and those that can adapt differently to different workloads
or unpredictable environments (a statically fixed heuristic cannot achieve this).

Figure 1 illustrates this proposed modular construction of intelligent software.
Developing an ML model in this framework (where the developer authors logical
strategies and declarative insights) poses several interesting open questions since
traditional ML techniques are not well-equipped to handle such declarative and
symbolic frameworks. Moreover, even the boundary between declarative insights
and ML-based models may be fluid. Depending on the exact problem setting as
well as the domain, the developer may want to decide which part of the system
should follow deterministic logical reasoning and which part should be based on
data-driven techniques.
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Fig. 2. Programming-by-Examples Architecture. The search algorithm, parameterized
by a domain-specific language (DSL) and a ranking function, synthesizes a ranked set of
programs from the underlying DSL that are consistent with the examples provided by
the user. The debugging component, which leverages additional test inputs, interacts
with the user to refine the specification, and the synthesis process is repeated. Once
an intended program has been synthesized, it can be translated to a target language
using standard syntax-directed translation.

3.2 Using ML to improve PBE

There are three key components in a PBE engine: search algorithm, ranking
strategy, and user interaction models. Each of these components leverage vari-
ous forms of heuristics. ML can be used to learn these heuristics, thereby im-
proving the effectiveness and maintainability of the various PBE components.
In particular, ML can be used to speed up the search process by predicting the
success likelihood of various paths in the huge search space. It can be used to
learn a better ranking function, allowing users to provide fewer examples and
thus increasing usability. It can be used to cluster test data and associate confi-
dence measure over the outputs generated by the synthesized program to drive
an effective active-learning session with the user for debuggability.

4 Search Algorithm

Figure 2 shows the architecture of a PBE system. The most involved technical
component is the search algorithm, which we discuss in this section. Sections 4.1
and 4.2 describe the two key PL ingredients that form the foundation for design-
ing this search algorithm that is based on logical/symbolic reasoning. Section 4.3
then discusses and speculates how ML can further build over the traditional PL-
style logical reasoning to obtain an even more efficient, real-time search algorithm
for PBE.
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String Expression E:=concat(E1, E2) | substr(x, P1, P2) | conststr(String)
Position P:= Integer | pos(x, R1, R2, k)

Fig. 3. An example domain-specific language. substr, concat are string operators and
conststr represents a constant string constructor. pos operator identifies position of
a particular pattern in the input x. String is any constant string and Integer is an
arbitrary integer that can be negative as well.

4.1 Domain-specific Language

A key idea in program synthesis is to restrict the search space to an underlying
domain-specific language (DSL) [15, 16]. The DSL should be expressive enough
to represent a wide variety of tasks in the underlying task domain, but also
restricted enough to allow efficient search. We have designed many functional
domain-specific languages for this purpose, each of which is characterized by a set
of operators and a syntactic restriction on how those operators can be composed
with each other (as opposed to allowing all possible type-safe composition of
those operators) [2]. A DSL is typically specified as a context-free grammar
that consists of one or more production rules for each non-terminal. The right
hand side of a production rule can be a non-terminal, an explicit set of program
expressions, or a program operator applied to some non-terminals or expressions.

For illustration, we present an extremely simple string manipulation gram-
mar in Figure 3; this DSL is a heavily stripped down version of the Flash Fill
DSL [4]. The language has two key operators for string manipulations: a) substr
operator which takes as input a string x, and two position expressions P1 and P2

that evaluate to positions/indices within the string x, and returns the substring
between those positions, b) concat which concatenates the given expressions.
The choice for position expression P includes the pos(x,R1,R2,k) operator, which
returns the kth position within the string x such that (some suffix of) the left
side of that position matches with regular expression R1 and (some prefix of)
the right side of that position matches with regular expression R2.

For example, the following program maps input “evan chang” into “evan-
chang@cs.colorado.edu”.
concat(substr(Input, ε, “ ”, 1), substr(Input, “ ”, ε, -1), conststr(“@cs.colorado.edu”))

Note that we overload concat operator to allow for more than 2 operands.

4.2 Deductive Search Methodology

A simple search strategy is to enumerate all programs in order of increasing
size by doing a bottom-up enumeration of the grammar [15]. This can be done
by maintaining a graph of reachable values starting from the input state in the
user-provided example. This simply requires access to the executable semantics
of the operators in the DSL. Bottom-up enumeration is very effective for small
grammar fragments since executing operators forward is very fast. Some tech-
niques have been proposed to increase the scalability of enumerative search: (i)
divide-and-conquer method that decomposes the problem of finding programs
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that satisfy all examples to that of finding programs, each of which satisfies some
subset, and then combining those programs using conditional predicates [17]. (ii)
operator-specific lifting functions that can compute the output set from input
sets more efficiently than point-wise computation. Lifting functions are essen-
tially the forward transformer for an operator [18].

Unfortunately, bottom-up enumeration does not scale to large grammars be-
cause there are often too many constants to start out with. Our search methodol-
ogy combines bottom-up enumeration with a novel top-down enumeration of the
grammar. The top-down enumeration is goal-directed and requires pushing the
specification across an operator using its inverse semantics. This is performed
using witness functions that translate the specification for a program expression
of the kind F (e1, e2) to specifications for what the sub-expressions e1 and e2
should be. The bottom-up search first enumerates smaller sub-expressions be-
fore enumerating larger expressions. In contrast, the top-down search first fixes
the top-part of an expression and then searches for its sub-expressions.

The overall top-down strategy is essentially a divide-and-conquer method-
ology that recursively reduces the problem of synthesizing a program expres-
sion e of a certain kind and that satisfies a certain specification ψ to simpler
sub-problems (where the search is either over sub-expressions of e or over sub-
specifications of ψ), followed by appropriately combining those results. The re-
duction logic for reducing a synthesis problem to simpler synthesis problems
depends on the nature of the involved expression e and the inductive specifica-
tion ψ. If e is a non-terminal in the grammar, then the sub-problems correspond
to exploring the various production rules corresponding to e. If e is an operator
application F (e1, e2), then the sub-problems correspond to exploring multiple
sub-goals for each parameter of that operator. As is usually the case with search
algorithms, most of these explorations fail. PBE systems achieve real-time effi-
ciency in practice by leveraging heuristics to predict which explorations are more
likely to succeed and then either only explore those or explore them preferentially
over others.

Machine learning techniques can be used to learn such heuristics in an ef-
fective manner. In the next subsection, we provide more details on one such
investigation related to predicting the choice over exploring multiple production
rules for a grammar non-terminal. In particular, we describe our ML-based prob-
lem formulation, our training data collection process as well as some preliminary
results.

4.3 ML-based Search Algorithm

A key ingredient of the top-down search methodology mentioned above is gram-
mar enumeration where while searching for a program expression e of the non-
terminal kind, we enumerate all the production rules corresponding to e to obtain
a new set of search problems and recursively solve each one of them. The goal
of this investigation is to determine the best production rules that we should
explore while ignoring certain production rules that are unlikely to provide a
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desired program. Now, it might seem a bit outlandish to claim that we can
determine the correct production rule to explore before even exploring it!

However, many times the provided input-output specification itself provides
clues to make such a decision accurately. For example, in the context of the
DSL mentioned in Figure 3, lets consider an example where the input is “evan”
and the desired output is “evan@cs.colorado.edu”. In this case, even before ex-
ploring the productions rules, it is fairly clear that we should apply the concat
operator instead of substr operator; a correct program is concat(Input, const-
str(“@cs.colorado.edu”)). Similarly, if our input is “xinyu feng” and the desired
output is “xinyu” then it is clear that we should apply the substr operator; a
correct program is substr(Input, 1, pos(Input, Alphanumeric, “ ”, 1)).

But, exploiting the structure in input-output examples along with production
rules is quite challenging as these are non-homogeneous structures without a
natural vector space representation. Building upon recent advances in natural
language processing, our ML-based approach uses a version of neural networks
to exploit the structure in input-output examples to estimate the set of best
possible production rules to explore. Formally, given the input-output examples
represented by ψ, and a set of candidate production rules P1, P2, . . . , Pk whose
LHS is our current non-terminal e, we compute a score si = score(ψ, Pi) for each
candidate rule Pi. This score reflects the probability of synthesis of a desired
program if we select rule Pi for the given input-output examples ψ. Note that
input-output example specification ψ changes during the search process as we
decompose the problem into smaller sub-problems; hence for recursive grammars,
we need to compute the scores every time we wish to explore a production rule.

For learning the scoring model, similar to [19], our method embeds input-
output examples in a vector space using a popular neural network technique
called LSTM (Long Short-Term Memory) [20]. The embedding of a given input-
output specification essentially captures its critical features, e.g., if input is a
substring of output or if output is a substring of input etc. We then match
this embedding against an embedding of the production rule Pi to generate a
joint embedding of (ψ, Pi) pair. We then learn a neural-network-based function
to map this joint embedding to the final score. Now for prediction, given scores
s1, s2, . . . , sk, we select branches with top most scores with large enough margin,
i.e., we select rules Pi1 , . . . , Pi` for exploration where si1 ≥ si2 · · · ≥ si` and
si`−si`+1

≥ τ ; τ > 0 is a threshold parameter that we discuss later. See Figure 4
for an overview of our LSTM-based model and the entire pipeline.

To test our technique, we applied it to a much more expressive version of the
Flash Fill DSL [4] that includes operators over rich data types such as numbers
and dates. For training and testing our technique, we collected 375 benchmarks
from real-world customer scenarios. Each benchmark consists of a set of input
strings and their corresponding outputs. We selected 300 benchmarks for training
and remaining 75 for testing.

For each training benchmark, we generated top 1000 programs using ex-
isting top-down enumerative approach and logged relevant information for our
grammar enumeration. For example, when we want to expand certain grammar
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Fig. 4. LSTM-based model for computing score for the candidate set of production
rules P1, . . . , Pk during the grammar expansion process. The top figure shows details
of the ML model used to compute the score for a candidate production rule when
placed in the context of the given input-output examples.

symbol (say expr in Figure 3) with the goal of mapping given inputs to required
outputs, we log all the relevant production rules Pi, ∀i (i.e., rules in Line 1 of
Figure 3). We also log the score si of the top program that is generated by ap-
plying production rule Pi. That is, each training instance is (ψ, Pi, si) for a given
node with input-output examples ψ. We use standard DNN tools to train the
model for grammar enumeration. That is, whenever we need to decide on which
production rule to select for expansion, we compute score for each possible rule
Pi and select the rules whose scores are higher than the remaining rules by a
margin of τ .

Threshold τ is an interesting knob that helps decide between exploration vs
exploitation. That is, smaller τ implies that we trust our ML model completely
and select the best choice presented by the model. On the other hand, larger
τ forces system to be more conservative and use ML model sparingly, i.e., only
when it is highly confident. For example, on the 75 test benchmarks, setting
τ = 0 i.e. selecting ML model’s predicted production rule for every grammar
expansion decision, we select the correct production rule in 92% of the instances.
Unfortunately, selecting a wrong production rule 8% of the times might lead to
synthesis of a relatively poor program or in worst case, no program. However, by
increasing τ to 0.1, we can increase chances of selection of a correct production
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rule to 99%. Although in this case, for nearly 50% instances the ML model does
not differentiate between production rules, i.e., the predicted scores are all within
τ = 0.1 length interval. Hence, we enumerate all the rules in about 50% of the
grammar expansion instances and are able to prune production rules in only 50%
cases. Nonetheless, this itself leads to impressive computation time improvement
of up to 8x over näıve exploration for many challenging test benchmarks.

5 Ranking

Examples are a severe under-specification of the user’s intent in many useful
task domains. As a result, there are often many programs in an underlying DSL
that are consistent with a given set of training examples, but are unintended,
i.e., they would produce an undesired output on some other test input. Usability
concerns further necessitate that we are able to learn an intended program from
as few examples as possible.

PBE systems address this challenge by leveraging a ranking scheme to select
between different programs consistent with the examples provided by the user.
Ideally, we want to bias the ranking of programs so that natural programs are
ranked higher. We capture the notion of naturalness of programs by performing
training on real-world datasets.

The ranking can either be performed in a phase subsequent to the one that
identifies the many programs that are consistent with the examples [21], or it
can be in-built as part of the search process [22, 23]. Furthermore, the ranking
can be a function of the program structure or additional test inputs.

5.1 Ranking based on Program Structure

A basic ranking scheme can be specified by defining a preference order over
program expressions based on their features. Two general principles that are
useful across various domains are: prefer small expressions (inspired by the classic
notion of Kolmogorov complexity) and prefer expressions with fewer constants
(to force generalization). For specific DSLs, more specific preferences or features
can be defined based on the operators that occur in the DSL.

5.2 Ranking based on test inputs

The likelihood of a program being the intended one not only depends on the
structure of that program, but also on features of the input data on which that
program will be executed and the output data produced by executing that pro-
gram. In some PBE settings, the synthesizer often has access to some additional
test inputs on which the intended program is supposed to be executed. Singh
showed how to leverage these additional test inputs to guess a reduction in the
search space with the goal to speed up synthesis and rank programs better [24].
Ellis and Gulwani observed that the additional test inputs can be used to re-rank
programs based on how similar are the outputs produced by those programs on
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the test inputs to the outputs in the training/example inputs provided by the
user [25].

For instance, consider the task of extracting years from input strings of the
kind shown in the table below.

Input Output

Missing page numbers, 1993 1993
64-67, 1995 1995

The program P1: “Extract the last number” can perform the intended task.
However, if the user provides only the first example, another reasonable program
that can be synthesized is P2: “Extract the first number”. There is no clear way
to rank P1 higher than P2 from just examining their structure. However, the
output produced by P1 (on the various test inputs), namely {1993, 1995, . . . , }
is a more meaningful set (of 4 digit numbers that are likely years) than the one
produced by P2, namely (which manifests greater variability). The meaningful-
ness or similarity of the generated output can be captured via various features
such as IsYear, numeric deviation, IsPersonName, and number of characters.

5.3 ML-based Ranking Function

Typically, natural or intended programs tend to have subtle properties that can-
not be captured by just one feature or by an arbitrary combination of the mul-
tiple features identified above; empirical results presented in Figure 5 confirm
this hypothesis where the accuracy of the shortest-program-based ranker or a
random ranker is poor. Hence, we need to learn a ranking function that appropri-
ately combines the features in order to produce the intended natural programs.
In fact, learning rankers over programs/sub-expressions represents an exciting
domain where insights from ML and PL can have an interesting and impactful
interplay.

Below, we present one such case study where we learn a ranking function that
ranks sub-expressions and programs during the search process itself. We learn
the ranking function using training data that is extracted from diverse real-
world customer scenarios. However learning such a ranking function that can
be used to rank sub-expressions during the search process itself poses certain
unique challenges. For example, we need to rank various non-homogeneous sub-
expressions during each step of the search process but the feedback about our
ranking decisions is provided only after synthesis of the final program. Moreover,
the ranking function captures the intended program only if the final program is
correct, hence, a series of “correct” ranking decisions over various sub-expressions
may be nullified by one incorrect ranking decision.

To solve the above set of problems, we implement a simple program-embedding-
based approach. Consider a program P that is composed of expressions {e1, . . . , em}.
Now, using the previously mentioned classes of features, we embed each of our
sub-expression in a d-dimensional vector space. Formally, φ(ei) ∈ Rd is a d-
dimensional embedding of sub-expression ei and the program P itself is repre-
sented as a weighted combination of these sub-expressions: φ(P ) =

∑
i wiφ(ei),
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No. I/O Random Shortest ML-Ranker

1 14.2% 2.4% 69.2%

2 53.7% 77.5% 91.4%

3 77.0% 88.0% 96.5%

4 86.6% 94.4% 98.6%

No. I/O Random Shortest ML-Ranker

1 19.1% 9.3% 70.6%

2 57.1% 74.0% 88.1%

3 77.3% 86.8% 94.8%

4 86.8% 92.8% 97.8%

Fig. 5. Ranking: Left table compares precision@1 accuracy for various methods when
supplied different number of input-output example pairs while right table compares
precision@5 accuracy. Our ML-ranker provides significantly higher accuracy and esti-
mates correct program for 69% test benchmarks using just one input-output example.

where wi ≥ 0 are positive weights that are also learned depending on the type
of sub-expression ei. That is, φ(P ) is a d-dimensional vector representation of
program P .

We now pose the ranking problem as: find θ ∈ Rd s.t.
∑

j θjφ(Pa)j ≥∑
j θjφ(Pb)j where Pa is a “correct” program, i.e., it produces desired output

on training datasets and Pb is an “incorrect” program. θj and φ(P )j represents
the j-th coordinate of θ and φ(P ) respectively.

For learning θ as well as weights wi, we use training benchmarks where
each benchmark consists of a set of inputs and their corresponding outputs.
For each benchmark, we synthesize 1000 programs using the first input-output
pair in that benchmark, treating it as an example input-output pair. We cate-
gorize a synthesized program as “correct” if it generates correct output on all
the other benchmark inputs, and “incorrect” otherwise. We then embed each
sub-expression and the program in d-dimensional space using hand-crafted fea-
tures. Our features reflect certain key properties of the programs, e.g., length
of the program etc. We then use straightforward block-coordinate descent based
methods to learn θ, wi’s in an iterative fashion.

Empirical Results: Similar to search experiments described in Section 4.3,
we learn our ranking function using a collection of important benchmarks from
real-world customer scenarios. We select about 75 benchmarks for training and
test our system on remaining 300 benchmarks. We evaluate performance of our
ranker using precision@k metric, which is the fraction of test benchmarks in
which at least one “correct” program lies in the top-k programs (as ranked by
our ranker). We also compute precision@k for different specification sizes, i.e.,
for different number of input-output examples being supplied.

The tables in Figure 5 compare accuracy (measured in precision@k) of our
method with two baselines: a) random ranker, which at each node selects a ran-
dom sub-expression, b) shortest program, which selects programs with the small-
est number of operators. Note that with 1 input-output example, our method is
50% more accurate than the two baselines. Naturally with 4 examples, baselines’
performance also improves as there are very few programs that satisfy 4 exam-
ples, i.e., with 4 input-output examples searching for “any” consistent program
is enough. However, as mentioned earlier, in many settings providing even 4 ex-
amples is going to burden the user significantly and hence renders the solution
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impractical. Moreover, with bigger and more powerful grammars, even 4 exam-
ples might lead to several thousands of consistent programs, thus necessitating
a data driven ranker of the sub-expressions/programs.

6 Interactivity

While use of ranking in the synthesis methodology attempts to avoid selecting an
unintended program, it cannot always succeed. Hence, it is important to design
appropriate user interaction models for the PBE paradigm that can provide
the equivalent of debugging experience in standard programming environments.
There are two important goals for a user interaction model that is associated
with a PBE technology [26]. First, it should provide transparency to the user
about the synthesized program(s). Second, it should guide the user in resolving
ambiguities in the provided specification.

In order to facilitate transparency, the synthesized program can be displayed
to the user. In that context, it would be useful to have readability as an addi-
tional criterion during synthesis. The program can also be paraphrased in natural
language, especially to facilitate understanding by non-programmers.

In order to resolve ambiguities, we can present multiple synthesized programs
to the user and ask the user to pick between those. More interestingly, we can
also leverage availability of other test input data on which the synthesized pro-
gram is expected to be executed. This can be done in few different ways. A set of
representative test inputs can be obtained by clustering the test inputs and pick-
ing a representative element from each cluster [27]. The user can then check the
results of the synthesized program on those representative inputs. Alternatively,
clustering can also be performed on the outputs produced by the synthesized
program. Yet, another approach can be to leverage distinguishing inputs [28].
The idea here is to synthesize multiple programs that are consistent with the
examples provided by the user but differ on some test inputs. The PBE system
can then ask the user to provide the intended output on one or more of these
distinguishing inputs. The choice for the distinguishing input to be presented to
the user can be based on its expected potential to distinguish between most of
those synthesized programs.

There are many heuristic decisions in the above-mentioned interaction models
that can ideally be learned using ML techniques such as what makes a program
more readable, or which set of programs to present to the user, or how to cluster
the input or output columns. Below, we discuss one such investigation related
to clustering of strings in a column.

6.1 Clustering of Strings

We propose an agglomerative-hierarchical-clustering-based method for clustering
a collection of strings. Intuitively, we want to cluster strings such that each
cluster can be represented by a specific but natural description. For example,
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given strings {1990, 1995, 210BC, 450BC}, we want to find the two clusters that
can be described by the regular expressions Digit4 and Digit3 · BC.

To partition a given set of strings into such natural clusters, we learn regular
expressions as cluster descriptions, using program synthesis over a DSL that de-
scribes regular expressions [27]. Our clustering algorithm first randomly samples
a few strings and then generates candidate regular expressions by synthesizing
regular expressions that describe various pairs of strings. We define a measure
to compute the cost of describing a string using a candidate regular expression.
Using this cost measure, we apply standard complete-linkage agglomerative hi-
erarchical clustering to obtain compact clusters with low cost of describing the
contained strings with a regular expression.

For example, given strings from a dataset containing postal codes such as:
{99518, 61021-9150, 2645, K0K 2C0, 61604-5004, S7K7K9,...}, our system iden-
tifies clusters described by regular expressions such as:

– Digit5

– Digit4

– UpperCase ·Digit ·UpperCase · Space ·Digit ·UpperCase ·Digit
– 61Digit3 −Digit4

– S7K7K9

Note that these regular expressions not only capture the key clusters such as
Digit5 etc, but they also expose certain anomalies such as S7K7K9. We evaluated
our system over real-world datasets, and used a Normalized Mutual Information
(NMI) metric, which is a standard clustering metric, to measure the accuracy of
our system in its ability to identify the expected clusters.

We observe that, given enough computation time, our system is able to
achieve nearly optimal NMI of ≈ 1.0. Moreover, by using appropriate sampling
and synthesizing regular expressions, we can speed up the computation by a fac-
tor of 2 despite recovering clusters with over 0.95 NMI. We refer the interested
readers to [27] for more details.

7 Future Directions

Applications: General-purpose programmable robots may be a common house-
hold entity in a few decades from now. Each household will have its own unique
geography for the robot to navigate and a unique set of chores for the robot to
perform. Example-based training would be an effective means for personalizing
robots for a household.

Multi-model intent specification: While this article has focused on leveraging ex-
amples as specification of intent, certain classes of tasks are best described using
natural language such as spreadsheet queries [29] and smartphone scripts [30].
The next generation of programming experience shall be built around multi-
modal specifications that are natural and easy for the user to provide. The new
paradigm shall allow the user to express intent using combination of various
means [31] such as examples, demonstrations, natural language, keywords, and
sketches [32].
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Predictive Synthesis: For some task domains, it is often possible to predict the
user’s intent without any input-output examples, i.e., from input-only examples.
For instance, extracting tables from web pages or log files, or splitting a column
into multiple columns [18]. While providing examples is already much more
convenient than authoring one-off scripts, having the system guess the intent
without any examples can power novel user experiences.

Adaptive Synthesis: Another interesting future direction is to build systems that
learn user preferences based on past user interactions across different program
synthesis sessions. For instance, the underlying ranking can be dynamically up-
dated. This can pave the way for personalization and learning across users within
an organization or within the cloud.

PL meets ML: While PL has democratized access to machine implementations
of precise ideas, ML has democratized access to discovering heuristics to deal
with fuzzy and noisy situations. The new AI revolution requires frameworks
that can facilitate creation of AI-infused software and applications. Synergies
between PL and ML can help lay the foundation for construction of such frame-
works [33–36]. For instance, language features can be developed that allow the
developer to express non-determinism with some default resolution strategies
that can then automatically become smarter with usage. As opposed to tradi-
tional AI-based domains such as vision, text, bioinformation, such self-improving
systems present entirely different data formats and pose unique challenges that
foreshadow an interesting full-fledged research area with opportunities to impact
how we program and think about interacting with computer systems in general.

8 Conclusion

PBE is set to revolutionize the programming experience for both developers
and end users. It can provide a 10-100x productivity increase for developers
in some task domains, and also enable computer users, 99% of whom are non-
programmers, to create small scripts to automate repetitive tasks. In fact, several
studies show that data scientists spend 80% time wrangling data while devel-
opers spend up to 40% time refactoring code in a typical application migration
scenario. Hence, data wrangling and code refactoring seem to be two killer appli-
cations for PBE today where PBE-based systems stand to significantly improve
productivity of data scientists as well as developers.

Building a usable and practical PBE system is challenging and can leverage
insights from both PL (for symbolic reasoning) and ML (for heuristics). A key
challenge in PBE is to search for programs that are consistent with the examples
provided by the user. On the symbolic reasoning side, our search methodology
in PBE leverages two key ideas: restrict the search to a domain-specific language
specified as a grammar, and perform a goal-directed top-down search that lever-
ages inverse semantics of operators to decompose a goal into a choice of multiple
sub-goals. However, this search can be made even more tractable by learning
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tactics to prefer certain choices over others during both grammar enumeration
and sub-goal selection.

Another key challenge in PBE is to understand the user’s intent in the face
of ambiguity that is inherent in example-based specifications, and furthermore,
to understand it from as few examples as possible. For this, we leverage use of a
ranking function with the goal of the search now being to pick the highest ranked
program that is consistent with the examples provided by the user. The ranker
is a function of various symbolic features of a program such as size, number of
constants, and use of a certain combination of operators. It is also a function of
the outputs generated by the program (non-null or not, same type as the example
outputs or not) and more generally the execution traces of the program on new
test inputs. While various PL concepts go into defining the features of a ranking
function, ML-based techniques combine these features so that performance of
the ranker is good over real-world customer scenarios.

A third challenge relates to debuggability: provide transparency to the user
about the synthesized program and help the user to refine the specification in
an interactive loop. We have investigated user interaction models that leverage
concepts from both PL and ML including active learning based on synthesis
of multiple top-ranked programs, clustering of inputs and outputs to identify
discrepancies, and navigation through a large program set represented succinctly
as a grammar.

All the above-mentioned directions highlight opportunities to design novel
techniques that carefully combine symbolic reasoning and declarative insights
with novel ML models to solve the various technical challenges associated with
a PBE system. We believe that the ongoing AI revolution shall further drive
novel synergies between PL and ML to facilitate creation of intelligent software
in general. PBE systems, and more generally program synthesis systems that
relate to real-time intent understanding, are a great case study for investigating
ideas in this space.
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