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Abstract

Today, the optimal performance of existing noise-suppression algorithms, both
data-driven and those based on classic statistical methods, is range bound to specific
levels of instantaneous input signal-to-noise ratios. In this paper, we present a new
approach to improve the adaptivity of such algorithms enabling them to perform
robustly across a wide range of input signal and noise types. Our methodology is
based on the dynamic control of algorithmic parameters via reinforcement learning.
Specifically, we model the noise-suppression module as a black box, requiring no
knowledge of the algorithmic mechanics except a simple feedback from the output.
We utilize this feedback as the reward signal for a reinforcement-learning agent that
learns a policy to adapt the algorithmic parameters for every incoming audio frame
(16 ms of data). Our preliminary results show that such a control mechanism can
substantially increase the overall performance of the underlying noise-suppression
algorithm; 42% and 16% improvements in output SNR and MSE, respectively,
when compared to no adaptivity.

1 Introduction

Noise-suppression algorithms for a single-channel of audio data employ machine-learning or sta-
tistical methods based on the amplitude of the short-term Fourier Transform of the input signal
(Ephraim and Malah, 1984; Ephraim and Trees, 1995; Boll, 1979; Xu et al., 2014). Although
the approach we propose can be applied to the entire gamut of noise-suppression techniques, in
this paper, we only illustrate its benefits with the classical algorithms for speech enhancement that
are based on spectral restoration (Tashev et al., 2009). Such algorithms typically comprise four
components (Tashev et al., 2009): (1) voice-activity detection, (2) noise-variance estimation, (3)
suppression rule, and (4) signal amplification. The first two components help gather statistics on
the target speech signal in the input audio, while the third and fourth components allow us to utilize
these statistics to distill out the estimated speech signal. Despite these components being based on
sound mathematical principles (Tashev et al., 2009), their performance is directly influenced by a
sizeable set of parameters such as those that control the gain, geometry weighting, estimator bias,
voice- and noise-energy thresholds etc. Consequently, the combined set of these parameters plays
a critical role in achieving the best performance of the end-to-end speech-enhancement process.
Needless to say, the numerical values of these parameters are heavily influenced by the input signal
and noise characteristics. Furthermore, thanks to the complex interdependency between statistical
models (Tashev et al., 2009), there is no known best value for these parameters that works well across
all levels of input signal quality. Therefore any offline optimization process, such as the simplex
method (Nash, 2000), is only a sub-optimal solution that tends to achieve good performance across
only a small range of instantaneous input signal-to-noise ratios (SNRs). This is the status quo that we
intend to break.

∗Work was done as an intern at Microsoft AI and Research, Redmond.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



LSTM LSTM LSTM LSTM 

s-1 

s0 
s1	 sT 

fT 

f1 

g0 

f2 

f0 
g1 

r0 

gT 

f0 

f1 

fT 

r1 rT 

Figure 1: Proposed architecture. gt and ft are clean and noisy input frames, while st and rt are action
and reward values at time step t, respectively. At each time step, our model utilizes st and ft to find
the best set of control parameters that maximize rt of the speech-enhancement black-box algorithm.

2 Proposed Approach

We develop data-driven techniques that allow us to adjust control parameters of a classical speech-
enhancement algorithm (Tashev et al., 2009) dynamically at a frame level, depending just on simple
feedback from the underlying algorithm. Specifically, we rely on reinforcement-learning (RL) based
on a network of long-short term memory (LSTM) cells (Hochreiter and Schmidhuber, 1997). We
show that our method can achieve the best performance of speech enhancement across a broad range
of input SNRs.

The neural-network model that we propose is shown in Fig. 1. As mentioned before, it treats the
classical speech-enhancement algorithm (Tashev et al., 2009) as a black box. Suppose st and rt
represent the action proposed by our network model and the reward signal that is available to it from
the algorithm at an instance of time t. We set up an objective function as follows:

Jπ(θ) = Eπθ

[ T∑
t=0

rt(st)

]
(1)

where πθ is the policy that our model tries to learn. The goal of this function is to maximize the
expected reward over time. Thus, in order to solve Eq. (1), we employ the REINFORCE algorithm
(Williams, 1992; Zaremba and Sutskever, 2015; Ranzato et al., 2016; Mnih et al., 2014; Ba et al.,
2015; Sutskever et al., 2014). At each time step, our network picks an action at a given state of the
model (i.e. given it policy πθ) that causes some change to the set of control parameters that are applied
to the black box. In other words, each parameter of the speech-enhancement algorithm (Tashev
et al., 2009) is mapped to an action. Thus, an action can result in an increase or decrease of the
parameter value by a specific step size. It could also lead to no change in the parameter values.
Note that within the black-box algorithm, we also utilize the clean signal gt in addition to the noisy
frame at every time step. The reason we do this is because once the underlying speech-enhancement
algorithm (Tashev et al., 2009) is done with the denoising process, it relies on the ground-truth clean
signal gt to compute a score that represents the reward function for the RL agent. gt is not used
within the black box in any other way.

3 Experimental Results

We evaluated the performance of our methodology with single-channel recordings based on real user
queries to the Microsoft Cortana Voice Assistant. We split studio-level clean recordings into training,
validation and test sets comprising 7500, 1500 and 1500 queries, respectively. Further, we mixed
these clean recordings with noise data (collected from 25 different real-world environments), while
accounting for distortions due to room characteristics and distances from the microphone. Thus, we
convolved the resulting noisy recordings with specific room-impulse responses, and scaled them to
achieve a wide input SNR range of 0-30 dB. Each (clean and noisy) query has on average more than
4500 audio frames of spectral amplitudes, each lasting 16 ms. We applied a Hann weighting window
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Method SNR(dB) LSD MSE WER SER PESQ

Noisy Data 15.18 23.07 0.04399 15.4 25.07 2.26

Baseline (Tashev et al., 2009) 18.82 22.24 0.03985 14.77 25.93 2.40

Proposed (Unbiased Estimation) 26.16 21.48 0.03749 17.38 31.87 2.40

Proposed (Biased Estimation) 26.68 21.12 0.03756 18.97 32.73 2.38

Clean Data 57.31 1.01 0.0 2.19 7.4 4.48

Table 1: The proposed RL approach improves MSE, LSD and SNR with no algorithmic changes to
the baseline speech-enhancement process, except frame-level adjustment of the control parameters.

to the frames allowing accurate reconstruction with a 50% overlap. These audio frames in the spectral
domain formed the features for our algorithm. Since we utilized a 512-point short-time Fourier
Transform (STFT), each feature vector was a positive real number of dimensionality 256. To train
our network model, we employed a first-order stochastic gradient-based optimization method, Adam
(Kingma and Ba, 2015), with a learning rate that was adjusted on the validation set. Furthermore, we
used a single layer LSTM with 196 hidden units and number of steps equal to the number of frame.
We trained it with a batch size of 1 given each of input file has different number of frames.

To compute the reward function, we employed the negated mean-squared error (MSE) between the
ground-truth clean signals gt and denoised input signals ĝt as follows:

rt = −‖gt − ĝt‖22. (2)

Further, to avoid instability during training, we normalized this reward function to lie between [−1, 1].
Our underlying speech-enhancement algorithm (Tashev et al., 2009), i.e black-box, was based on
a generalization of the decision-directed approach, first defined in (Ephraim and Malah, 1984). To
quantify the performance of speech enhancement, we employed the following metrics:

• Signal-to-noise ratio (SNR) dB
• Log spectral distance (LSD)
• Mean squared error in time domain (MSE)
• Word error rate (WER)
• Sentence error rate (SER)
• Perceptual evaluation of speech quality (PESQ)

A larger value is desirable for the first and last metrics, while a lower value is better for the rest.
To compute the WER and SER, we employed a production-level automatic speech recognition
(ASR) algorithm, whose acoustical model was trained separately on a different dataset that had
similar statistics as our training examples. Thus, the ASR algorithm was not re-trained during our
speech-enhancement experiments. Results of evaluating our model on the test data are shown in
Table 1. In the baseline approach (Tashev et al., 2009), we utilized a non-linear solver to find the
set of algorithmic parameters that achieved the best score for a multi-variable function that equally
weighted all of the above metrics. This unconstrained optimization was performed offline once across
the training data, which resulted in a parameter set that achieved the best trade-off for all metrics
and feature vectors across the input SNR range. This parameter set was held constant when the
speech-enhancement algorithm (Tashev et al., 2009) was applied to the test audio frames. However,
in the proposed approaches (third and fourth rows in the table), the parameter set was adjusted
depending on the action proposed by our RL meta-network. The third row corresponds to utilizing
LSTM-based RL alone on top of the baseline speech-enhancement algorithm [also known as the
unbiased estimator that utilizes the reward function of Eq. (2)]. While in the fourth row, we add an
additional step of reducing the variance of gradient estimation during REINFORCE (also known as
the biased estimation).

From Table 1, we see that the proposed models show better performance on MSE, LSD and SNR,
improving them by up to 16%, 4%, and 42%, respectively. However, they do not show improvement
on the other metrics (WER, SER and PESQ). In fact, these results are expected because our RL
network only employs a measure for signal distortion as the reward function [see Eq. (2)]. Thus,
it is able to only optimize metrics that are related to this measure (i.e., MSE, SNR and LSD). The
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difficulty of including WER, SER and PESQ in the RL optimization process lies in the fact that
these metrics do not provide a direct way of quantifying representation error. There is also no good
signal-level proxy for them that can be computed with a low processing cost, which is necessary to
train the RL algorithm in practical amounts of time. Thus, although our network already deals with a
hard and complex optimization problem due to the black-box optimization and policy gradients, as
part of future work, we are continuing to investigate different methods of incorporating WER, SER
and PESQ functions into the RL reward signal.

4 Discussion and Future Work

In this ongoing work, we proposed a method based on black-box optimization and RL to deal with
the problem of adapting speech-enhancement algorithms to varying input signal quality. Our work
is related to hyperparameter optimization in deep learning and machine learning2, which has been
extensively studied in the literature. Methods like random search (Bergstra and Bengio, 2012),
Bayesian optimization with probabilistic surrogates (e.g., Gaussian processes (Snoek et al., 2012;
Henrández-Lobato et al., 2014)) or deterministic surrogates (e.g., radial basis functions (Ilievski et al.,
2017)) have been used to find the best setup for the model hyperparameters. However, once these
methods find a set of parameters for a given model offline, the set typically remains fixed throughout
the inference process. In contrast, our RL approach adaptively changes parameters of the underlying
(data-driven or analytical) algorithm at inference time, achieving the best performance under all input
signal conditions. Furthermore, in this particular paper, we demonstrated how to apply our dynamic
parameter-adaptation technique to the problem of speech enhancement Tashev et al. (2009). To the
best of our knowledge, black-box optimization using reinforcement learning for real-time application
such as speech enhancement has not been conducted before, the previous work (Chen et al., 2017)
only studies a simple synthetic task. Based on experiments with real user data, we showed that our
RL agent is very effective in changing algorithmic parameters at a frame level, enabling existing
speech-enhancement algorithms to adapt to changing input signal quality and denoising performance.
However, there are still hurdles that need to be overcome in the design of a reliable reward function
that helps us achieve the best algorithmic performance across a diverse range of metrics including
WER, SER and PESQ. We intend to address this challenge in future work, in addition to reducing the
overhead of RL computation during training.
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