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Abstract

We present a probabilistic block-constant biclustering model that simultaneously clusters
rows and columns of a data matrix. All entries with the same row cluster and column cluster
form a bicluster. Each cluster is part of a mixture having a nonparametric Bayesian prior. The
number of biclusters is therefore treated as a nuisance parameter and is implicitly integrated
over during simulation. Missing entries are completely integrated out of the model, allow-
ing us to completely bipass the common requirement for biclustering algorithms that missing
values be filled before analysis, but also makes it robust to high rates of missing values. By
using a Gaussian model for the density of entries in bliclusters, an efficient sampling algo-
rithm is produced because bicluster parameters are analytically integrated out. We present
several inference procedures for sampling cluster indicators, including Gibbs and split-merge
moves. We show that our method is competitive, if not superior, to existing imputation meth-
ods, especially for high missing rates, despite imputing constant values for entire blocks of
data. We present imputation experiments and exploratory biclustering results.
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1 Biclustering

Biclustering (also known as co-clustering or 2-way clustering) refers to the the simultaneous grouping of rows
and columns of a data matrix. Each bicluster is a submatrix ofthe full (possibly reordered) data matrix and entries
in a bicluster should have some coherent structure (the details of which depend on the method employed). This
coherence could be, for example, constant values for all entries in the submatrix, or similar row/column patterns
within a bicluster. Biclustering algorithms are also characterized by how the rows and columns are assigned to
clusters. Rows/columns can either belong to multiple clusters (as shown in Figure 2A & 2B) or to only a single
cluster (as shown in 2C); clusters can overlap (2A) or not (2B& 2C). Some matrix entries may also belong to
a “background” noise model which is not part of any bicluster(2A & 2B). Most representations assume that
there exists a single permutation of the matrix rows/columns after which all the biclusters are contiguous blocks.
(Matrix tile analysis [4] is an exception.) Our approach produces biclusters like those in Figure 2C: each row and
column belongs to a single, non-overlapping cluster.

Figure 1:Left : Original data.Right: Data after biclustering.

Assessing the significance of partitions discovered by biclustering is problematic for several reasons. First,
there are few available data sets which are annotated with ground truth partitions. Second, those that are anno-
tated may have partitions that do not correspond to any possible result of the clustering algorithm. Third, most
algorithms have parameters which modify the scale/size of partitions which are discovered. Deciding which scale
is best in a purely unsupervised manner is difficult and poorly defined. For example, a common goal when clus-
tering microarray data is to group genes and/or experimentsin such a way that the partitions are biologically
“significant” or “plausible”; often this is assessed by examining the clusters by hand [2, 8].

Several modeling issues must be addressed by any biclustering method. The most important is a method for
assessing when a partition represents a significant bicluster. This is closely related to the choice of the number of
clusters to use. Most biclustering use greedy procedures for fitting biclusters one at a time until either a global
fitting objective or a pre-specified number of clusters has been reached [2, 8]. Of course, if the only objective is to
reduce some measure of fitting residual, overfitting will occur unless the model is highly regularized, especially in
very flexible non-probabilistic models. By restricting thepermissible types of clusters we can control capacity; we
can also use a probabilistic model of the data and use marginal likelihood as a guide. The biclustering algorithm
that we present here is a fully probabilistic model which uses Bayesian nonparametric priors over row and column
clusters. This allows us to treat the number of biclusters asa nuisance parameter and implicitly integrate it out
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Figure 2: A: Multiple, overlapping biclusters. B: Multiple, non-overlapping biclusters.C: Single, non-
overlapping biclusters.

during inference. In fact, the algorithm we present in this paper does not return a single partition, but a distribution
over partitions, including groupsings at different scales.

A final important issue is missing values in the data matrix. Many biclustering procedures require complete
data matrices, and therefore data with missing values must use an imputation algorithm as a preprocessing step.
Our model completely integrates over missing values,1 avoiding ad hoc preprocessing which undoubtably affect
clustering results for other methods.

The remainder of the paper is organized as follows. In Section 2 we give a general description of our model,
including a high-level description and an introduction to Bayesian nonparametric priors for clustering models.
General inference algorithms for both small moves in state-space (Gibbs) and large moves (split-merge) are pre-
sented in Section 4. We follow with a concrete example of a generative model of data using a Gaussian-Gamma
prior for bicluster parameters. In Section 6 we present two types of experiments. First, imputation experiments to
compare our method with other methods designed for imputation, not biclustering. This is a common way of as-
sessing unsupervised algorithms. Second, cluster analysis experiments on gene expression, text, and collaberative
filtering data. Finally, we discuss and conclude in Section 7.

2 A Bayesian biclustering model

Our new model can be thought of as an infinite mixture of very simple biclusterings in which each row belongs
to exactly one ofK row clusters and each column to exactly one ofL column clusters. The novel contribution is
that we incorporate a flexible, fully Bayesian, non-parametric prior over row and column partitions and implicitly
average over partitions according to their posterior probabilities given the observed data. This is achieved using
Markov Chain Monte Carlo (MCMC) sampling , which causes the number of row and column clusters to change
during inference (such dynamics will be explained in more detail in Section 2.1). For any particular setting of
the row and column cluster assignments, the density of entries in a bicluster (i.e. the subset of rows and columns
having a particular joint setting of cluster assignments) is governed by a set of parameters indexed by both the
row and column cluster.

To perform imputation (filling in) or cluster analysis with out model, we first run many iterations of MCMC
inference, gathering samples of partitions at each iteration (after discarding burn-in samples). We can then com-
pute quantities of interest by averaging over these samples.For imputation, this means averaging over predictions
for missing values; for cluster analysis we average partitions by forming a symmetric neighbourhood graph in
which the weight of the edge betweeni andj is fraction of partitions in whichi were found in the same cluster or
bicluster. (The objectsi, j may be rows, columns or individual entries.)

2.1 Nonparametric prior over partitions

In Bayesian (or MAP) mixture modeling with finite mixtures (which can be used for either soft or hard parti-
tionings ofN objects intoK clusters), Dirichlet distributions are often used as priors for the mixture weights,
which has the effect of smoothing the maximum likelihood mixture distributions. If the number of clustersK is
unknown, one common procedure for selecting its value is to chose theK which maximizes the likelihod of held-
out data. A more Bayesian approach would put a prior probability distribution overK and weight with different
K by their posterior probabilities given the observed data.

1We assume entries are missing completely at random (MCAR).
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Figure 3:(A) Graphical representation of the general BIC model, with using a stick-breaking representation and
with cluster parametersφkl explicitly represented.(B) The same model but using a Polya urn representation and
the cluster parameters explicitly integrated out of the model. We have use a dashed line to represent exchange-
ability.

Bayesian nonparametric priors are elegant and computationally efficient ways of incorporating prior belief
about the distribution overK into our probabilistic mixture models. The Dirichlet process (DP) prior [3] is the
most common, and has the appealing property that any sample from a DP is Dirichlet distributed, making it a
natural prior for component weights in a mixture model. Component indicators can be sampled directly by first
sampling the weights or the weights can be integrated away, and indicators can be sampled marginally using
the Polya urn scheme. The Polya urn distribution is exchangeable and has prior massα allocated to an infinite
number of uninstantiated components that do not yet exist inthe mixture.This means that new components can
be added to the mixture with positive probability. The Pitman-Yor process is a generalization of the DP with an
additional parameterd (0 <= d < 1) which discounts occupied clusters and has the effect of producing more
uniform cluster sizes in general. (Ford = 0, the prior reduced to a DP.) In our experiments we employ the PY
prior2 because it is more flexible than the DP.

3 General probability model for Bayesian biclustering

We now describe the full probability model for a general parametric model for bicluster densities. In Section 5
we will describe a model with a Gaussian bicluster density.

Let ui be an indicaor variable such thatui = k if the ith object belongs to componentk. The distribution
hierarchy is as follows:

xij |ui, vj , φuivj
∼ F

(

xij |φuivj

)

ui|α, du,u−i ∼ PY
(

ui|α, du,u−i
)

vj |λ, dv,v−j ∼ PY
(

vj |λ, dv,v−j
)

φuivj
|Φ ∼ G0

(

φuivj
|Φ

)

whereλ is the concentration parameter forv, anddu anddv are discount parameters foru andv, respectively.
HyperparametersΘ do not depend on cluster parameters. Each entryxij of a data matrixX is distributed ac-
cording to a parametric density model with a set of parameters φuivj

, whereui is an indicator variable which
indexes into a set of row clusters andvj is the equivalent indicator for column clusters. Cluster indicators have
independent PY priors with their own concetration and discount parameters. Bicluster parameters have their own
base distributionG0. One could modelφuivj

asφui
+ φvj

, for example, but we have a single set of parameters
for each bicluster. WhenG0 is conjugate toF , this enables us to integrate the parameters out of the stateof the
Markov chain. The graphical model of the hierarchy is shown in Figure 3. On the left the weights sampled from
a PY process are shown explicitly. On the right we show the model with the weights integrated out.

It is useful to rewrite the data likelihood from a product of univaraite entries as a product of blocks of multi-
variate data:

P (X|u,v, φ) ∼
∏

kl

∏

ij

F(xij |φkl)
δk(ui)δl(vj)

2By putting Gamma and Beta priors overα andd, respectively, we can sample the PY during simulation (see Section 4.3).
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=
∏

kl

F(xkl|φkl)

wherexkl is the vector of all entries inX which haveui = k andvj = l. In this paper we will be mostly interested
in the case where F is conjugate toG0, which allows us to intergate out allφkl:

P (X|u,v, Φ) ∼
∏

kl

∫

dφklF(xkl|φkl)G0 (φkl|Φ)

=
∏

kl

H (xkl|Φ)

Notice how the data likelihood only depends on the entries ineach bicluster and the hyperparameters. We will
give concrete examples ofF , G0, andH in Section 5.

4 Inference

In this section we describe inference procedures for indicators variables at a fine scale using Gibbs updates and
at a coarse scale using split-merge updates. We also briefly show how to sample for PY parameters from their
posteriors.

4.1 Gibbs sampling indicators

The procedure for infering row (or column) indicators differs only slightly from typical DP mixture inference (see
[9] for examples). When performing Gibbs updates onu andv, we cycle through the row and column indices,
using the exchangeable properties of the PY process to treateach index as the last sample in an exchangeable
distribution.

WhenG0 is non-conjugate toF , we setui = k with probability proportional to the following unnormalized
density:

PY
(

ui = k|α, du,u−i
)

∏

l

F(xij |φkl)

where, ifk is a new row cluster,φkl is sampled from its base distribution (see algorithm8 in [9]), xil is the
vector of observations from rowi that havevj = l, andx−i

kl is the vector observations in biclusterkl, excluding
xil. Once the indicators have been sampled for both rows and columns, we then resample bicluster parameters
from their posterior:

φkl|X, Φ ∼ C · G0 (φkl|Φ) · F(xij |φkl)
δk(ui)δl(vj)

WhenG0 is conjugate toF , we cancollapse the Gibbs sampler and setui = k with probability proportional
to the following unnormalized density:

PY
(

ui = k|α, du,u−i
)

∏

l

H
(

xij |x
−i
kl , Φ

)

Similar, symmetric updates are performed forv. We can understand why the collapsed Gibbs sampler would
be much more efficient than the non-conjugate sampler by thinking about how we assess the likelihood of data
under new cluster disitributions. For a row cluster to be added, it must sampleL new parameters from the prior
and have these new parameters model the density of the row better than existing components. Intuitively, we
would expect to have a low probability of adding new components with this procedure. Instead, the collapsed
sampler integrates over the base distribution’s sampling variability.

4.2 Split-merge for cluster indicators

Gibbs updates to single indicator variables can only make small steps in state-space and it is possible that the a
Markov chain will remain stuck in poor local minima. For mixtures, splitting and merging clusters can provide
the necessary jumps to escape local minima and explore the full state-space. We have applied the conjugate
split-merge algorithm of Jain and Neal [6] and describe its essentials below.3

The basic idea of split-merge is the following. We are interested in two types of proposals: one proposes
merging two rows of biclusters into a single row of biclusters; the other proposessplitting a row of biclusters into

3See [7] for a non-conjugate version of the split-merge algorithm.
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two rows of biclusters. Split-merge proposals require three densities:P (u), the joint probability of a partition
under the PY prior;P (X|u), the likelihood of the data given a partition; and q(u⋆|u), the transition probability
from the current stateu to the new stateu⋆. How we computeq is the most important aspect of the split-merge
algorithm and we describe it next.

The split-merge algorithm proceeds as follows. Sample uniformly two row indices,f andg. If f = g then
propose splitting a row of biclusters currently associatedwith row clusteruf , into two rows of biclusters with
cluster labelsf sp = f andgsp = K + 1, whereK is the current number of occupied clusters. Initially, row
indicatorsui = f are randomly assignedf sp andgsp. We then perform several iterations ofrestricted Gibbs to
reach the launch state.4 The transition probability q(usp|u) is the product of probability of reaching the final
indicator configuration from the launch state, using a final restricted Gibbs scan.

If f 6= g, then we propose merginguf andug into a cluster labeledfmg = f and removing clusterg. The
transition probability q(umg|u) is 1. The reverse transition probability is the product of asimulated restricted
Gibbs scan from a launch split state to the current split state. The launch split state is found by randomly splitting
elements ofuf andug, then performing several restricted Gibbs scans.

Onceusp or umg is ready to be proposed, we can compute their acceptance probabilties, which for MH is:

a (u⋆|u) = min

[

1,
q(u|u⋆)

q(u⋆|u)

P (u⋆)

P (u)

P (x|u⋆)

P (x|u)

]

Both the ratios of priors and likelihoods simplify to:

P (usp)

P (u)
=

(

α + K
+
sp du

) Γ
(

nsp
f

)

Γ
(

nsp
g

)

Γ (nf )

P (umg)

P (u)
=

1

(α + K+du)

Γ
(

n
mg
f

)

Γ (nf ) Γ (ng)

P (x|usp)

P (x|u)
=

∏

l

H
(

xu
sp
f

l|Φ
)

H
(

xu
sp
g l|Φ

)

H
(

xuf l|Φ
)

P (x|umg)

P (x|u)
=

∏

l

H
(

xu
mg
f

l|Φ
)

H
(

xuf l|Φ
)

H
(

xugl|Φ
)

In our experiments, we alternate a full Gibbs scan foru andv, followed by five split-merge proposals. We
propose a split-merge move onu with probabilityN/(N + D, and forv, with probabilityD/(N + D). We flip a
coin to decide whether we propose split or merge moves (otherwise plit proposals are rare events).

4.3 Inferring Pitman-Yor hyperparameters

There is no reason why both PY parametersα andd should not be sampled during simulation. Elaborate sampling
schemes do exist for the concentration parameter for DP mixtures [12], but this is unnecessary; we use random
walk Metropolis moves. As mentioned earlier, sensible priors forα andd are Gamma and Beta distributions. Our
hyperparameters for the discount parameter are such that itfavours smallerd.

5 Gaussian model

We now describe the biclustering model we use in our experiments. It is possible to use non-conjugate Gibbs with
the following, but in our experiments we integrate out the bicluster parameters.

5.1 A robust bicluster model

We will assume for the moment that there is only a single bicluster to keep the presentation clear. We will follow
with the full bicluster model. We assume the following distribution hierarchy:

4A restricted Gibbs scan is the same as the collapsed Gibbs scan described in Section 4.1, but only involving the rows in theproposal and
those indicators can only choose betweenf sp andgsp.
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xij |w, a, s ∼ Normal
(

w, (as)
−1

)

w|m, b, s ∼ Normal
(

m, (bs)
−1

)

s|ν, c ∼ Gamma

(

ν

2
,
ν

2

1

c

)

wherew is the bicluster centre;s is a precision parameter affecting the noise in the data and centre distributions;a
andb are positive scalars which affect the precision parameter;m is the global mean of the centres; the precisions
have Gamma priors with shapeν2 and inverse scaleν2

1
c
; ν is a degrees-of-freedom parameter, controlling the

variance of precisions; the expected value of the precisions isc.
This distribution hierarchy provides arobust model of the bicluster data. When we integrate out the centres

and precisions of the bicluster, the result is a Student-t distribution withν degrees of freedom; the Student-t is
considered less sensitive to outliers than Gaussians due toits fatter tail, and thus more robust.

The marginal likelihood ofN univariate entries in a bicluster, after integrating out centres and precisions, is a
multivariate Student-t of dimensionN with meanµ, precision matrixQ, and degrees of freedomv, where

µ = m1 Q = ca

(

I−
a

a · ND + b
11

⊤

)

We are also interested in the predictive distribution of a vector y of sizeNy, conditionedX, a multivariate
Student-t of dimensionNy with ν degrees of freedom and

µ =
a ·

∑N,D

i=1,j=1
xij + b · m

a · ND + b
1 Q = ca

(

I −
a

a · (ND + Ny) + b
11

⊤

)

5.2 Complete Gaussian biclustering model

In the previous section we gave the marginal and predictive distributions of a Gaussian model with a single
bicluster. Here we expand the model to include the case ofK ·L biclusters. Using the same notation from Section
??, φkl = {wkl, skl} andΦ = {m, a, b, ν, c}, so that

F
(

xij |φuivj
, Φ

)

= Normal
(

wkl, (askl)
−1

)

G0

(

φuivj
|Φ

)

= Normal
(

m, (bskl)
−1

)

Gamma
(

ν

2
,
ν

2

1

c

)

H (xkl|Φ) = Student-t(µkl, Qkl, ν)

H
(

xil|x
−i
kl , Φ

)

= Student-t(µil, Qil, ν)

where

µkl = m1 µil =
a ·

∑

x
−i
kl

+ b · m

a · Nkl,−i + b
1

and

Qkl = ca

(

I−
a

a · Nkl + b
11

⊤

)

Qil = ca

(

I −
a

a · (Nkl,−i + Nil) + b
11

⊤

)

6 Experiments

We perform two types of experiments that are not only important to practitioners, but also demonstrate the per-
formance capability of our Bayesian biclustering algorithm. The first is missing value imputation, where we
assess the quality of imputed values using root mean-squareerror (RMSE). The second is cluster analysis, which
is much more difficult to assess. For this we merely show some biclusterings and word neighbourhoods using
MCMC cluster samples.
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6.1 Data sets

We study our method on three different types of data, all subjects of bicluster research: DNA microarray data,
document data, and recommendation data.

RNA probes: We first removed all columns with all missing values, then all rows with any missing values,
resulting in a matrix of size828 by 217.5

Documents: We have taken a small subset of the originalnewsgroup dataset, using the log of the counts plus
one (xij = log(nij + 1)).

Recommendation: We have taken a subset of theEachmovie dataset, using the same transformation of ranks
as we did for word counts. For this dataset, we consider zerosmissing values (in constrast to the other datasets).
Thus, a dataset of size500 by 500 only has19% of entries observed.

6.2 Missing value imputation

Different application areas have different reasons why they impute missing values. Biologists working with DNA
microarray data are often faced with missing values for several reasons, mostly due to artifacts in processing
microarray images or by actual missing experimental data. Biologists may be interested in the actual imputed
values, but often they require complete data matrices to perform cluster analysis.6 Predicted values are extremely
important for recommendation systems, where the rankings of, say, movies by users, and the relationships between
users, are used to recommend movies.

Even though out method integrates over missing values, assessing our methods imputation capability is one
way of analysing the quality of the biclusters it discovers.We compare our algorithm with several imputation
methods designed for DNA microarray data. Baseline methodsfill-in missing values with zeros or the row average
of observations (ROW). More advanced methods are based on Singular Value Decomposition (SVD) and k-
nearest-neighbours (KNN) [5, 11]. These both iterate imputation until imputed values have converged. The
most sophisticated methods we compare with are based on least-squares analysis (LS) [1] and probabilistic PCA
(BPCA) [10].

Our main modeling assumption—block constant biclusters—may only be valid in few data sets one may
encounter. Many microarray data sets, for example, are obviously not block-constant. Experiments may record
experiments which are time-dependent, for instance. In such cases, biclustering with constant values will provide
poor descriptions of the data. We can sometimes improve the performance of imputation algorithms by initializing
the missing values with the average predicted values from our method (see RNA results). This is another way of
demonstrating the quality of the biclustering.

Our imputation experiments are straightforward. For each dataset, there is an original matrixY , which may or
may not contain missing values (this is the case for EACH only). Usind a missing completely at random (MCAR),
we perform experiments with5 − 90% of the observed entries set to missing. For each missing rate, we create5
versions of the data with different missing entries. As mentioned before, we assess quality by RMSE.

We can see from Figure 4 that our algorithm, despite not beingdesigned for imputation, performed well on
data with high missing rates. On the RNA data, we can improve the results of BPCA by initializing it with our
expected predictions. Our results indicate that our algorithm is quite robust to high rates of missing data.

6.3 Cluster analysis

In Figures 5 and 6 we show biclusterings from all data sets. Notice how when zeros are treated as missing values
(top Figure 6), that the biclustering is more interesting. This is due to the extra noise in this data. Less biclusters
are formed when zeros are treated as missing, but these biclusters are still valid for this level of sparsity. We also
show word neighbours from NEWSGROUPS in Table 1.

7 Conclusion

We have presented an fully Bayesian biclustering algorithmthat is very robust to missing values, precluding any
need for imputation before further analysis. This has important consequences for practitioners. If one is actually
interested in studying imputed values, our algorithm is capable of imputing values. For data matrices that are very
sparse, other imputation methods fail, and therefore biclustering algorithms that rely on complete data will fail
as well. Our method shows much more gradual degradation in performance as the missing rate increases. In the
future we will work on a version for multinomial data and willextend the biclustering to hierarchies.

5Thanks to Tim Hughes and Quaid Morris for providing this unpublished data.
6Of course, for these situations, our method obviates imputation before clustering.

7



82 84 86 88 90 92 94 96 98

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Percent Missing

R
M

S
E

EACH MOVIE

 

 

ROW
SVD
KNN
BPCA
BBIC

10 20 30 40 50 60 70 80 90

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Percent Missing

R
M

S
E

RNA

 

 

ROW
SVD
KNN
LS
BPCA
BBIC
REG

Figure 4:Top: Inputation results for the EACH MOVIE dataset. Even at veryhigh sparsity (98% missing rate),
our method is still able to perform reasonably well.Bottom: Inputation results for the RNA dataset. For this data,
even though our imputation performed poorly, initializingBPCA (see REG) with our imputed values improved
BPCA significantly.
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doesn write world inform discuss
get origin second system effect
lot articl found includ interest
true free reason program reason
word check book file real
hand subject exist number high
show exampl respons gener refer
great chang place order
idea exist give place
never open show give

suggest etc power power
quit control end respons
hard new fact fact
claim net put nation
turn manag interest person
talk bit articl control
man found discuss articl

wrong interest build sinc
respons suggest hand second
book type refer answer

Table 1: Nearest neighbours of a random set of words in a mini NEWSGROUP dataset. The neighbours were
based on the probability of a word being in the same cluster asanother word, based on biclustering samples.
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