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Abstract

In this paper, we present an approach to selecting models for novelty (outlier) detec-
tion. Our approach minimizes the risk of accepting outliers at a fixed normal rejection
rate, under the assumption that the distribution of abnormal (outlier) data is uni-
formly distributed in some bounded region of the input space. This risk is minimized
by selecting the model with the smallest volume acceptance region, using a random-
ized volume estimation algorithm. The volume estimation algorithm can estimate
the volume of a body in high-dimensional space and scales polynomially in dimension
with the number of calls to the model. We have performed extensive experiments
which show that the combined model selection criteria are able to select not only the
best models from a given model class, but also among all model classes.
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1 Introduction

The objective of novelty detection is to model normal (typical) data and to detect novel (atypical,
outlier) data in such a way that a large percentage of normal data are accepted and most, if not all,
novel data are rejected. Since this objective can be viewed as a trade-off between the risk of rejecting
normal data and accepting outlier data, optimizing the combined risks is a common approach ([31]; [28]).
Our view is that the user sets the parameter ν⋆, the desired normal rejection rate, and, subsequently,
the risk of accepting outliers is minimized. We therefore attempt to build the best possible boundary
between a small ν% of the normal data density and the remaining 1 − ν% of the normal data density.
Such a discriminative perspective of novelty detection has led to the development of so-called one-class
classification algorithms ([23]; [30]) and has been supported theoretically by [28], who demonstrated the
equivalence between detecting density levels and classification. However, since there are many possible
boundaries that will reject ν% of normal data, the problem of model selection is paramount.

Model selection in the unsupervised learning setting is more difficult and subjective than in the
supervised learning setting because we only have examples from the normal dataset. In this paper, model
selection in the unsupervised learning setting is discussed with particular focus on novelty detection. We
are interested in developing a model selection approach which is general to a large set of model classes,
under the assumption that the acceptance regions of the novelty detection models are bounded in input
space. Within each model class, ranking the quality of novelty detection solutions is possible using a
number of model-class specific heuristics (see Section 2). However, since the user can build a novelty
detection model by employing different model classes, having a general measure of quality is essential
if all solutions from all model classes are to be ranked. Our goal is to develop general model selection
criteria that are model-class independent.

This paper presents a definition of novelty detection consisting of two precise criteria for model selec-
tion. Practical methods for satisfying these criteria are also proposed. But before discussing the problem
of model selection in novelty detection, we present a brief overview of novelty detection applications.

1.1 Novelty detection applications

Novelty detection problems occur primarily when we only have access to “normal” data, or when very
little outlier data exists and it does not represent the entire outlier distribution. Intrusion detection
systems (IDS), for example, have access to large quantities of data from the normal operation of a
computer network, and possibly data from a known list of network attacks. It is possible to learn to
discriminate between normal network data and data from an attacked network, but this will leave the
network vulnerable to new attacks. In this case, it is not known how to obtain sufficient outlier data,
because its distribution is unknown and continuously evolving. For other problems, it may be possible
to generate outlier data, but to do so would be too costly or dangerous. An obvious example is modeling
the normal operation of a nuclear power plant: generating meltdown situations for the sake of detecting
meltdowns is not plausible. In both these examples, it is more sensible to model the abundant normal
data and to flag rare data using a novelty detection model. This paper addresses the problem of selecting
the best models for any given novelty detection scenario.

Novelty detection is an important problem that is applicable to a wide spectrum of fields, from biology
to machine monitoring. Biological applications include brain imaging ([20]; [4]; [29]) and perceptual
salience detection ([22]; [18]). Computer network intrusion detection ([37]; [39]) and text ([1]; [36]; [40];
[17]) are two other important application areas of novelty detection. Industrial process monitoring is the
most common novelty detection application and it impacts business at several levels. The first level is
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the detection of a fault or damage to a piece of equipment ([35]). The next level involves predicting faults
or wear in equipment so that appropriate intervention can be taken to reduce the chance of more costly
consequences in the future. Condition monitoring and predictive maintenance are two such problem
domains that are closely related to fault detection. For example, breakout detection in the steel industry
is one application of condition monitoring ([2]); the airline industry has now begun to use intelligent
predictive maintenance systems ([32]).

The remainder of this paper is divided into six sections: (2) model selection and novelty detection,
(3) volume estimation, (4) experiments, (5) results, (6) discussion, and finally, (7) conclusion. In Section
2, we will outline the problem of model selection as it pertains to novelty detection, propose two criteria
to solve it, and compare our criteria with other approaches. Our second criterion requires computing the
volume of the acceptance region defined by a novelty detection model; in Section 3 we will describe several
algorithms to compute volumes, from naive approaches to randomized algorithms based on Markov chain
Monte Carlo sampling methods. In Section 4, we will present two sets of experiments: the first will test
the volume estimation algorithm on objects of known volume, and the second will test the proposed
model selection criteria using multiple model classes and several datasets, and compare our approach
to other model selection heuristics. In Section 5 we will present the results of these experiments and in
Section 6 we will discuss the strengths and weaknesses of our approach, including sources of error and
uncertainty, and propose future work. In Section 7 we will conclude.

2 Problem setup: model selection and novelty detection

Despite the importance of novelty detection applications in industry and other fields, performance mea-
sures for novelty detection model selection are lacking. This applies to unsupervised learning in general:

In the context of unsupervised learning, there is no direct measure of success. It is difficult
to ascertain the validity of inferences drawn from the output of most unsupervised learning
algorithms. One must resort to heuristic arguments not only for motivating the algorithms,
... but also for judgments as to the quality of the results. This uncomfortable situation has
led to a proliferation of proposed methods, since effectiveness is a matter of opinion and
cannot be verified directly ([8], pp 439).

For supervised learning problems, the measure of success is well-defined. In most cases, one wants
to minimize a loss function over test data, assumed to be generated from the same distribution as
the training data (i.e. the data are i.i.d.). Example loss functions are the 0/1 loss (classification)
and squared error (regression). Both loss functions require targets: class labels for classification and
continuous targets for regression. Model selection is inherently difficult in unsupervised learning due to
the lack of such targets. After presenting our criteria, we will compare them to other common model
selection heuristics for unsupervised learning.

2.1 Selection Criteria

We now describe our criteria for selecting a novelty detection model. The first criterion ensures that the
normal class is correctly modeled.

Criterion 1 (C1) Given a set of models M = {m1, m2, ..., mt}, we want to select models S ⊆ M such
that

(1 − α)ν⋆ ≤ ED+
(mi(x)) ≤ (1 + α)ν⋆, ∀ mi ∈ S,

where mi is a model function that returns 0 for a rejected point, and 1 for an accepted point; 0 < α < 1;
and D+ is the distribution of normal points. The parameters α and ν⋆ are defined a priori by the user.

This criterion selects the models whose expected rejection rate on normal data is within a small
fraction α of the desired rejection rate ν⋆. Since we can never evaluate ED+

(mi(x)) exactly, we can
approximate the expectation by ν̂, so that C1 becomes:

(1 − α)ν⋆ ≤ ν̂ ≤ (1 + α)ν⋆,
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Figure 1: Three possible novelty detection solutions are illustrated. On the left, the model has overfit.
Although the model may reject only ν% of the training data, it will reject a much higher fraction of
normal test data, and will not satisfy C1 (see text). On the other hand, both B and C satisfy C1.
To select model C, we must estimate the volume of the acceptance regions of models B and C. After
satisfying C2 (see text), we can select C, the best model.

A B C

where α is ideally chosen to be small. In our experiments, ν̂ is estimated using cross-validation.
The importance of C1 is illustrated by three possible novelty detection solutions (Figure 1). Model

A shows a very small and compact representation of the data which is overfit, leaving ‘holes’ in the
acceptance region. The ν̂ for this model is high and does not satisfy C1. We are left with models B and
C. In both cases ν̂ satisfies C1; our goal is to select the intuitively more appealing model C. For this we
need some notion of outliers. If the outlier distribution is known a priori then we can build a classifier
to separate normal from outlier input data. But in general, we do not know the locations of the outlier
data regions, therefore we make the following assumption:

Assumption (A1) Abnormal data is distributed uniformly in some bounded region of the input space
(D−). Also, the normal data is contained in the same bounded region.

Of all the models that satisfy C1, we want to keep the model with the lowest risk of accepting an
abnormal test point (a false positive). If the abnormal data are assumed to be uniformly distributed in
a bounded region, then the model with the smallest volume will be optimal. Given A1, we now present
our second and final model selection criterion:

Criterion 2 (C2) Select model mr⋆ ∈ S, where S is the set of all models satisfying C1, which is the
solution to

mr⋆ = argmin
mr

ED
−

(mr(x))

= argmin
mr

∫
D

−

mr(x) dx,

This implies choosing the model with the smallest volume acceptance region measured in the input space.

Because we have assumed that outlier data are uniformly distributed in a bounded region, minimizing
the volume of the acceptance region in input space will minimize the expected false acceptance rate. C2
therefore minimizes the false acceptance rate of abnormal data under A1.1

Combining C1 and C2 results in a satisfying definition of an “optimal” novelty detection model: it
is stable with respect to the normal class and simultaneously has the lowest risk of misclassifying an
outlier when no examples of the outlier class are available.

The practical implications of these criteria are significant. Most importantly, there is little constraint
on the model class. Under these criteria, a model is essentially a black-box function which returns 1 for
a test point from the normal class and 0 for an outlier, which represents the acceptance and rejection

1Note that others have also made the same assumption (see [28] and [31]).

3



regions of the input space, respectively. We can therefore use any model class with a bounded acceptance
region. For example: a Gaussian Mixture Model (gmm) (see [6] for an overview), a Parzen windows
model ([21]), a kmeans model (see [6] for an overview), or a one-class Support Vector Machine (ν-svm
) ([23]; [30]).

Another related benefit of these criteria is their independence with respect to the feature space in
which the user models the data. Since C2 minimizes the volume of the acceptance region in the input
space, any model which preprocesses the input space, or projects it into lower or higher dimensions, will
receive a volume estimate of the same input space. One can therefore compare novelty detection models
constructed from multiple model classes and any parameterization within each model class.

2.2 Comparison with other model selection methods

Although our model selection criteria are general with respect to model classes, to evaluate our approach
we can compare it with model-class specific heuristics.

For ν-svm models, we compare two heuristics for selecting the optimal radial basis function (rbf)
kernel width σ⋆. One heuristic is sorting the models in ascending order of σ, and selecting the σ⋆ from
the first model for which ν̂ ≈ ν⋆ ([34]). We call this the increasing σ method. This makes intuitive sense
and conforms with our criteria: as σ increases, so to does the “size” of the acceptance region. Once the
acceptance region is large enough to model the normal data, we stop. Continuing to increase σ will only
increase the acceptance region and the risk of accepting outliers. This heuristic is generally applicable to
models who have parameters which directly affect the “size” of the acceptance region. Parzen windows
is another model class for which this is true.

The second heuristic for selecting ν-svm parameters uses a naive sampling technique to measure
the “size” of the acceptance region ([31]). This approach is applicable to any bounded novelty detection
solution. The heuristic works as follows. Outliers are sampled uniformly from inside a hypersphere
that encloses the acceptance region. The number of artificial outliers which are inside the acceptance
region are counted. The ratio of this count to the total number of samples gives an estimate of the ratio
between the volume of the acceptance region and the volume of the enclosing hypersphere. A volume
estimate of the acceptance region could then be computed by multiplying the ratio by the volume of the
hypersphere. Tax and Duin report that the method works well when the dimension is twelve or less,
but that it fails for higher dimensions because the ratio estimate is zero. Although this approach will
produce a volume estimate of the acceptance region, such a naive approach will require an extremely
large number of samples to produce a reliable volume estimate. Their method falls into the category of
naive Monte Carlo estimation procedure, and as such scales very poorly in dimension. We will discuss
naive volume estimation algorithms in Section 3.2

[33] present a procedure for estimating the number of clusters in a dataset. The ‘gap’ statistic mea-
sures the difference in the expected log of the pairwise squared distances on a reference distribution and
the pairwise squared distances of the training points. The reference data is generated either uniformly
from the the range of the training data, or uniformly from a hyperbox which has been aligned with the
principal components of the data. The number of clusters k is chosen in such a way that the gap of k+1
is greater or equal to the gap(k). This approach is only applicable to clustering algorithms, for example
kmeans. The number of clusters can also be chosen using the within cluster variance; this is a common
quality of clustering measure (see [6] for this and others).

For density estimation models, the simplest way of selecting the best model is by computing the
cross-validated likelihood for the training set. For example, cross-validating the likelihood of a gmm will
detect overfitting, because, although adding mixtures will increase the likelihood for the entire (normal)
training set, left-out cross-validation data will be modeled poorly. For gmms this heuristic can be used
to select the number of components (e.g. [27]), and for Parzen windows it can be used to select the
width parameter σ. Likelihood on the entire training set can be used to select, for a fixed number of
components and width σ, the model with the best local optimum. This applies to gmms, but not to
Parzen windows, because they have no local optima.

Our proposed method for estimating the volume of the acceptance region represents a major portion
of this paper. As such, the rest of the paper is devoted to describing volume estimation algorithms,
modifying an existing algorithm to work properly with novelty detection, its practical implementation,
and extensive experiments utilizing and illustrating both C1 and C2.

2[5] also reasoned that measuring the volume of the acceptance region, independently of the model class and parame-
terization, would result in a useful model selection heuristic. However, they do not implement such a metric.
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Figure 2: Simple volume estimators. Left: the grid method. The surrounding hyperbox is divided into
a fine grid. The ratio between the number of small boxes which fall into K , and the total number of
boxes, gives an estimate of the ratio between K and the enclosing hyperbox. Right: a naive Monte
Carlo method. The same approach as the grid method is taken, except that instead of using boxes from
a fine grid to estimate the volume ratio, points sampled uniformly from the enclosing hyperbox are used.
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3 Volume estimation

In this section, we will describe the difficulties of volume estimation in high-dimensional spaces, followed
by a brief description of a tractable, randomized algorithm for volume estimation. Finally, the algorithm
used in our experiments will be described in detail.

Before describing the recent advances in volume estimation algorithms, we define some of the notation
used by the volume estimation community. Let K denote a body in ℜn whose volume we wish to compute.
In addition, K is normally assumed to be convex; however, in our experiments, many of the models tested
will have non-convex acceptance regions. K is also known as an oracle function ([10]), which, in our setup,
is a black-box function that returns 1 for a point inside the body, and 0 for a point outside. Essentially,
an oracle “knows” when a point is inside K. For the model classes we will use, K is represented by a
well-defined oracle; one that knows, for all points, whether the point is inside K or not ([24]).

3.1 Volume estimation in high dimensions

The fundamental obstacle preventing efficient volume estimation is the curse of dimensionality. This is
clear from looking at two simple methods for volume estimation (Figure 2) ([24]). The first method is
deterministic and can compute the volume of K to within arbitrary precision. The body K is surrounded
by a hyperbox which is divided into ǫ-size boxes, and the number of the boxes that intersect with K are
counted. The ratio of the number of boxes inside K to the number of total boxes gives an estimate of
the ratio between the volume of K and the hyperbox. The volume is computed by multiplying the ratio
by the volume of the hyperbox.

The second method is a naive Monte Carlo estimation procedure. As before, the body K is surrounded
by a hyperbox. Instead of dividing the hyperbox into small boxes, points are sampled uniformly from
within the hyperbox. The ratio of the number of points falling in K to the total number of sampled
points gives an estimate of the ratio between the volume of K and the hyperbox. The volume of K is
computed by multiplying the ratio by the volume of the hyperbox. A similar ratio trick is applied by
the randomized volume estimation algorithms described later in this section.

These methods get hopelessly inefficient as the dimension increases. The first method must test an
exponentially increasing number of cubes. What is worse, the volume of K gets exponentially small
relative to the hyperbox. In the first approach this requires a smaller ǫ, and in the second this means
one must sample a vast number of points, because each point has a very small probability of falling into
K. These difficulties are illustrated in Figure 3. The volume of the unit hypercube, unit hypersphere,
and their ratios are plotted versus dimension.3 The volume of the hyperbox increases exponentially, and
the volume of the hypersphere decreases exponentially. The ratio betwen the two approaches zero very
fast, forcing naive Monte Carlo methods to sample huge numbers of points to estimate the volume of
even these simple objects.

3Using a hypersphere to enclose K, rather than a hyperbox, would produce a tighter fit in high dimension. However,
the ratio problem, while alleviated, would still exist.
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Figure 3: The volume of a hypercube of width two, a hypersphere of radius one, and their ratios for
dimensions 2 to 50. Note that the distance from the center of an edge of a hypercube of width two is
one, thus tightly enclosing a hypersphere of radius one.
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In 1989, volume estimation of a high-dimensional convex body was proved possible in O⋆(n23) calls to
the oracle, with the publication of “A random polynomial time algorithm for approximating the volume
of convex bodies” ([7]).4 Dyer, Frieze, and Kannan showed that by using a randomized algorithm—a
multiphase Markov chain Monte Carlo method—the volume of a convex body K in dimension n could
be computed with probability of at least 3/4 to within an ǫ of the true volume of K, in polynomial in
dimension calls to the oracle. By repeatedly running the algorithm, and taking the median result, one
can produce, with high probability, an estimate that is within ǫ of the true volume. The order of the
polynomial (23), and the constants involved, however, made any practical implementation very difficult.

Fortunately, there have been a series of improvements made to the original algorithm and analysis
( [14]; [15]; [13]), which have reduced the complexity to O⋆(n4) ([16]). In Section 3.2 we will present a
volume estimation algorithm without its sampling details. In Section 3.3 we will discuss the problem
of sampling uniformly in K, with focus on the sampling methods used in our experiments: a practical
modification of Hit-and-Run (HR) ([25]) called Artificial centering Hit-and-Run (ACHR) ([11]).

3.2 Multiphase Markov chain Monte Carlo volume estimation

All the randomized algorithms mentioned in the previous section use the same core algorithm, multiphase
Markov chain Monte Carlo (MP-MCMC), for the actual volume calculation; the differences are mainly
due to sampling techniques.

One of the shortcomings of using a simple Monte Carlo technique for volume estimation is that the
ratio of K to the enclosing hyperbox/hypersphere decreases exponentially. A point sampled from the
enclosing region will have very small chance of falling into K. A multiphase technique avoids this problem
by ensuring that the ratio between the enclosing region and K is large, for example between one and
two. This means that points sampled uniformly from the enclosing region will have high probability of
falling in K.

Figure 4 illustrates the MP-MCMC algorithm which is described in Figure 5. First, a ball B0 is
fitted into K which is as large as possible. Next, a ball Bm is fitted around K which is as small as
possible. Dilations of B0, called B1 to Bm−1, are constructed such that each dilation’s volume is twice
that of the previous dilation. Then N points are sampled uniformly from the intersection of K and balls
B1 to Bm (denoted as K1 to Km). For each Ki, the number of these points that fall into the intersection
of K and previous dilation, K i−1, is counted (Ti). The fraction N/Ti is the estimate of the ratio between

4O(·)⋆ notation refers to the number of calls to the oracle. This is the accepted way of presenting algorithm complexity
in the volume estimation literature. The actual complexity includes constants and other terms of lower order, but the
number of calls to the oracle is the greatest inefficiency.
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Figure 4: MP-MCMC setup. The upper diagrams diagrams represent an instantiation of MP-MCMC,
defined by the initialization illustrated in the bottom diagram. Given the center of K, the radius of the
enclosed and enclosing ball are computed: r and R, respectively. To calculate the volume estimate, we
compute the ratios between Ki and Ki−1, for i = 1 to m.
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B0

K1

B1 R

r

K

K0 K2

B2

the volume of Ki and Ki−1. Because the dilations were specified to be twice the volume of the previous
dilation, the ratio is bounded as:

1 ≤
vol(Ki)

vol(Ki−1)
≤ 2.

Since vol(K0) = vol(B0) and vol(Km) = vol(K), we can write the volume estimate as a product of
volume ratios and vol(K):

vol(K) = vol(K0) · [
N

T1
·

N

T2
· · ·

N

Tm
]

= vol(K0) ·
m∏

i=1

vol(Ki)

vol(Ki−1)

= vol(K0) ·
vol(K1)

vol(K0)
·
vol(K2)

vol(K1)
· · · ·

vol(Km−1)

vol(Km−2)
·

vol(Km)

vol(Km−1)

= vol(Km)

= vol(K)

3.3 Sampling

In this section, we will discuss how to sample uniformly from a body in high dimension. At each phase
of the MP-MCMC algorithm, a sampling algorithm must supply N points uniformly distributed in
Ki. Before describing actual random walks on Ki, we will clarify three of the important concepts and
difficulties of random walks in high dimension: step size, sandwiching, and convexity.

To sample efficiently, a random walk should explore K as quickly as possible. This is easily achieved
by setting the step size large. The downside of setting the step size large is that, at each step, the
walk has a high probability of stepping outside K. Near the edge of the body, for instance, it can take
many attempts to remain in K. High-dimensional corners, although difficult to actually reach, can be
extremely difficult to escape ([24]).
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Algorithm 1: MP-MCMC VOLUME ESTIMATION

inputs
K = Oracle in ℜn

N = number of points to sample per phase.
initialization

m = ⌈n log2 n⌉
B0 = B(0, 1)

for i = 1 : m

Bi = B(0, 2i/n)
Ki = K ∩ Bi

Si = Sample(N, Ki)
Ti = |Si ∩ Ki−1|

output
vol(K) = vol(K0) ·

∏
i

N
Ti

Figure 5: The MP-MCMC VOLUME ESTIMATION algorithm for computing the volume of a body
K which has been transformed (rounded) such that B(0,1) fits inside K, and B(0,n) encloses K ([7],
[24]). Note that B(0,n) defines a ball with the zero vector as the center and having radius n. Our
implementation is a modified version of this algorithm; see Section 4 for details.

Figure 6: Sandwiching (rounding). The body on the left is transformed into the body on the right via
an affine transformation. As a result, the sandwiching ratio decreases from 3.5 to 1.4.

r

R R

r

ratio = 3.5 ratio = 1.4

Step size is directly related to the concept of local conductance. Local conductance is the probability
of a point remaining inside K after taking a step ([10]). In the interior of K, the local conductance
almost one (nearly every step will remain inside), but it decreases near the boundary. The goal of many
algorithms is to sample from bodies that have high average local conductance, so that the fewest number
of points are rejected per sample. A large step size implies lower local conductance. Decreasing the step
size will increase the local conductance at the expense of increasing the number of random steps needed
to explore K. In our experiments, step size is not an issue because our sampling method (ACHR) does
not take steps in the sense discussed above.

Sandwiching, or rounding, is an important preprocessing step for many samplers ([10]). Rounding K
can be accomplished by an affine transformation of K, such that the ratio of the radii R and r is as small
as possible (see Figure 6). When the sandwiching ratio is one, for example, we know that the body is
spherical: the two radii are equal. By improving the sandwiching ratio, the local conductance improves.
This is not only an important initialization step for sampling proofs, but also leads to improved practical
efficiency ([9]). In our experiments, sandwiching is not performed; instead, we will use a sampling method
that is robust to large sandwiching ratios.

All randomized volume estimation algorithms assume that K is a convex body. Convexity is important
for these algorithms mainly to prove that a random walk from point A can reach any other point C, just
as easily as from point B, and for any A, B, and C in K. Consider two convex bodies in high dimension
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Figure 7: A non-convex body. In this example, a random walk starting at point x will only reach z after
a very large number of steps. This is mainly due to the low probability of passing from the region where
x is located to the region where y and z are located. In high-dimensional spaces, the gap between the
two regions may be very small, making random walks very slow to converge (i.e. they are not rapidly
mixing). A point y, on the other hand, can reach z much more easily because they are both in the same
convex region.

x
z

y

that have small intersection (see Figure 7). For point x to reach z by a random walk, it must find a
path through the intersection. As the dimension increases and the intersection shrinks, the probability
of x reaching z becomes much smaller than the probability of y reaching z. If we guarantee convexity,
this problem is alleviated. In other words, a random walk must rapidly approach a uniform walk on
K, which is much easier to accomplish if K is convex ([24]). Imagine two disjoint regions. Obviously a
random walk starting from one region will have zero probability of reaching the other region if its step
size is small. Unfortunately, the acceptance regions of our models are not guaranteed to be convex. In
fact, many of our models will generate non-convex or even disjoint regions. But as we will see below,
HR-based random walks can sample uniformly from non-convex bodies.

3.4 Random Walks

We now describe, in more detail, the random walks used in the volume estimation literature. The grid
walk was used in the original randomized volume estimation algorithm paper ([7]). Improvements to
the volume estimation algorithms were made by changing the random walk from a grid walk a ball walk
([15]). This improvement came at the cost of making the analysis more difficult, mainly because the ball
walk has infinite state space.

Using the HR walk ([25]) further improved the complexity of the volume estimation algorithms
([13]). HR has many attractive properties, and as such forms the basis of the walk chosen for our
implementation. HR is a time-reversible random walk which is able to reach any part of a convex (or
non-convex) body in a single step ([26]). The HR algorithm is shown in Figure 8, and illustrated in
Figure 9. From any position x inside K, a random direction µ is chosen uniformly from the unit sphere.
The next position is chosen by selecting a step uniformly along the line segment passing through x, in the
direction of µ, with end points at the boundary of K. In practice, finding the end points does not pose
a problem: a simple bisection method can quickly find a step inside K along the line. For MP-MCMC
volume estimation, bisecting is made even easier because we know that the end points initially intersect
the ball of the current dilation.

As mentioned above, HR has a major advantage over the two other walks: we can sample uniformly
from K even if K is non-convex. This is demonstrated by looking at the same non-convex example as
before (Figure 10). Any point x can easily reach any other region in K, even if K is disjoint.

Nevertheless, HR has its own shortcomings. Notably, if K is an elongated body (with a large
sandwiching ratio), drawing directions from a uniform direction distribution can lead to inefficient ex-
ploration of K ([11]), making sandwiching a necessary preprocessing step for any efficient and accurate
implementation. Fortunately, this shortcoming is addressed below.

3.5 Artificial centering Hit-and-Run

Artificial centering Hit-and-Run (ACHR) ([11]) was developed as a practical improvement to HR.
Kaufman and Smith showed that ACHR significantly increases the number of uniform samples over
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Algorithm 2: HIT-AND-RUN SAMPLER (UNIFORM TARGET DISTRIBUTION)

inputs
K = Oracle in ℜn

J = bounding surface
D = uniform direction distribution
N = number of points to sample

initialization
x0 = initial point ∈ K
Set i = 0

for i = 1 : N
Generate direction µi+1 ∼ D.
Find end points a and b of the line projected from xi which intersect J.
Sample λ uniformly along line.
while xi+1 = xi + λµi+1 6∈ K

Update a and b.
Sample λ uniformly along line segment.

output
Samples x1 through xN .

Figure 8: The HIT-AND-RUN algorithm for sampling uniformly from K (adapted from [25]).

regular HR on elongated bodies. The ACHR algorithm is shown in Figure 11, and illustrated in Figure
12. ACHR estimates an optimal direction distribution from an empirical sample.5 Selecting a direction
uniformly from the unit hypersphere is an optimal direction distribution if the body is spherical. For
an elongated hyperellipsoid, a uniform direction distribution will oversample from the “thin” directions,
even though, to sample efficiently, it should concentrate on the elongated directions. ACHR attempts to
estimate an optimal direction choice by selecting directions not from the uniform direction distribution,
but an empirical estimate of the optimal direction. This direction distribution is the set of directions from
all previous samples to an “artificial” center. The artificial center is the mean of the previous samples.
Initially, there is a “warm-up” period where samples (which are later thrown away) are generated from
the hypersphere defined by r. As the sampling continues, points away from the center of the body will
contribute to directions to the elongated extremes of the body, avoiding “thin” directions.

Unfortunately, the improvement comes at a theoretical cost: a random walk by ACHR is no longer
a Markov chain, thus making all proofs of convergence for the volume algorithms invalid. Nevertheless,
we feel that the improvements are justified. There are two foreseeable advantages of ACHR over HR.
The first is that because ACHR directions will tend to point towards longer portions of the body, it
will spend less time bisecting as it attempts to find a sample inside K. The second advantage is that
ACHR will sample points that are closer than HR to the uniform distribution on K ([11]). Since we will
not be throwing out serial correlations (neighboring samples), the quality of the samples becomes more
important. One can imagine an HR sampler at a position near the tip of an elongated hyperellipsoid.
Because there are few directions pointing to the other end of the hyperellipsoid, HR will tend to stay
at the tip region much longer than ACHR. For a small number of samples, this may overestimate the
volume. If the HR is near the center of K, then it can underestimate the volume, because few directions
will point to the ends of the hyperellipsoid. Overall, because of these localized, and highly correlated,
sets of samples, HR may produce volume estimates with higher variance than ACHR.

3.6 Implementation

We now discuss the implementation details of the volume estimation algorithm used in our experiments.
The initialization of the MP-MCMC algorithm is important because incorrect values of r and R

will result in incorrect volume estimates, even if the sampling is of high quality. Before defining the

5If there are a sufficient number of examples, an alternative approach to estimating the optimal direction distribution
is to sample directions from a multivariate normal distribution with mean zero and covariance equal to the inverse Hessian
of the data points ([38]).
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Figure 9: Hit-and-Run algorithm. A single step is illustrated from initial state x0 to x1. First, a
direction µ1 is selected uniformly from the unit hypersphere. A point is then sampled along the line
segment defined by µ1, passing through x0, and with end points a and b on the enclosing surface, J .
The first sampled point b′ is outside K. The endpoint b is moved to b′, and another point is sampled
along the same line, but with different end points. The next point x1 is accepted because it is inside K.
A new direction µ2 is then chosen for the next step.

b’

a

b

a

b

x1

µ2

µ1

x0

K J

Figure 10: The Hit-and-Run walk is able to reach point z from both x and y is a single step.

z

y

x
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Algorithm 3: ARTIFICIAL CENTERING HIT-AND-RUN SAMPLER

inputs
K = Oracle in ℜn

J = bounding surface
D = uniform direction distribution
V = number of warm-up points
N = number of points to sample

initialization
x0 = initial point ∈ K

for i = 0 : N
Select random index j, from 1 to V+i
If j ≤ V , set µi+1 ∼ D, otherwise µi+1 = xj−V .
Find end points a and b of line projected from xi which intersect J.
Sample λ uniformly along line.
while xi+1 = xi + λµi+1 6∈ K

Update a and b.
Sample λ uniformly along line segment.

output
Samples x1 through xN .

Figure 11: The ARTIFICIAL CENTERING HIT-AND-RUN algorithm for sampling uniformly from
K (adapted from [11]). Note that there is no artificial center: we assume that K has already been centered
at the origin. See Figure 12 for an illustration of ACHR.

radii, however, we must select the “center” of K. The model classes that we use in our experiments all
have some measure which can be used to select the most “likely” training point. For gmm, this is the
probability density function; the center is chosen as the training point with highest density. For kmeans,
the measure is the distance of each point to its closest mean; the center is chosen as the training point
with the smallest distance.

We first make initial guesses for r and R using an ad hoc heuristic (see Figure 14). We set r to be
the smallest distance of all rejected training points to the center. We set R to be the largest distance
of all non-rejected training points to the center. Because this heuristic explicitly incorporates error into
our volume estimations, we refine our values of r and R as follows. For r, we iteratively sample ten
thousand points from B(0, r) until none are rejected. If any samples are rejected, we decrease r by 10%.
For R, we project all training points so that they all lie on the hypersphere of radius R. If any of the
points are accepted, then we increase R by 10% and re-project the points. We iterate until all projected
training points are rejected. These heuristics are fast and they produce a more precise initialization of
r and R, but they can still contain error.

Once the center and the two radii are defined, we compute the dilations of B(0, r). The role of the
dilations is to maintain a large ratio between the volume of Ki and Ki−1. Following the examples of
[24] and [10], we find dilations such that each dilation approximately doubles the volume of the previous
dilation. We compute m, the number of dilations of B(0, r), such that each dilation approximately
doubles in volume:

m = ⌈log2

VR

Vr
⌉,

where Vr = vol(B(0, r)) and VR = vol(B(0, R)). Since we may not be able to exactly double the volume
of each dilation, we calculate ∆ such that:

∆m =
VR

Vr
.

Because the volume of a hypersphere of fixed dimensionality is only a function of its radius, we can solve
for ∆ by as follows:

∆m =
Rn

rn
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Figure 12: Artificial centering Hit-and-Run algorithm. The center of K is shown as an unfilled circle. The
direction distribution is represented by the arrows extending from the center. Dashed arrows represent
warm-up directions and solid arrows represent directions derived from steps in the ACHR walk. Once
x0 has been chosen, the direction from the center to x0 is added to the direction distribution (shown as
dashed line). Initially, x0 selects µ1 from the warm-up directions. Once at x1, the direction from the
center to x1 is added to the direction distribution etc.

x1

µ2

x0

µ1

µ1

x2

µ2

Figure 13: Direction distributions. The steady-state direction distributions of HR and ACHR are shown
for an ellipsoid body. HR maintains a uniform direction distribution, whereas ACHR will concentrate
its direction density on directions pointing to the elongated regions of the ellipsoid.

HR

ACHR
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Figure 14: MP-MCMC initial estimates of r and R. Filled circles represent non-rejected training points.,
while unfilled circles rejected training points. The large unfilled circle is the center of K, defined as as
the most normal training point. The Euclidean distance is then computed between the center and all
other training points. We set r to be the smallest distance of a rejected point to the center, and R to
be the largest distance of a non-rejected point to the center.

R

r

m log2 ∆ = n log2 R − n log2 r

log2 ∆ =
n log2 R − n log2 r

m
= δ.

We can now solve for the radii of each dilation i using the follwing:

rn
i

rn
= ∆i

n log2 ri − n log2 r = i log2 ∆

ri = r2δ( i

n
), i = {1, 2, · · · , m}

We can verify that r0 and rm are exactly r and R, respectively:

r0 = r20 = r

rm = r2
n log2 R−n log2 r

m
( m

n
) = r

R

r
= R.

After the dilations have been initialized, we can begin running MP-MCMC. For each dilation i, we
run three Monte Carlo simulations simultaneously. Each simulation samples points from Ki using the
ACHR walk. At each dilation, ACHR uses one hundred warm-up points sampled uniformly from B(0, r).
The statistic monitored during the simulations is the ratio between the number of points in Ki−1 and
Ki. When the between and within variance of the statistic falls below 10−5, or when each simulation
has already sampled ten thousand points, the simulations are stopped and the mean value of the ratio
is returned. This is an approach similar to one used in [3]. Finally, we use the equations from Section
3.2 to compute the volume, replacing each N/Ti with the ratios computed by the simulations.

4 Experiments

In this section, we will describe two sets of experiments. The first will test the accuracy of our volume
estimation algorithm. We will run our algorithm on simple geometric shapes with known volume, and
test how well the algorithm performs as the dimension increases. Comparisons will be made with a
simple naive approach, MP-MCMC with HR walks, and MP-MCMC with ACHR walks. The second set
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of experiments will test the model selection criteria. To do this we will use classification datasets, and
train models using one of the classes, and test on the remaining classes which act as an outlier test set.

4.1 Experiments: volume estimation

These experiments will compare three volume estimation procedures: naive, HR, and ACHR. The naive
method is used by [31] and was discussed in Section 2.2.6 It consists of sampling uniformly from the
outer ball, and counting the number of samples that fall inside K. HR and ACHR use the MP-MCMC
implementation discussed in Section 3.6.

To compare these methods, we will test their accuracy on objects of known volume. The first
experiment will test the algorithms on a difficult convex object: an elongated hyperellipsoid. The radius
of each dimension of the hyperellipsoid is one, except along one dimension which has radius ten. In the
second experiment, the algorithms are tested on their ability to estimate the volume of a non-convex
body: three non-overlapping hyperspheres, aligned along one axis, each having radius one.

We vary the dimensionality of the objects from two to ten. Because we know the minimum and
maximum radii, we will initialize r and R exactly, so that all three methods will use the same inner
(if applicable) and outer balls. A fair comparison will be made between naive and HR and ACHR by
allowing naive to sample as many points as the maximum allowed by the other methods. For example,
if HR and ACHR use a maximum of ten thousand samples per dilation for five dilations, each with three
simultaneous simulations, then we would sample one hundred fifty thousand samples for naive. For these
experiments, we will estimate the volume of each object ten times.

4.2 Experiments: model selection

To demonstrate the flexibility of our approach, we will build models from several different model classes,
and exclusively use C1 and C2 to pick the best model.7

Although we will build models on a range of ν⋆ values for each dataset, in all our experiments we
assume that ν⋆ is a parameter defined by the user. In manufacturing, for example, ν⋆ could represent
the operation engineer’s upper limit of how many objects to stop and test. We will build and test a
model for each parameter setting and for each ν⋆, which varies over the values 1%, 5%, 10%, 20%, and
50%. Note that we are most interested in the results when ν⋆ is small, e.g. 1% and 5%.

For each parameter setting, we run ten-fold cross-validation three times and estimate ν̂ as the mean
of the three runs. All models whose ν̂ differs relatively from ν⋆ by less than 15% satisfy C1. We select,
from those models satisfying C1, the model with the lowest estimated volume, using MP-MCMC with
ACHR sampling (which we will henceforth call volume). The volume is computed on the model trained
using the entire training set. We make one modification to the MP-MCMC algorithm described earlier:
we do not compute an “artificial” center. We assume that the center is the origin, and that the most
likely point in the training set acts as an offset from the origin. We will also compare the naive volume
estimation technique (naive) to our approach.

The datasets used in these experiments are all classification sets from the UCI Machine Learning
Repository (http://www.ics.uci.edu/∼mlearn/MLRepository.html). We use one of the classes as
the normal class, and all the other classes combined as the outlier class (or, equivalently, the abnormal
class). All model selection is performed exclusively using the normal dataset. The outlier set is used
as an objective estimate of the outlier error rate (false positive rate). Table 1 describes the size and
dimension of the datasets. The datasets were modified prior to our experiments: any objects with
missing attributes were removed; attributes which have zero variance in the normal class were removed;
and both normal and abnormal classes were whitened by removing the mean of the normal class, and
by dividing by the standard deviation of the normal class. Whitening is not necessary, but was done so
that the parameter ranges (especially σ) would have generally the same effect on all datasets.

The models selected by C1 and C2 are directly compared with two-class classification results. The
normal dataset represents one class, and the outlier dataset the other class. We use a rbf two-class svm
whose optimal parameters are selected using ten-fold crossvalidation. All svm optimization is performed
using the libsvm toolbox (http://www.csie.ntu.edu.tw/ ∼cjlin/libsvm/).

6See [31] for details of how to sample uniformly from a ball.
7In practice, however, we may not be interested in the single best model, but in ranking the models. For example, the

volume estimates could be used as votes in a committee machine. Such extensions are beyond the scope of this paper.
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Table 1: Data sets used in experiments.
Name n nbr D+ nbr D− Description Normal Outlier

gauss 2 100 2500 Toy data two gaussians uniform
iris 4 50 100 Iris Plant Virginica Setosa and Versicolour
yeast 8 463 1021 Protein localization CYT other nine classes
letter 16 789 19211 Letter recognition A B-Z
derm 25 111 247 Dermatology psoriasis other five conditions
ion 32 225 126 Ionosphere good returns bad returns

Table 2: Model classes used in our experiments.

Model Class Parameters Ranges
ν-gmm k 1-5
ν-parzen σ 0.1:1000
ν-kmeans k 1-5
ν-svm σ 0.1:1000

4.2.1 Model classes

In our experiments, we use several common density estimation and one-class classification algorithms.
Table 2 lists the model classes and their adjustable parameters. It should be noted that although we
build models on a limited range of parameter values, our results are not affected: we are interested in
model selection, that is, finding the best model from a set of candidate models, and not in searching all
model classes and parameter spaces for the absolute best model.

We now describe how the models are modified to reject ν training points. We will refer to models
that have been modified in such a way as ν-ModelName (e.g. ν-gmm ).

A Parzen windows model that rejects data when p(x) < τν is called a ν-parzen model. The ν
threshold, τν , is defined as follows. Sort the densities of the training data in ascending order. Let the
ν-th point to be rejected be xm, where m = ⌈ν · N⌉. Set τν = (p(xm) + p(xm+1))/2.

A kmeans model that rejects data when d(x) < τν is called a ν-kmeans model. In our experiments,
the ν threshold, τν , is defined as follows. Sort the distances of each point in the training data from
the nearest cluster center, di, in descending order. Let the ν-th point to be rejected be xm, where
m = ⌈ν · N⌉. Set τν = (d(xm)+d(xm+1))/2. A kmeans model that rejects data when d(x) < τν is called
a ν-kmeans model.

A gmm that rejects data when p(x) < τν is called a ν-gmm model. The ν threshold, τν , is defined
in the same as manner as ν-parzen. In our experiments, we only consider full-covariance matrices; we
therefore only build gmm models when n2 < N , where N is the number of training examples. This
excludes derm and ion.

In our experiments, we use an rbf kernel so that low density regions are mapped close to the origin
in feature space, and so that the acceptance region is bounded in input space. Therefore, the only
parameter for ν-svm is the rbf width parameter σ. All ν-svm optimization is performed using the
libsvm toolbox (http://www.csie.ntu.edu.tw/∼cjlin/libsvm/).

5 Results

We divide the presentation of our results into separate sections for the volume estimation experiments
and the model selection experiments (Sections 5.1 and 5.2, respectively). We also briefly describe the
results of other model selection heuristics in Section 5.3.

5.1 Results: volume estimation

Table 4 shows the results of the volume estimation experiments on an elongated hyperellipsoid. We
report the mean volume estimates (µvol), the standard deviation of the volume estimates (σvol), and the
mean absolute error between the volume estimates and the true volume (µerr). All volumes are reported
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Table 3: Volume estimation results for a hyperellipsoid of radius one for all but one dimension. The
remaining dimension has radius ten. We report the mean volume estimates (µvol), the standard deviation
of the volume estimates (σvol), and the mean absolute error between the volume estimates and the true
volume (µerr). Results are reported in units of log volume. The result with the lowest µerr is bold
faced. The ratio between the volume of the enclosing hypersphere and the volume of the hyperellipsoid

is shown (vr = ⌈log2
vol(B(0,R))

vol(K) ⌉).

naive HR ACHR
n vr true

µv σv µerr µv σv µerr µv σv µerr

2 4 3.4473 3.4486 0.0095 0.0078 3.4385 0.0189 0.0128 3.4532 0.0188 0.0152
3 7 3.7350 3.7224 0.0354 0.0303 3.7041 0.0179 0.0309 3.7293 0.0211 0.0169
4 10 3.8989 3.8783 0.0776 0.0659 3.8605 0.0510 0.0533 3.9056 0.0290 0.0253
5 14 3.9634 3.9408 0.3862 0.2814 3.9399 0.0578 0.0422 3.9455 0.0268 0.0241
6 17 3.9450 3.8873 (9) 0.6062 0.5128 3.8472 0.0654 0.1054 3.9286 0.0187 0.0210
7 20 3.8554 5.3251 (1) 0 1.4697 3.7500 0.0583 0.1054 3.8365 0.0247 0.0237
8 24 3.7035 7.3531 (1) 0 3.6497 3.6278 0.0976 0.0855 3.6700 0.0382 0.0379
9 27 3.4961 n/a n/a n/a 3.3399 0.1079 0.1696 3.4552 0.0299 0.0409
10 30 3.2387 n/a n/a n/a 3.0723 0.0358 0.1665 3.1905 0.0453 0.0567

in natural log. For naive, we display the number of non-zero volume estimates in parentheses if there
are less than ten non-zero estimates. For n = 9 and n = 10 naive has volume estimates of zero for all
ten runs. For all dimensions except n = 2, ACHR has the best µerr. HR, in turn, outperforms naive
on all but n = 2 and n = 3. Note how the estimates tend to underestimate the true volume by a greater
degree as the dimension increases.

Table 4 shows the results of the volume estimation experiments on three aligned hyperspheres. In
this experiment, naive performs well for all dimensions. This is mainly explained by the ratio between
the volume of B(0, R) and K, which remains relatively larger than in the previous experiment. ACHR
once again outperforms HR and naive, and does not seem to suffer performance loss even though K is
no longer convex.

5.2 Results: model selection

For each dataset we present two plots (see Figures 15 and 16). The left-most plots illustrate model
selection using C1 and C2 (volume). The x-axis represents ν̂ and the y-axis represents the log of the
volume estimate for each model. All the models are shown as x’s, models satisfying C1 are shown as
circles, and the model with the smallest volume, according to volume, for each ν⋆, is shown as a square.
The smallest models according to naive are shown as triangles. For all plots, ν̂ is plotted on the log
scale. Note that in classification terms, ν̂ is the estimate of the false-negative rate.

The symbols in the right-most plots represent the same models as on the left, but here the y-axis
represents the test error on the outlier class (false positives). The two-class svm cross-validation errors
are also plotted as stars. Errors for the normal class (false negatives) are plotted on the x-axis, and
errors for the abnormal class (false positives) are plotted on the y-axis.

The results are summarized by Table 5 and Figure 17. Table 5 shows the outlier error rate for the
model selected using volume. For comparison purposes, the error for the smallest model for each of
the model classes is also shown, as is the model selected using naive. Note that volume generally picks
the best model among all the model classes—many times more than naive—and that there is never one
model class which always produces the best model.

The results in Figures 15 and 16 are summarized in Figure 17. Along the x-axis is the log volume
of the optimal models chosen either by volume (squares) or by naive (triangles) from Figures 15 and
16. Along the y-axis the abnormal test error is plotted in the log scale, for clarity. The dashed lines
connect the optimal models of the same dataset, for different values of ν⋆. Because the test error is
plotted in log, models with zero error are plotted at 1e − 5, so they appear on the plot. The solid lines
join volume and naive models for the same ν⋆. There are two observations to be made. One is that the
abnormal test error monotonically increases with the volume estimates. The second is that on several
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Table 4: Volume estimation results for three hyperspheres of radius one, aligned along the first dimension.
We report the mean volume estimates (µvol), the standard deviation of the volume estimates (σvol), and
the mean absolute error between the volume estimates and the true volume (µerr). Results are reported
in units of log volume. The result with the lowest µerr is bold faced. The log of the ratio between the

volume of the enclosing hypersphere and the volume of the hyperellipsoid is shown (vr = log2
vol(B(0,R))

vol(K) ),

which corresponds to the number of dilations.

naive HR ACHR
n vr true

µv σv µerr µv σv µerr µv σv µerr

2 2 2.2433 2.2456 0.0068 0.0060 2.2465 0.0164 0.0131 2.2453 0.0086 0.0066
3 4 2.5310 2.5232 0.0140 0.0125 2.5304 0.0243 0.0199 2.5396 0.0127 0.0106
4 5 2.6949 2.6998 0.0148 0.0114 2.6944 0.0240 0.0191 2.6917 0.0124 0.0084
5 7 2.7595 2.7396 0.0440 0.0352 2.7662 0.0282 0.0242 2.7553 0.0193 0.0130
6 8 2.7410 2.7386 0.0610 0.0482 2.7148 0.0653 0.0536 2.7269 0.0154 0.0169
7 10 2.6514 2.6818 0.0718 0.0642 2.6202 0.0548 0.0496 2.6348 0.0170 0.0231
8 12 2.4995 2.4981 0.0661 0.0530 2.3943 0.0980 0.1175 2.4620 0.0112 0.0374
9 13 2.2921 2.0471 0.2606 0.2746 2.1496 0.1995 0.1910 2.1400 0.0269 0.1520
10 15 2.0348 1.9469 0.1962 0.1739 1.7124 0.2165 0.3317 1.7959 0.0484 0.2389

datasets the model selected by volume is significantly better than the homologous naive model. This is
most apparent in letter and ion. For these sets, naive returned few volume estimates greater than zero,
thus restricting model selection from only the largest of models.

5.3 Results: other selection heuristics

We also compared volume with other model selection heuristics besides naive: for ν-gmm and ν-parzen
models, we compared the cross-validated log likelihood; for ν-parzen and ν-svm models, we compared
the increasing σ method of [34]; and for ν-kmeans models, we compared using the within cluster variance
as a selection heuristic. For all heuristics, we found that volume either selected a similarly performing
model or a better model. In most cases, for the ν-parzen and ν-svm models, the increasing σ method
selected the same models as volume.

6 Discussion

We divide the discussion of our results into separate sections for the volume estimation experiments and
the model selection experiments (Sections 6.1 and 6.2, respectively). We also briefly describe possible
sources of error (Section 6.3) and future directions (Section 6.4).

6.1 Discussion: volume estimation

The results from the volume estimation experiments clearly show the superiority of ACHR over HR
and naive. The results are accurate even on such a difficult object as the hyperellipsoid. At n = 10,
the volume of the hyperellipsoid must double 30 times to equal that of B(0, R). At this dimension, HR
commits three times the error of ACHR.

The inherent difficulties of a naive approach are clearly demonstrated by this experiment. At n = 4,
naive is already making as much error as ACHR does at n = 10. At n = 6, naive has begun to miss
K altogether, achieving only nine of ten runs with at least one point in K. For dimensions greater than
eight, naive requires a huge number of attempts to have just one point fall in K.

The results of volume on the three hyperellipsoids indicate that the non-convexity of the shape was
not a severe handicap to the algorithm.

Though not reported in our results, naive can potentially have a significant efficiency advantage
over both HR and ACHR. This is because both HR and ACHR must sample from within Ki, which
requires testing, for each sample inside Ki, many points outside of Ki that are never used as samples. It
should be emphasized that the advantage is not always present, and is most pronounced when the body
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Table 5: The abnormal test error (false positive rate) from model-class specific optimal models using
volume are shown. The selection process was performed on each model class independently of each other.
The best test error is bold faced. If there are no models that satisfy C1, their entry is ‘?’. There were
no ν-gmm models produced for derm and ion. The best model selected using naive is also shown.

dataset ν⋆ volume naive ν-kmeans ν-parzen ν-gmm ν-svm

gauss 0.01 0.4348 0.4348 ? 0.4348 0.4680 ?
0.05 0.2736 0.2756 0.2852 0.2828 0.2796 0.2736
0.1 0.2084 0.2104 0.2084 0.2160 0.2168 0.2204
0.2 0.1480 0.1488 0.1544 0.1600 0.1480 0.1580
0.5 0.0692 0.0692 0.0720 0.0768 0.0692 0.0820

iris 0.01 0.1900 0.1900 ? 0.2600 0.2600 0.1900
0.05 0.2300 0.2300 ? ? 0.2300 ?
0.1 0.0500 0.1400 0.0500 0.1800 0.1400 ?
0.2 0.0200 0.0200 0.0200 0.0200 0.0300 0.0300
0.5 0.0000 0.0000 0.0100 0.0100 0.0000 0.0100

yeast 0.01 0.9775 0.9775 ? ? 0.9775 ?
0.05 0.7081 0.7728 0.7111 0.7081 0.7679 0.7747
0.1 0.5896 0.6376 0.5955 0.5896 0.6572 0.6405
0.2 0.4466 0.4466 0.4466 0.4574 0.4310 0.4701
0.5 0.1783 0.1783 0.1783 0.2233 0.1606 0.2223

letter 0.01 0.0994 0.3480 ? 0.3480 0.7109 0.0994
0.05 0.0440 0.1406 0.1631 0.0922 0.1309 0.0440
0.1 0.0035 0.0632 0.0681 0.0407 0.0095 0.0035
0.2 0.0003 0.0123 0.0042 0.0105 0.0010 0.0003
0.5 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000

derm 0.01 0.6113 0.6113 ? 0.6113 n/a ?
0.05 0.1255 0.1255 ? 0.1255 n/a 0.0648
0.1 0.0121 0.0121 ? ? n/a 0.0121
0.2 0.0081 0.0081 0.0040 0.0081 n/a 0.0000
0.5 0.0000 0.0000 0.0000 ? n/a 0.0000

ion 0.01 0.5238 0.5238 ? ? n/a 0.5238
0.05 0.1905 0.3254 ? 0.1905 n/a 0.3254
0.1 0.0873 0.0873 0.0873 0.1190 n/a 0.2540
0.2 0.0317 0.0556 0.0317 0.0556 n/a 0.0873
0.5 0.0079 0.0159 0.0079 0.0000 n/a 0.0079
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is composed of small, disjoint regions in input space. Fortunately, these are the models that are rejected
by C1, and therefore, in practice, the speed advantage of naive over HR and ACHRis not necessarily
significant. For high-dimensional problems, since we do not know the volume of K in advance, it would
be risky to use naive because we have no knowledge of how many samples are necessary to have one
fall into K. ACHR, in turn, is more efficient than HR, because it tends to avoid sampling in directions
where Ki is “thin”, and therefore uses less time bisecting.

The volume estimation results empirically confirm our use of ACHR in our experiments. Not only
does ACHR result in better volume estimates, but it is faster than HR in practice.

6.2 Discussion: model selection

For all datasets, the implemented selection criteria are able to choose the best model with respect to
outlier test error for nearly all cases of ν⋆. That is, among all models selected using C1, the models
with the smallest volume using our procedure, are also the models with the lowest false positive rate
(25/30 from Table 5). This is not true for naive (13/30 from Table 5). Although, for many cases, the
best models for volume and naive coincide, naive is unreliable, especially for high-dimensional datasets,
because fewer models have non-zero volume estimates, and of those, their estimates are more susceptible
to error.

The first criterion C1 is important so that very small models are rejected. For all the datasets,
there are model classes and parameterizations which produce very small solutions, but which are easily
identified using a cross-validation estimate of ν⋆. In practice, we would not estimate the volume of
these overfit models. This allows computational resources to be used for estimating the volume of larger
acceptance regions. Overfit models can have extremely disjoint regions, requiring more dilations, and
also causing bisection to be very inefficient.

The main advantage of our criteria is that it can almost always select the best model from all the
model classes. For each dataset and ν⋆, a particular model class may select the best model, but there
is never one model class which always performs best. Our criteria, however, tends to select the best
model for all datasets. This allows the user to experiment with a wide variety of model classes, and have
confidence in the selected models.

6.3 Discussion: sources of error

There are several potential sources of error in both our model selection procedure and in the implemen-
tation of the volume algorithm.

By estimating ν⋆ using cross-validation, we introduce error into our estimate. We may be able
to achieve more stable results using either a different number of folds, or by averaging more than
three cross-validation estimates, as we have done. Leave-one-out cross-validation, though more time
consuming, would be more accurate. For generative models, drawing samples from p(x) can also be used
to estimate the quality of the rejection rate on normal data ([19]).

Our implementation of C1 is arbitrary; correctly selecting the C1 threshold is an open problem. If
there are many models with stable ν̂, then the threshold could be decreased to focus on models that are
most stable.

C2 selects, from the models satisfying C1, the model with the smallest volume; however, since the
volume estimates are not error free, selecting the smallest model, without taking into account the volume
variability, is inappropriate. In our experiments, we do not take into account this noise, although one
could select, from the models satisfying C1, all the models whose volumes are within some ǫ of the
smallest volume.

The advised number of Markov chain steps in the volume estimation literature are based upon model
assumptions that we did not make (i.e. convexity, sandwiching ratios). We therefore used our own
heuristics to measure convergence. Since our approach is ad hoc, there is no reason to conclude that
our ratio estimates in the MP-MCMC algorithm result from converged Markov chains (ACHR does
not produce a proper Markov chain). Indeed, using three simultaneous MP-MCMC runs is arbitrary;
certainly more runs, of longer length, would result in more accurate estimates.

Despite the ability of ACHR to sample from bodies with large sandwiching ratios, simple rounding
techniques should be considered because it could significantly reduce the number of dilations required
by MP-MCMC. By whitening our datasets prior to the experiments, some rounding was already incor-
porated into our procedure.
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Because we are testing our outlier acceptance rate using classification data, we are limited by these
distributions. The classification outlier test sets, from our experiments, occupy only part of the input
space. Our model selection criteria may select the smallest model, but another, larger model may be
better at discriminating between the normal and outlier data sets. This source of error is beyond our
control.

All these sources of error may help to explain why the model selection criteria do not perfectly select
the best model in all cases. We hope that our results are encouraging enough to inspire further research.

6.4 Discussion: future directions and open problems

Despite the success of selecting novelty detection models, there are other improvements that could be
made to a novelty detection system to increase its usability. Since a novelty detection model only
expresses novelty as a binary event, using a continuous measure of novelty would be useful. This is
an advantage that density estimation has over novelty detection. Most novelty detection models do,
however, have an output that can be interpreted as density, allowing the user to know by how much a
test point is an outlier.

We may also want to recognize specific outlier patterns. This would entail clustering or learning
models of outlier signatures, which could then be recognized as specific classes in the future. A related
issue is diagnosis. If the model detects an outlier, it would be useful to diagnose the cause (location) of
the alarm ([35]).

High performance novelty detection requires quality sensor measurements. It is obvious that if input
data are not the result of monitoring the correct aspect of a machine, novelty detection has no hope of
producing correct results ([35]). On the other hand, operations engineers have difficulty in monitoring
multiple sensors at the same time, i.e. sensor fusion. In such cases, automated model building of
high-dimensional processes would greatly improve monitoring processes in industrial situations.

In this paper we did not consider time-series data specifically. A state-space model of measurements
from a sliding time window could be used with our setup, but another useful novelty detection approach
for time-series data is to build a regression model of the sensors, detecting novelty when the predicted
sensor values differ from the actual sensor values at the next time step.

Domains such as text and gene expression (discrete data) were not considered in this paper. Since we
assumed a continuous input space, building a volume estimate intuitively made sense. But for discrete
spaces, computing the volume using Euclidean geometry may be inappropriate. Modifying the volume
estimation algorithms to work in a non-Euclidean space, for example on the multinomial manifold ([12]),
would be a useful endeavor.

7 Conclusion

In this paper we have presented clearly defined criteria for selecting a novelty detection model among
a large set of models which are built from multiple model classes and parameterizations. We have
presented a volume estimation algorithm which is one possible solution to the second criterion.

Our experimental results confirm volume estimation as an essential criterion for a generalized model-
selection approach. ACHR is shown to be a superior sampling technique to HR, and in turn, in con-
junction with MP-MCMC, vastly superior to a naive sampling technique for objects of high dimension.
It should be emphasized that for low dimensions, or for very well-rounded acceptance regions, naive can
be a good approach.

Compared with other model-class specific heuristics, our criteria perform the same or better. Our
selection criteria are able to select the best model from a wide range of model classes and parametriza-
tions.
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Figure 15: Model selection for gauss, iris, and yeast. Left: model selection results. The x-axis represents
the estimated false negative rate (ν̂), and the y-axis log volume. All the models tested are shown as
x’s. Models satisfying C1 are shown as circles. The models with the smallest volume, for a given ν⋆, are
shown as squares (volume). The models selected from C1 using naive are shown as triangles. Right:
test performance. The same models are shown, but the y-axis now shows the test error on the abnormal
data class (false positives). The x-axis is unchanged. The optimal two-class svm is shown as a star.
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Figure 16: Model selection for letter, derm, and ion. Left: model selection results. The x-axis represents
the estimated false negative rate (ν̂), and the y-axis log volume. All the models tested are shown as
x’s. Models satisfying C1 are shown as circles. The models with the smallest volume, for a given ν⋆, are
shown as squares (volume). The models selected from C1 using naive are shown as triangles. Right:
test performance. The same models are shown, but the y-axis now shows the test error on the abnormal
data class (false positives). The x-axis is unchanged. The optimal two-class svm is shown as a star.
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Figure 17: Summary: log volume vs. log false positive rate. Top: summary of the results of gauss,
iris, and yeast. Bottom: summary of the results of letter, derm, and ion. For each value of ν⋆, the
optimal model chosen using either our volume (squares), or naive (triangles), is plotted using a dashed
line. Solid lines link the chosen models for given a ν⋆ and indicate where there is a gap in either test
error performance or volume. This is used to illustrate the performance improvements of volume over
naive. Zero error values are replaced with 1e − 5 so that they appear on the plots.
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