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Abstract

The sparse matrix estimation problem consists of estimating the distribution of
an n× n matrix Y , from a sparsely observed single instance of this matrix where
the entries of Y are independent random variables. This captures a wide array
of problems; special instances include matrix completion in the context of rec-
ommendation systems, graphon estimation, and community detection in (mixed
membership) stochastic block models. Inspired by classical collaborative filtering
for recommendation systems, we propose a novel iterative, collaborative filtering-
style algorithm for matrix estimation in this generic setting. We show that the
mean squared error (MSE) of our estimator goes to 0 as long as ω(d2n) random
entries from a total of n2 entries of Y are observed (uniformly sampled), E[Y ] has
rank d, and the entries of Y have bounded support. The maximum squared error
across all entries converges to 0 with high probability as long as we observe a little
more, Ω(d2n ln2(n)) entries. Our results are the best known sample complexity
results in this generality. Our intuitive, easy to implement iterative nearest-neighbor
style algorithm matches the conjectured sample complexity lower bound of d2n
for a computationally efficient algorithm for detection in the mixed membership
stochastic block model.

1 Introduction

In this work, we propose and analyze an iterative similarity-based collaborative filtering algorithm
for the sparse matrix completion problem with noisily observed entries. As a prototype for such a
problem, consider a noisy observation of a social network where observed interactions are signals
of true underlying connections. We might want to predict the probability that two users would
choose to connect if recommended by the platform, e.g. LinkedIn. As a second example, consider
a recommendation system where we observe movie ratings provided by users, and we may want
to predict the probability distribution over ratings for specific movie-user pairs. The classical
collaborative filtering approach is to compute similarities between pairs of users by comparing their
commonly rated movies. For a social network, similarities between users would be computed by
comparing their sets of friends. We will be particularly interested in the very sparse case where most
pairs of users have no common friends, or most pairs of users have no commonly rated movies; thus
there is insufficient data to compute the traditional similarity metrics.
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To overcome this limitation, we propose a novel algorithm which computes similarities iteratively,
incorporating information within a larger radius neighborhood. Whereas traditional collaborative
filtering learns the preferences of a user through the ratings of her/his “friends”, i.e. users who share
similar ratings on commonly rated movies, our algorithm learns about a user through the ratings of
the friends of her/his friends, i.e. users who may be connected through an indirect path in the data.
For a social network, this intuition translates to computing similarities of two users by comparing
the boundary of larger radius neighborhoods of their connections in the network. While an actual
implementation of our algorithm will benefit from modifications to make it practical, we believe
that our approach is very practical; indeed, we plan to implement it in a corporate setting. Like all
such nearest-neighbor style algorithms, our algorithm can be accelerated and scaled to large datasets
in practice by using a parallel implementation via an approximate nearest neighbor data structure.
In this paper, however, our goal is to describe the basic setting and concept of the algorithm, and
provide clear mathematical foundation and analysis. The theoretical results indicate that this method
achieves consistency (i.e. guaranteed convergence to the correct solution) for very sparse datasets for
a reasonably general Latent Variable Model with bounded entries.

The problems discussed above can be mathematically formulated as a matrix estimation problem,
where we observe a sparse subset of entries in an m× n random matrix Y , and we wish to complete
or de-noise the matrix by estimating the probability distribution of Yij for all (i, j). Suppose that Yij
is categorical, taking values in [k] according to some unknown distribution. The task of estimating the
distribution of Yij can be reduced to k− 1 smaller tasks of estimating the expectation of a binary data
matrix, e.g. Y t where Y tij = I(Yij = t) and E[Y tij ] = P(Yij = t). If the matrix that we would like to
learn is asymmetric, we can transform it to an equivalent symmetric model by defining a new data
matrix Y ′ =

[
0 Y
Y T 0

]
. Therefore, for the remainder of the paper, we will assume a n× n symmetric

matrix which takes values in [0, 1] (real-valued or binary), but as argued above, our results apply
more broadly to categorical-valued asymmetric matrices. We assume that the data is generated from
a Latent Variable Model in which latent variables θ1, . . . , θn are sampled independently from U [0, 1],
and the distribution of Yij is such that E[Yij |θi, θj ] = f(θi, θj) ≡ Fij for some latent function f . Our
goal is to estimate the matrix F . It is worth remarking that the Latent Variable Model is a canonical
representation for exchangeable arrays as shown by Aldous and Hoover [5, 25, 7].

We present a novel algorithm for estimating F = [Fij ] from a sparsely sampled dataset {Yij}(i,j)∈E
where E ⊂ [n]× [n] is generated by assuming each entry is observed independently with probability
p. We require that the latent function f when regarded as an integral operator has finite spectrum with
rank d. We prove that the mean squared error (MSE) of our estimates converges to zero at a rate of
O((pn)−1/5) as long as the sparsity p = ω(d2n−1) (i.e. ω(d2n) total observations). In addition, with
high probability, the maximum squared error converges to zero at a rate of O((pn)−1/5) as long as
the sparsity p = Ω(d2n−1 ln2(n)). Our analysis applies to a generic noise setting as long as Yij has
bounded support. Somewhat surprisingly, our simple nearest-neighbor style algorithm matches the
conjectured sample complexity lower bound of total of d2n samples for a computationally efficient
algorithm, arising in the context of the mixed membership stochastic block model for detection
(weaker than MSE going to 0).

Our work takes inspiration from [1, 2, 3], which estimates clusters of the stochastic block model by
computing distances from local neighborhoods around vertices. We improve upon their analysis to
provide MSE bounds for the general latent variable model with finite spectrum, which includes a
larger class of generative models such as mixed membership stochastic block models, while they
consider the stochastic block model with non-overlapping communities. We show that our results
hold even when the rank d increases with n, as long as d = o((pn)1/2). As compared to spectral
methods such as [28, 39, 20, 19, 18], our analysis handles the general bounded noise model and holds
for sparser regimes, only requiring p = ω(n−1).

Related work. The matrix estimation problem introduced above includes as specific cases problems
from different areas of literature: matrix completion popularized in the context of recommendation
systems, graphon estimation arising from the asymptotic theory of graphs, and community detection
using the stochastic block model or its generalization known as the mixed membership stochastic
block model. The key representative results for each of these are mentioned in Table 1. We discuss
the scaling of the sample complexity with respect to d (model complexity, usually rank) and n
for polynomial time algorithms, including results for both mean squared error convergence, exact
recovery in the noiseless setting, and convergence with high probability in the noisy setting. As can
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Table 1: Sample Complexity of Related Literature grouped in sections according to the following
areas —matrix completion, 1-bit matrix completion, stochastic block model, mixed membership
stochastic block model, graphon estimation, and our results

Paper Sample Complexity Data/Noise Expected matrix Guarantee

[27] ω(dn) noiseless rank d MSE→ 0
[28] Ω(dnmax(log n, d)), ω(dn) iid Gaussian rank d MSE→ 0
[37] ω(dn log n) iid Gaussian rank d MSE→ 0
[19] Ω(nmax(d, log2 n)) iid Gaussian rank d MSE→ 0
[18] ω(dn log6 n) indep bounded rank d MSE→ 0
[32] Ω(n3/2) iid bounded Lipschitz MSE→ 0
[17] Ω(dn log2 nmax(d, log4 n)) noiseless rank d exact recovery
[27] Ω(dnmax(d, log n)) noiseless rank d exact recovery
[39] Ω(dn log2 n) noiseless rank d exact recovery

[19] Ω(nmax(d log n, log2 n, d2)) binary entries rank d MSE→ 0
[20] Ω(nmax(d, log n)), ω(dn) binary entries rank d MSE→ 0

[1, 3] ω(d2n) binary entries d blocks partial recovery
[1] Ω(dn log n) binary entries d blocks (SBM) exact recovery

[6] Ω(d2npolylog n) binary entries rank d whp error→ 0
[40] Ω(d2n) binary entries rank d detection

[4] Ω(n2) binary entries monotone row sum MSE→ 0
[43] Ω(n2) binary entries piecewise Lipschitz MSE→ 0
[10] ω(n) binary entries monotone row sum MSE→ 0

this ω(d2n) indep bounded rank d, Lipschitz MSE→ 0
work Ω(d2n log2 n) indep bounded rank d, Lipschitz whp error→ 0

be seen from Table 1, our result provides the best sample complexity for the general matrix estimation
problem with bounded entries noise model and rank d, as the other models either require extra log
factors, or impose additional requirements on the noise model or the expected matrix. Similarly, ours
is the best known sample complexity for high probability max-error convergence to 0 for the general
rank d bounded entries setting, as other results either assume block constant or noiseless.

It is worth comparing our results with the known lower bounds on the sample complexity. For the
special case of matrix completion with an additive noise model, i.e. Yij = E[Yij ] + ηij and ηij are
i.i.d. zero mean, [16, 20] showed that ω(dn) samples are needed for a consistent estimator, i.e. MSE
convergence to 0, and [17] showed that dn log n samples are needed for exact recovery. There is a
conjectured computational lower bound for the mixed membership stochastic block model of d2n
even for detection, which is weaker than MSE going to 0. Recently, [40] showed a partial result
that this computational lower bound holds for algorithms that rely on fitting low-degree polynomials
to the observed data. Given that these lower bounds apply to special cases of our setting, it seems
that our result is nearly optimal if not optimal in terms of its dependence on both n and d for MSE
convergence as well as high probability (near) exact recovery.

Next we provide a brief overview of prior works reported in the Tables 1. In the context of matrix
completion, there has been much progress under the low-rank assumption. Most theoretically founded
methods are based on spectral decompositions or minimizing a loss function with respect to spectral
constraints [27, 28, 15, 17, 39, 37, 20, 19, 18]. A work that is closely related to ours is by [32]. It
proves that a similarity based collaborative filtering-style algorithm provides a consistent estimator
for matrix completion under the generic model when the latent function is Lipschitz, not just low
rank; however, it requires Õ(n3/2) samples. In a sense, ours can be viewed as an algorithmic
generalization of [32] that handles the sparse sampling regime and a generic noise model. Most of
the results in matrix completion require additive noise models, which do not extend to setting when
the observations are binary or quantized. The USVT estimator is able to handle general bounded
noise, although it requires a few log factors more in its sample complexity [18]. Our work removes
the extra log factors while still allowing for general bounded noise.
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There is also a significant amount of literature which looks at the estimation problem when the data
matrix is binary, also known as 1-bit matrix completion, stochastic block model (SBM) parameter
estimation, or graphon estimation. The latter two terms are found within the context of community
detection and network analysis, as the binary data matrix can alternatively be interpreted as the
adjacency matrix of a graph – which are symmetric, by definition. Under the SBM, each vertex is
associated to one of d community types, and the probability of an edge is a function of the community
types of both endpoints. Estimating the n × n parameter matrix becomes an instance of matrix
estimation. In SBM, the expected matrix is at most rank d due to its block structure. Precise thresholds
for cluster detection (better than random) and estimation have been established by [1, 2, 3]. Our
work, both algorithmically and technically, draws insight from this sequence of works, extending
the analysis to a broader class of generative models through the design of an iterative algorithm, and
improving the technical results with precise MSE bounds.

The mixed membership stochastic block model (MMSBM) allows each vertex to be associated to
a length d vector, which represents its weighted membership in each of the d communities. The
probability of an edge is a function of the weighted community memberships vectors of both endpoints,
resulting in an expected matrix with rank at most d. Recent work by [40] provides an algorithm for
weak detection for MMSBM with sample complexity d2n, when the community membership vectors
are sparse and evenly weighted. They provide partial results to support a conjecture that d2n is a
computational lower bound, separated by a gap of d from the information theoretic lower bound of
dn. This gap was first shown in the simpler context of the stochastic block model [21]. Our results
also achieve this conjectured lower bound, with a sample complexity of ω(d2n) in order to guarantee
consistency, which is much stronger than weak detection.

Graphon estimation extends SBM and MMSBM to the generic Latent Variable Model where the
probability of an edge can be any measurable function f of real-valued types (or latent variables)
associated to each endpoint. Graphons were first defined as the limiting object of a sequence of large
dense graphs [14, 22, 34], with recent work extending the theory to sparse graphs [12, 13, 11, 41].
In the graphon estimation problem, we would like to estimate the function f given an instance of
a graph generated from the graphon associated to f . [23, 29] provide minimax optimal rates for
graphon estimation; however a majority of the proposed estimators are not computable in polynomial
time, since they require optimizing over an exponentially large space (e.g. least squares or maximum
likelihood) [42, 10, 9, 23, 29]. [10] provided a polynomial time method based on degree sorting in
the special case when the expected degree function is monotonic. To our knowledge, existing positive
results for sparse graphon estimation require either strong monotonicity assumptions [10], or rank
constraints as assumed in the SBM, the 1-bit matrix completion, and in this work.

We call special attention to the similarity based methods which are able to bypass the rank constraints,
relying instead on smoothness properties of the latent function f (e.g. Lipschitz) [43, 32]. They
hinge upon computing similarities between rows or columns by comparing commonly observed
entries. Similarity based methods, also known in the literature as collaborative filtering, have been
successfully employed across many large scale industry applications (Netflix, Amazon, Youtube) due
to its simplicity and scalability [24, 33, 30, 38]; however the theoretical results have been relatively
sparse. These recent results suggest that the practical success of these methods across a variety of
applications may be due to its ability to capture local structure. A key limitation of this approach is
that it requires a dense dataset with sufficient entries in order to compute similarity metrics, requiring
that each pair of rows or columns has a growing number of overlapped observed entries, which does
not hold when p = o(n−1/2). This work overcomes this limitation in an intuitive and simple way;
rather than only considering directly overlapped entries, we consider longer “paths” of data associated
to each row, expanding the set of associated datapoints until there is sufficient overlap. Although we
may initially be concerned that this would introduce bias and variance due to the sparse sampling,
our analysis shows that in fact the estimate does converge to the true solution.

The idea of comparing vertices by looking at larger radius neighborhoods was introduced in [1], and
has connections to belief propagation [21, 3] and the non-backtracking operator [31, 26, 36, 35, 8].
The non-backtracking operator was introduced to overcome the issue of sparsity. For sparse graphs,
vertices with high-degree dominate the spectrum, such that the informative components of the
spectrum get hidden behind the high degree vertices. The non-backtracking operator avoids paths
that immediately return to the previously visited vertex in a similar manner as belief propagation,
and its spectrum has been shown to be more well-behaved, perhaps adjusting for the high degree
vertices, which get visited very often by paths in the graph. In our algorithm, the neighborhood paths
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are defined by first selecting a rooted tree at each vertex, thus enforcing that each vertex along a path
in the tree is unique. This is important in our analysis, as it guarantees that the distribution of vertices
at the boundary of each subsequent depth of the neighborhood is unbiased, since the sampled vertices
are freshly visited.

2 Model

We shall use graph and matrix notations in an interchangeable manner. For each pair of vertices (i.e.
row or column indices) u, v ∈ [n], let Yuv ∈ [0, 1] denote its random realization. Let E denote the
edges. If (u, v) ∈ E , Yuv is observed; otherwise it is unknown.

• Each vertex u ∈ [n] is associated to a latent variable θu ∼ U [0, 1] sampled i.i.d.
• For each (u, v) ∈ [n] × [n], Yuv = Yvu ∈ [0, 1] is a bounded random variable. Conditioned on
{θi}i∈[n], the random variables {Yuv}1≤u<v≤n are independent.

• Fuv := E
[
Yuv | {θw}w∈[n]

]
= f(θu, θv) ∈ [0, 1] for a symmetric L-Lipschitz function f .

• The function f , when regarded as an integral operator, has finite spectrum with rank d. That is,

f(θu, θv) =
∑d
k=1 λkqk(θu)qk(θv),

where qk are orthonormal L2-integrable basis functions. We assume that there exists some B such
that |qk(y)| ≤ B for all k and y ∈ [0, 1].

• For every (unordered) index pair (u, v), the entry is observed independently with probability p, i.e.
(u, v) ∈ E and Muv = Mvu = Yuv . If (u, v) /∈ E , then Muv = 0.

The data (E ,M) can be viewed as a weighted undirected graph over n vertices with each (u, v) ∈ E
having weights Muv. The goal is to estimate the matrix F = [Fuv]u,v∈[n]. Let Λ denote the d× d
diagonal matrix with {λk}k∈[d] as the diagonal entries. Let the eigenvalues be sorted in such a way
that |λ1| ≥ |λ2| ≥ · · · ≥ |λd| > 0. Let Q denote the d× n matrix where Q(k, u) = qk(θu). Since
Q is a random matrix depending on the sampled θ, it is not guaranteed to be an orthonormal matrix
(even though qk are orthonormal functions). By definition, it follows that F = QTΛQ. Let d′ be the
number of distinct valued eigenvalues. Let Λ̃ denote be the d× d′ matrix where Λ̃(a, b) = λa−1

b .

Discussing Assumptions. The latent variable model imposes a natural and mild assumption, as
Aldous and Hoover proved that if the network is exchangeable, i.e. the distribution over edges is
invariant under permutations of vertex labels, then the network can be equivalently represented by a
latent variable model [5, 25, 7]. Exchangeability is reasonable for anonymized datasets for which
the identity of entities can be easily renamed. Our model additionally requires that the function is
L-Lipschitz and has finite spectrum when regarded as an integral operator, i.e. F is low rank; this
includes interesting scenarios such as the mixed membership stochastic block model and finite degree
polynomials. We can also relax the condition to piecewise Lipschitz, as we only need to ensure that
for every vertex u there are sufficiently many vertices v which are similar in function value to u. We
assume observations are sampled independently with probability p; however, we discuss a possible
solution for dealing with non-uniform sampling in Section 5.

3 Algorithm

The algorithm that we propose uses the concept of local approximation, first determining which
datapoints are similar in value, and then computing neighborhood averages for the final estimate. All
similarity-based collaborative filtering methods have the following basic format:

1. Compute distances between pairs of vertices, e.g.,

dist(u, a) ≈
∫ 1

0
(f(θu, t)− f(θa, t))

2dt. (1)

2. Form estimate by averaging over “nearby” datapoints,

F̂uv = 1
|Euv|

∑
(a,b)∈Euv

Mab, (2)

where Euv := {(a, b) ∈ E s.t. dist(u, a) < ηn, dist(v, b) < ηn}.
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The choice of ηn = (c1pn)−1/5 will be small enough to drive the bias to zero, ensuring the included
datapoints are close in value, yet large enough to reduce the variance, ensuring |Euv| diverges.

Inutition. Various similarity-based algorithms differ in the distance computation (Step 1). For
dense datasets, i.e. p = ω(n−1/2), previous works have proposed and analyzed algorithms which
approximate the L2 distance of (1) by using variants of the finite sample approximation,

dist(u, a) = 1
|Xua|

∑
y∈Xua

(Fuy − Fay)2, (3)

where y ∈ Xua iff (u, y) ∈ E and (a, y) ∈ E [4, 43, 32]. For sparse datasets, with high probability,
Xua = ∅ for almost all pairs (u, a), such that this distance cannot be computed.

In this paper we are interested in the sparse setting when p is significantly smaller than n−1/2, down
to the lowest threshold of p = ω(n−1). If we visualize the data via a graph with edge set E , then (3)
corresponds to comparing common neighbors of vertices u and a. A natural extension when u and
a have no common neighbors, is to instead compare the r-hop neighbors of u and a, i.e. vertices y
which are at distance exactly r from both u and a. We compare the product of weights along edges in
the path from u to y and a to y respectively, which in expectation approximates∫

[0,1]r−1 f(θu, t1)(
∏r−2
s=1 f(ts, ts+1))f(tr−1, θy)d~t =

∑
k λ

r
kqk(θu)qk(θy) = eTuQ

TΛrQey. (4)

We choose a large enough r such that there are sufficiently many “common” vertices y which have
paths to both u and a, guaranteeing that our distance can be computed from a sparse dataset.

Algorithm Details. We present and discuss details of each step of the algorithm, which primarily
involves computing pairwise distances (or similarities) between vertices.

Step 1: Sample Splitting. We partition the datapoints into disjoint sets, which are used in different
steps of the computation to minimize correlation across steps for the analysis. Each edge in E is
independently placed into E1, E2, or E3, with probabilities c1, c2, and 1 − c1 − c2 respectively.
Matrices M1, M2, and M3 contain information from the subset of the data in M associated to E1, E2,
and E3 respectively. M1 is used to define local neighborhoods of each vertex, M2 is used to compute
similarities of these neighborhoods, and M3 is used to average over datapoints for the final estimate
in (2).

Step 2: Expanding the Neighborhood. We first expand local neighborhoods of radius r around each
vertex. Let Su,s denote the set of vertices which are at distance s from vertex u in the graph defined
by edge set E1. Specifically, i ∈ Su,s if the shortest path in G1 = ([n], E1) from u to i has a length
of s. Let Tu denote a breadth-first tree in G1 rooted at vertex u. The breadth-first property ensures
that the length of the path from u to i within Tu is equal to the length of the shortest path from u
to i in G1. If there is more than one valid breadth-first tree rooted at u, choose one uniformly at
random. Let Nu,r ∈ [0, 1]n denote the following vector with support on the boundary of the r-radius
neighborhood of vertex u (we also call Nu,r the neighborhood boundary):

Nu,r(i) =

{∏
(a,b)∈pathTu (u,i)M1(a, b) if i ∈ Su,r,

0 if i /∈ Su,r,

where pathTu(u, i) denotes the set of edges along the path from u to i in the tree Tu. The sparsity of
Nu,r(i) is equal to Su,r, and the value of the coordinate Nu,r(i) is equal to the product of weights
along the path from u to i. Let Ñu,r denote the normalized neighborhood boundary such that
Ñu,r = Nu,r/|Su,r|. We will choose radius r to be r = 6 ln(1/p)

8 ln(c1pn) .

Step 3: Computing the distances. For each vertex, we present two variants for estimating the distance.

1. For each pair (u, v), compute dist1(u, v) according to(
1−c1p
c2p

)(
Ñu,r − Ñv,r

)T
M2

(
Ñu,r+1 − Ñv,r+1

)
.

2. For each pair (u, v), compute distance according to

dist2(u, v) =
∑
i∈[d′] zi∆uv(r, i),
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where ∆uv(r, i) is defined as(
1−c1p
c2p

)(
Ñu,r − Ñv,r

)T
M2

(
Ñu,r+i − Ñv,r+i

)
,

and z ∈ Rd′ is a vector that satisfies Λ2r+2Λ̃T z = Λ21. z always exists and is unique
because Λ̃T is a Vandermonde matrix, and Λ−2r1 lies within the span of its columns.

Computing dist1 does not require knowledge of the spectrum of f . In our analysis we prove that
the expected squared error of the estimate computed in (2) using dist1 converges to zero with n for
p = ω(n−1+ε) for some ε > 0, i.e. p must be polynomially larger than n−1. Although computing
dist2 requires knowledge of the spectrum of f to determine the vector z, the expected squared error
of the estimate computed in (2) using dist2 conveges to zero for p = ω(n−1), which includes the
sparser settings when p is only larger than n−1 by polylogarithmic factors. It seems plausible that
the technique employed by [2] could be used to design a modified algorithm which does not need
to have prior knowledge of the spectrium. They achieve this for the stochastic block model case by
bootstrapping the algorithm with a method which estimates the spectrum first and then computes
pairwise distances with the estimated eigenvalues.

Step 4: Averaging datapoints to produce final estimate. The estimate F̂ (u, v) is computed by
averaging over nearby points defined by the distance estimates dist1 (or dist2). Recall that B ≥ 1
was assumed in the model definition to upper bound supy∈[0,1] |qk(y)|.

Let Euv1 denote the set of undirected edges (a, b) such that (a, b) ∈ E3 and both dist1(u, a) and
dist1(v, b) are less than ξ1(n) = (c1pn)−1/5. The final estimate F̂ (u, v) produced by using dist1

is computed by averaging over the undirected edge set Euv1,

F̂ (u, v) =
1

|Euv1|
∑

(a,b)∈Euv1

M3(a, b). (5)

Let Euv2 denote the set of undirected edges (a, b) such that (a, b) ∈ E3, and both dist2(u, a) and
dist2(v, b) are less than ξ2(n) = (c1pn)−1/5. The final estimate F̂ (u, v) produced by using dist2

is computed by averaging over the undirected edge set Euv2,

F̂ (u, v) =
1

|Euv2|
∑

(a,b)∈Euv2

M3(a, b). (6)

4 Main Results

We prove bounds on the estimation error of our algorithm in terms of the mean squared error (MSE),

MSE := E
[

1
n(n−1)

∑
u 6=v(F̂uv − Fuv)2

]
,

which averages the squared error over all edges. It follows from the model that∫ 1

0
(f(θu, y)− f(θv, y))2dy =

∑d
k=1 λ

2
k(qk(θu)− qk(θv))

2 = ‖ΛQ(eu − ev)‖22.
The key part of the analysis is to show that the computed distances are in fact good estimates of
‖ΛQ(eu − ev)‖22. The analysis essentially relies on showing that the neighborhood growth around a
vertex behaves according to its expectation, according to some properly defined notion. The radius
r must be small enough to guarantee that the growth of the size of the neighborhood boundary
is exponential, increasing at a factor of approximately c1pn. However, if the radius is too small,
then the boundaries of the respective neighborhoods of the two chosen vertices would have a small
intersection, so that estimating the similarities based on the small intersection of datapoints would
result in high variance. Therefore, the choice of r is critical to the algorithm and analysis. We are
able to prove bounds on the squared error when r is chosen to satisfy the following conditions:

r + d′ ≤ 7 ln(1/c1p)
8 ln(9c1pn/8) = Θ

(
ln(1/c1p)
ln(c1pn)

)
, r +

1

2
≥ 6 ln(1/p)

8 ln(7|λd|2c1pn/8|λ1|) = Θ
(

ln(1/p)
ln(c1pn)

)
. (7)

The parameter d′ denotes the number of distinct valued eigenvalues in the spectrum of f , (λ1 . . . λd),
and determines the number of different radius “measurements” involved in computing dist2(u, v).
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Computing dist1(u, v) only involves a single measurement, thus the left hand side of (7) can be
reduced to r + 1 instead of r + d′. When p is above a threshold, we choose c1 to decrease with n to
ensure (7) can be satisfied, sparsifying the edge set E1 used for expanding the neighborhood around
a vertex . When the sample probability is polynomially larger than n−1, i.e. p = n−1+ε for some
ε > 0, these constraints imply that r is a constant with respect to n. However, if p = Õ(n−1), we
will need r to grow with n according to a rate of 6 ln(1/p)/8 ln(c1pn).

Theorem 4.1. If p = n−1+ε for some ε > 0, with a choice of c1 such that c1pn =

Θ
(

max(pn, (p6n7)
1
19 )
)

, there exists a constant r (with respect to n) which satisfies (7). If

d = o((c1pn)1/2), then the estimate computed using dist1 with parameter r achieves

MSE = O
(
|λd|−2r(c1pn)−1/5

)
= O

(
(c1pn)−1/5

)
.

With probability greater than 1−O
(
d exp

(
− (c1pn)1/2

9B2d

))
, the estimate satisfies

‖F̂ − F‖max := max
i,j
|F̂ij − Fij | = O(|λd|−r(c1pn)−1/10).

Theorem 4.1 proves that the mean squared error (MSE) of the estimate computed with dist1 is
bounded by O(|λd|−2r(c1pn)−1/5). Therefore, our algorithm with dist1 provides a consistent
estimate when r is constant with respect to n, which occurs for p = n−1+ε for some ε > 0. In fact,
the reason why the error blows up with a factor of |λd|−2r is because we compute the distance by
summing product of weights over paths of length 2r. From (4), we see that in expectation, when
we take the product of edge weights over a path of length r from u to y, instead of computing
f(θu, θy) = eTuQΛQey, the expression concentrates around eTuQΛrQey, which contains extra
factors of Λr−1. Therefore, by computing over a radius r, the calculation in dist1 will approximate
‖Λr+1Q(eu − ev)‖22 rather than our intended ‖ΛQ(eu − ev)‖22, thus leading to an error factor of
|λd|−2r. It turns out that dist2 adjusts for this bias, as the multiple measurements ∆uv(r, i) with
different length paths allows us to separate out ekΛQ(eu − ev) for all k with distinct values of λk.

Theorem 4.2. If p = O(n−2/3), with a choice of c1 such that c1pn = Θ
(

max(pn, (p6n7)
1

(8d′+11) )
)

,

there exists a value for r which satisfies (7). If d = o((c1pn)1/2) and d = o(r), then the estimate
computed using dist2 with parameter r achieves

MSE = O
(

(c1pn)−1/5
)
.

If p = Ω(n−1d2 ln2(n)), with probability 1−O
(
d exp

(
− (c1pn)1/2

9B2d

))
, the estimate satisfies

‖F̂ − F‖max := max
i,j
|F̂ij − Fij | = O((c1pn)−1/10).

Theorem 4.2 proves that the mean squared error (MSE) of the estimate computed using dist2 is
bounded by O((c1pn)−1/5); and thus the estimate is consistent in the ultra sparse sampling regime
of p = ω(d2n−1). We also present high probability bounds on the squared error of each entry.

Lemma 4.3. For any u, v ∈ [n], if d = o((c1pn)1/2), with probability at least

1−O
(
d exp

(
− (c1pn)1/2

8B2d

)
+ exp

(
− c3pn

2(c1pn)−2/5

48L2|λ1|2r
))
,

the squared error of the estimate computed with dist1 for parameter r satisfying (7) is bounded by

(F̂uv − f(θu, θv))
2 = O(|λd|−2r(c1pn)−1/5).

Lemma 4.4. For any u, v ∈ [n], assuming d = o((c1pn)1/2) and d = o(r), with probability at least

1−O
(
d exp

(
− (c1pn)1/2

8B2d

))
,

the squared error of the estimate computed with dist2 for parameter r satisfying (7) is bounded by

(F̂uv − f(θu, θv))
2 = O((c1pn)−1/5).
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5 Discussion

In this work we presented a similarity based collaborative filtering algorithm which is provably
consistent in sparse sampling regimes, as long as the sample probability p = ω(n−1). The algorithm
computes similarity between two users by comparing their local neighborhoods. Our model assumes
that the data matrix is generated according to a latent variable model, in which the weight on an
observed edge (u, v) is equal in expectation to a function f over associated latent variables θu and θv .
We presented two variants for computing similarities (or distances) between vertices. Computing
dist1 does not require knowledge of the spectrum of f , but the estimate requires p to be polynomially
larger than n in order to guarantee the expected squared error converges to zero. Computing dist2

uses the knowledge of the spectrum of f , but it provides an estimate that is provably consistent
for a significantly sparse regime, only requiring that p = ω(n−1). The mean squared error of both
algorithms is bounded by O((pn)−1/5). Since the computation is based on of comparing local
neighborhoods within the graph, the algorithm can be easily implemented for large scale datasets
where the data may be stored in a distributed fashion optimized for local graph computations.

Practical implementation. In practice, we do not know the model parameters, and we would use
cross validation to tune the radius r and threshold ηn. If r is either too small or too large, then the
vector Nu,r will be too sparse. The threshold ηn trades off between bias and variance of the final
estimate. Since we do not know the spectrum, dist1 may be easier to compute, and still enjoys good
properties as long as r is not too large. When the sampled observations are not uniform across entries,
the algorithm may require more modifications to properly normalize for high degree hub vertices, as
the optimal choice of r may differ depending on the local sparsity. The key computational step of
our algorithm involves comparing the expanded local neighborhoods of pairs of vertices to find the
“nearest neighbors”. The local neighborhoods can be computed in parallel, as they are independent
computations. Furthermore, the local neighborhood computations are suitable for systems in which
the data is distributed across different machines in a way that optimizes local neighborhood queries.
The most expensive part of our algorithm involves computing similarities for all pairs of vertices in
order to determine the set of nearest neighbors. However, it would be possible to use approximate
nearest neighbor techniques to greatly reduce the computation such that approximate nearest neighbor
sets could be computed with significantly fewer than n2 pairwise comparisons.

Non-uniform sampling. In reality, the probability that entries are observed is not be uniform across
all pairs (i, j). However, we believe that an extension of our result can also handle variations in
the sample probability as long as the sample probability is a function of the latent variables and
scales in the same way with respect to n across all entries. Suppose that the probability of observing
(i, j) is given by pg(θi, θj), where p is the scaling factor (contains the dependence upon n), and g
allows for constant factor variations in the sample probability across entries as a function of the latent
variables. If we let matrix X indicate the presence of an observation or not, then we can apply our
algorithm twice, first on matrix X to estimate function g, and then on data matrix M to estimate f
times g. We can simply divide by the estimate for g to obtain the estimate for f . The limitation is that
if g(θi, θj) is very small, then the error in estimating the corresponding f(θi, θj) will have higher
variance. However, it is expected that error increases for edge types with fewer samples.
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