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Abstract
We present our work on the Dialog System Technology
Challenges 6 (DSTC6). We participated in Track 2, which
evaluates the generation of conversational responses in a fully
data-driven manner. Our system follows the approach taken by
Li et al. [1], which utilizes sequence-to-sequence (SEQ2SEQ)
models that exploit a Maximum Mutual Information (MMI)
criterion that has been shown to increase response adequacy
and diversity. We find that when trained on the DSTC6 corpus
MMI models exhibit improvements in BLEU scores, CIDEr,
and SkipThoughts over the task baseline, but not METEOR
or ROUGE-L. We also show gains in terms of unigram and
bigram lexical diversity. However, inspection of the datasets
used in the DSTC6 Track 2 task suggests that the task may
favor blander outputs. In particular, the high incidence of
references to taking the conversation offline suggests that the
datasets may skewed to favor a single response type.

Index Terms: dialog, conversation models, deep learning,
LSTM, mutual information, MMI

1. Introduction
The Dialog System Technology Challenges1 (DSTC) in its sixth
edition offers for the first time a track (Track 2) [2] devoted ex-
clusively to fully data-driven approaches to building dialog sys-
tems. The MSR-NLP entry to Track 2 abides to this constraint,
and was trained exclusively from conversational data and does
not make use of any rule-based or hand-coded component.2

Our approach for this track is based almost entirely on [1],
which is summarized in Section 2. Our five entries to this track
use LSTM SEQ2SEQ models, and exploit a maximum mutual
information (MMI) criterion at decoding time. This use of MMI
was shown in [1] to promote responses of improved quality (ac-
cording to BLEU and human assessments) and of greater lexical
diversity. Our participation in this track allows us to explore
the utility of MMI in the context of a more task-oriented system
than the more chitchat-oriented dialog to which it has hitherto
been applied.

This report explores different parameterizations of LSTM
SEQ2SEQ models, of the MMI criterion, and different decoding
hyperparameters (Section 4). It also analyzes the difference be-
tween findings of [1] on general Twitter conversation data, and
our findings on the DSTC6 Track 2 dataset. The main differ-
ence is that the former is a free-form, very open domain dataset

1Formerly known as “Dialog State Tracking Challenge”.
2We also refrained from performing any rule-based pre- and post-

processing, even though error analysis on a development set sug-
gested we could have prevented relatively common errors (e.g., repeated
words) using simple post-processing rules. We feel such processing
would run against the spirit of the track.

of mostly chit-chat conversations, while the latter is of some-
what narrower domain (mainly customer support) and consti-
tutes mostly of task-oriented dialog. Our main finding has to do
with the MMI objective, which helps avoid deflective and bland
responses. Whereas MMI helped promote more diverse, inter-
esting, and engaging dialog in [1], this diversification yields re-
sponses that are more risky and therefore potentially undesir-
able in the more formal and task-oriented setting of DSTC6.
We also observe that the kind of deflective responses particular
to the DSTC6 dataset (e.g., please DM us and we will try our
best to help) are often completely appropriate due to user pri-
vacy concerns, but only postpone rather than resolve anything
in the underlying task. Based on this general observation, we
recommend some changes in the end-to-end training track for
DSTC7, and make suggestions along this line in Section 5.

2. Models
Our system is based on the end-to-end training approach of [1],
and this section notes along the way differences with that paper.
LSTM SEQ2SEQ model. The basic model architecture is an
LSTM-to-LSTM model without attention [3].3 We describe it
here in mathematical details for completeness and as to make
extensions (MMI, etc.) clearer. Given a sequence of input
words (dialog history) S = {s1, s2, ..., sNs}, the LSTM asso-
ciates each time step k with an input gate, a memory gate, and
an output gate, denoted respectively as ik, fk and ok. Ns repre-
sent the number of words in S. We distinguish e and hwhere ek
is the embedding vector for an individual word at time step k,
and hk is the vector computed by the LSTM model at time k
by combining ek and hk−1. ck is the cell state vector at time k,
and σ represents the sigmoid function. Then, the hidden state
hk for each time step k is given by:

ik = σ(Wi · [hk−1, ek]) (1)
fk = σ(Wf · [hk−1, ek]) (2)
ok = σ(Wo · [hk−1, ek]) (3)

lk = tanh(Wl · [hk−1, ek]) (4)
ck = fk · ck−1 + ik · lk (5)

hs
k = ok · tanh(ck) (6)

whereWi,Wf ,Wo,Wl ∈ RD×2D . In this response generation
task, each conversational context S is paired with a sequence of
output words to predict: T = {t1, t2, ..., tNt}. Nt is the length
of the response (terminated by an EOS symbol) and t represents

3As in [1], we did not use the attention model [4] as it only gave
marginal gains at the expense of significantly longer training time.
Other forms of attention were shown to be more suitable for dialogue
generation [5], but we did not experiment with the latter for DSTC6.



a word token that is associated with a D-dimensional word em-
bedding et (distinct from the source). The LSTM model defines
a distribution over output words and sequentially predicts each
token using the softmax function:

p(T |S) =
Nt∏
k=1

p(tk|s1, s2, ..., st, t1, t2, ..., tk−1)

=

Nt∏
k=1

exp(f(hk−1, eyk ))∑
y′ exp(f(hk−1, ey′))

where f(hk−1, eyk ) is the activation function between hk−1

and eyk , where hk−1 is the output hidden vector at time k − 1.
Each sentence concludes with a special end-of-sentence marker
EOS. As it is common, input and output use different LSTMs
with separate parameters to capture different patterns of word
composition.
Maximum Mutual Information. The standard objective func-
tion for SEQ2SEQ models is the log-likelihood of the target T
given the source S, which at decoding time yields this statistical
decision problem:

T̂ = argmax
T

{
log p(T |S)

}
(7)

This formulation often leads to generic and safe responses,
since it only selects for targets given sources, not the converse.
To mitigate this problem, we replace it with Maximum Mu-
tual Information (MMI) as the objective. In MMI, parameters
are chosen to maximize (pairwise) mutual information between
source S and target T :

log
p(S, T )

p(S)p(T )
(8)

This avoids producing responses that unconditionally enjoy
high likelihood, and instead biases the system towards re-
sponses that are specific to the current conversation. The MMI
objective can written as follows:

T̂ = argmax
T

{
log p(T |S)− log p(T )

}
[1] generalized the MMI criterion with a hyperparameter λ that
controls how much to penalize generic responses:

T̂ = argmax
T

{
log p(T |S)− λ log p(T )

}
(9)

An alternate formulation of the MMI objective exploits Bayes’
theorem:

log p(T ) = log p(T |S) + log p(S)− log p(S|T )

As in [1], this lets us re-write Equation 9 as follows:

T̂ = argmax
T

{
(1− λ) log p(T |S)

+ λ log p(S|T )− λ log p(S)
}

= argmax
T

{
(1− λ) log p(T |S) + λ log p(S|T )

} (10)

This weighting of the MMI objective can thus be viewed as in-
troducing a tradeoff between source given target (i.e., p(S|T ))
and target given source (i.e., p(T |S)).

For reasons explained in [1], we did not train our models
directly using the MMI objective. Instead, we trained separate

Dialogs Utterances Words

Train 887,984 2,156k 39,794k
Dev 107,474 262k 4,868k
Dev500 500 1319 24,760
Test 2,000 5266 -

Table 1: DSTC Track 2 dataset statistics

maximum likelihood models, and used the MMI criterion only
during testing, as explained in the remainder of this section.
Training. Responses can be generated either from Equa-
tion 9, i.e., log p(T |S) − λ log p(T ) or Equation 10, i.e.,
(1−λ) log p(T |S)+λ log p(S|T ). For DSTC6, we only make
use of the latter one, which we refer to as MMI-bidi. Direct
optimization of MMI-bidi is intractable, as the second term
(i.e., p(S|T )) requires completion of response generation be-
fore p(S|T ) can effectively be computed. Due to the exponen-
tial search space of target sequences T , exploring all possibili-
ties is infeasible. For practical reasons, therefore, we turn to an
approximation that involves first generating N-best lists given
the first part of objective function, i.e., the standard SEQ2SEQ
model p(T |S). Then, we re-rank this N-best lists using the sec-
ond term of the objective function. Since N-best lists produced
by SEQ2SEQ models are usually grammatical, the final selected
response is likely to be well-formed as well. Model reranking
has obvious drawbacks. It results in not globally optimal solu-
tions by emphasizing standard SEQ2SEQ objectives. Moreover,
it relies heavily on the system’s success in generating a suffi-
ciently diverse N-best list, requiring that a large N-best list be
generated for each message. Nonetheless, this MMI criterion
works well in practice, significantly improving both in terms of
interestingness and diversity.
Practical considerations. Research has shown that deep
LSTMs work better than single-layer ones for SEQ2SEQ tasks
[6, 3]. We selected a deep structure with three LSTM layers
for encoding and also three LSTM layers for the decoder, each
LSTM consisting of a different set of parameters. Each LSTM
layer consists of 500 hidden units, and the dimensionality of
embeddings vectors is set to 500. Other training details are
given below, generally aligned with [3]. LSTM model parame-
ters and embeddings are initialized from a uniform distribution
in [−0.08, 0.08]. We used stochastic gradient decent (SGD)
with a fixed learning rate of 0.1, a batch size of 256, and we
clipped gradients, scaling gradients when the norm exceeded a
threshold of 1. The p(S|T ) model described was trained using
the same model as that of p(T |S), with messages (S) and re-
sponses (T ) interchanged. Note that the capacity of our DSTC
model is lower than that of [1], as the training set here is more
than an order of magnitude smaller ([1] used 4 layers and 1000-
dimensional hidden vectors and embeddings).

Decoding We generate N-best lists using our p(T |S) base-
line model, and then rerank this list by linearly combining
log p(T |S), λ log p(S|T ), and γNt. Nt is the number of words
of the response, and its parameter γ lets us control the aver-
age length of system responses. We used MERT [7] to tune the
weights λ and γ on the Dev500 set.4

4We could have used grid search instead of MERT, as there are
only 3 features and 2 free parameters. In either case, the optimizer at-
tempts to find the best tradeoff between p(T |S) and p(S|T ) according
to BLEU (which tends to weight the two models relatively equally) and
ensures that generated responses are of reasonable length.



Diversity BLEU Skip-
System unigram bigram B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr Thoughts

baseline 1.13 3.74 23.02 10.93 6.37 3.89 12.27 19.67 18.69 46.14

MSR-baseline 2.48 8.51 20.51 8.47 4.64 2.85 9.36 16.19 16.41 43.00
MSR-MMI-uniform 3.47 13.99 21.71 9.77 5.66 3.60 9.96 17.67 21.30 44.34
MSR-MMI-maxBLEU 3.13 12.42 23.63 11.09 6.50 4.12 10.75 19.17 21.99 46.35
MSR-MMI-mixed 4.01 16.28 22.66 10.51 6.17 3.95 10.41 18.09 20.46 43.63
MSR-MMI-maxdiv 4.23 17.60 21.76 10.29 6.14 4.05 10.16 18.06 21.96 44.57

Gold responses 8.98 38.50

Table 2: 1-reference results (percentages) for baseline and MSR-NLP submissions (Team 5). All results are official ones provided
directly by the organizers, except diversity metric (unigram and bigram diversity) which we computed ourselves.

3. Data
The main task for Track 2 of DSTC6 consists of training an end-
to-end system from Twitter. It also offered a pilot task based
on OpenSubtitles data, but we did not participate in this pilot.
Unlike some earlier work exploiting social media data [8, 9],
the dataset for Track 2 was purposely restricted to model con-
versational responses only of customer support Twitter users.
This is motivated by a desire to move away from chitchat dia-
log and aim for more “useful” (e.g., informational) exchanges,
following an earlier attempt [10] to generate more informational
responses.5

We downloaded Track-2 data through the Twitter API using
the scripts provided by the organizers.6 Table 1 summarizes the
Twitter data downloaded and generated for this track. Dialog
durations ranged between 2 and 20-turns, with a large percent-
age of dialogs being 2-turn conversations (79%). Each con-
versation is a back-and-forth between a user (U) and customer
support (S), with each dialog ending with a customer support
response (S-response, henceforth). The actual generation task
is to generate this final S-response based on the previous con-
versation history.

We used the Train and Dev500 datasets to train our system
as explained in the previous section.7 We trained p(T |S) and
p(S|T ) models using the Train dataset, and we used Dev500
to tune the two hyperparameters (λ and γ) using MERT.8 We
did not require use of the Dev dataset. Nevertheless, we did not
merge Dev into the training data, as we wanted our system to
be comparable to the official baseline which also didn’t train on
Dev. For each dialog of the test set, we generated the final S-
response, i.e., 2k responses in total for each of our submissions.

We note finally that Track 2 constitutes an experimental
condition quite divergent from what the MSR-NLP system was
designed for in our previous research [1, 11, 10]. Data for this
track contains fewer than a million dialogs, while the MSR-NLP
research system has been trained with up to 140 million conver-

5We note an important difference between Track 2 and the exper-
imental setting of [10]: Track 2 exclusively models customer support
responses, while [10] deliberately removed customer support from the
knowledge-grounded conversations, as customer support tends to take
conversations offline (i.e., direct messages).

6A script provided by the organizer performed a sanity check of our
download compared to the organizers’ own training data. We found that
only 0.02% of the dialogs, 0.02% of the utterances, and 0.68% of the
words were different from the gold standard. These percentages fall
below the 1% threshold which would have required us to contact the
track organizers.

7The split into Train, Dev, Dev500, Test was done by the organizers.
8We tuned on Dev500, as tuning on Dev would have been too slow.

sations in order to model free-form and open-domain dialog.

4. Experiments
We evaluate our submissions and the baseline using corpus-
level BLEU [12] (BLEU1 to BLEU4), CIDEr [13], ROUGE-
L [14], and SkipThoughts [15]. Results for these metrics are
provided by the DSTC organizers themselves. In addition, we
evaluate the lexical diversity of the systems using distinct-1 and
distinct-2 [1], which compute at the corpus-level the number
of unique 1-grams (or 2-grams) divided by the total number of
1-grams (or 2-grams) generated by the system.

We submitted five systems to Track 2, representing different
tradeoffs between accuracy and diversity. We compare these
systems to the baseline provided by the organizers, which is a
reimplementation of [16]. These five submissions are:

• MSR-baseline: A vanilla LSTM SEQ2SEQ model with-
out MMI, which correspond to the baseline system in
[1]. It uses greedy search—which typically leads to more
search errors than beam search—as a way of increasing
response diversity.

• MSR-MMI-uniform: The system of [1] (MMI-
bidi), without hyperparameter tuning. Model scores
log p(T |S) and log p(S|T ) are normalized by sentence
length, and the reranking step does not add any word
penalty or bonus to affect response length.

• MSR-MMI-maxBLEU: The system of [1] (MMI-bidi),
with hyperparameter tuning using MERT. We used 50
runs of MERT from random starting points.

• MSR-MMI-maxdiv: A variant of MMI-maxBLEU, tar-
geting greater diversity. We ran 50 distinct runs of
MERT from different random initializations, and se-
lected the one with the highest unigram diversity.

• MSR-MMI-mixed: A variant of MMI-maxBLEU, tar-
geting a balance between diversity and BLEU. We ran 50
distinct runs of MERT from different random initializa-
tions, and selected the one with highest weighted score
(BLEU + unigram diversity).

The main automatic evaluation results with 1 reference are
shown in Table 2. The different versions of MMI show im-
provements over the baseline in terms of BLEU, CIDEr and
SkipThought scores. As expected, the system trained to maxi-
mize BLEU (MSR-MMI-maxBLEU) on the dev set reaches the
highest BLEU scores on the test set. The more striking differ-
ence between the baseline and all our systems is in terms of
unigram and bigram diversity. While these measures are not



U: shout out to whoever in my building keeps stealing my @1800petmeds orders . fighting heartworm one theft at a time .
S: very sorry to hear that ! do you have your order now , or can we assist you ?
U: appreciate your help ! o <NUMBERS> - will have orders sent to my office from now on ...
S: can you dm us the address to which we should send the replacement ? thank you ! <URL>

Table 3: Taking the conversation offline: Here, there is clear motivation to maintain the user’s privacy.

Div. BLEU Skip-
System 1-gram B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr Thoughts Human

MSR-baseline 2.48 51.11 27.28 16.03 9.91 16.87 31.46 7.08 59.52 3.3054
MSR-MMI-uniform 3.47 54.80 31.15 19.37 12.61 17.54 33.10 9.45 61.51 3.4546
MSR-MMI-maxBLEU 3.13 59.25 36.27 23.64 15.75 19.18 36.58 11.12 64.57 3.5098
MSR-MMI-mixed 4.01 57.90 34.30 21.91 14.48 18.39 33.75 9.40 60.25 3.5396
MSR-MMI-maxdiv 4.23 58.14 34.22 21.98 14.80 18.13 33.88 10.25 61.31 3.5209

Table 4: Multi-reference results (percentages) for baseline and MSR-NLP submissions, and human evaluation (Team 5). All results
(other than 1-gram diversity) are official ones.

evaluation metrics per se, this at least indicates that our systems
are conditioned to avoid catch-all responses such as “please DM
us and we will help you”. The most diverse of our systems pro-
duces a unigram diversity of 4.23% on the test set, which is
about half of the diversity on gold-standard responses (8.98%).
Achieving good diversity on this data is a challenge, as it is
lexically quite homogeneous.9 CIDEr scores are mostly consis-
tent with those of BLEU, which is not surprising as CIDEr was
meant to mitigate the weaknesses of BLEU when the number
of references is particularly large (e.g., 50 or more, much more
than what is available for DSTC6).

On the negative side, the official baseline system outper-
forms all our submissions in terms of METEOR and ROUGE-L
scores. ROUGE is a recall oriented metric designed for sum-
marization, while METEOR is a translation metric with tunable
hyperparameters that were specifically optimized for transla-
tion and not conversation. Both metrics tend to favor longer
responses [17], which may partially explain the good perfor-
mance of the baseline (baseline system output is on average
15.1% longer than the reference).

The results on METEOR are strikingly different from those
of other metrics, so we further analyzed our poor performance
on METEOR. Table 5 suggests that this metric is not particu-
larly suited for this DSTC task. Indeed, as the test set is sin-
gle reference, we computed both METEOR of the hypotheses
against the references and of the references against the hypothe-
ses. We believe that the outcomes of the two approaches should
ideally be consistent, as these metrics are meant to measure the
degree of semantic or pragmatic equivalence between two re-
sponses. Equivalence is obviously a commutative relation (i.e.,
x = y =⇒ y = x). Table 5 shows this consistency emerging
with BLEU but not METEOR. Accordingly, we feel it is rea-
sonable to discount our results on METEOR as less reliable.10

Finally, results for multi-reference automatic evaluation and
human evaluation are shown in Table 4. There are 11 references,
i.e., the original reference plus 10 references crowdsourced by
the conference organizers. Results are relatively consistent with

9As a point of comparison, a random sample of Twitter responses of
the same size as DSTC test set – i.e., of 2000 turns – gave us unigram
and bigram diversities of 16.2% and 64.4%, i.e., almost twice as high.

10This is not critique of METEOR in general, as this inconsistency
may be due to METEOR hyperparameters being tuned specifically on
translation data, typically with more than one reference.

baseline MMI-maxBLEU

BLEU(ref,hyp) 3.76 4.12
BLEU(hyp,ref) 3.74 4.09

METEOR(ref,hyp) 11.79 10.73
METEOR(hyp,ref) 10.42 11.22

Table 5: Relative symmetricity of BLEU-4, and lack thereof for
METEOR. The results for the baseline differ slightly from Ta-
ble 2, as we used here a baseline model trained ourselves using
the organizer’s implementation (we didn’t have their models or
output to conduct these extra experiments).

those of Table 2, with MSR-MMI-maxBLEU on top in terms of
BLEU and other metrics. Human scores are relatively consis-
tent with automatic scores, except for MSR-MMI-mixed and
MSR-MMI-maxdiv which humans rated more favorably. We
think this discrepancy is again an artifact of the data and task,
as a large percentage of responses are of the form please DM us,
which amount to almost no information in this context. Hence,
humans seemed to prefer responses that attempted to steer away
from these commonplace responses. The best system according
to human evaluation (MSR-MMI-mixed) is one that balances
response adequacy (as approximated by BLEU) and diversity.

5. Discussion
In the course of our experiments, we observed that training data
set appears to be inherently biased towards certain customer ser-
vice interactions characteristic of public online forums. Of par-
ticular note is the fact that 172,489 of the 887,984 responses
(19.4%) in the training set contain the string “ dm ” (“direct
message”). Altogether, approximately 25.1% of the responses
in the training data contain some reference to “message”, “e-
mail”, “email” or “dm”.11 Manual analysis of a random sample
of these matches suggest they largely represent attempts by cus-
tomer support representatives to take the discussion offline. In
this respect, the Task 2 dataset may not be be an ideal dataset
with which to exercise algorithmic alternatives.

11By way of contrast, [1] motivate their use of MMI by observing that
in the OpenSubtitles database, 0.45% sentences contain the sequence I
dont know.



We observe that the baseline system ([3]) generates a high
proportion of responses along the lines of please DM the de-
tails and we will follow up. Some 51.2% of the baseline re-
sponses contain one of DM us, DM me, please DM or could
DM. Given the requirements of customer privacy (exemplified
in Fig. 3), this is a perfectly reasonable thing to do. Overall,
20.8% of reference test set responses, 63.6% of baseline system
outputs, and 37.4% of our maxBLEU system outputs contained
the string “DM”. It is evident from this that MMI–originally de-
signed to prevent commonplace responses such as I don’t know
and sounds like a plan in chitchat dialogs–increases diversity
of the generated output over the baseline on the Task 2 dataset,
it may be less well-suited to a customer service setting where
bland (“safe”) responses may be more appropriate than the more
“interesting” responses that MMI promotes. Many of our out-
puts seem felicitous in the right context, e.g., your order is in the
shipping process and should be with you in 4-5 business days,
but others would be highly implausible in any context, e.g., an-
other unhappy customer. thanks for sharing. this helps other
customers make better purchasing decisions..

We note also the prevalence of simple acknowledgements
and expressions of appreciation in the responses in the training
set such as thanks for pointing this out, thanks for the feedback,
thanks for the shout out, and glad you like it. A simple grep
for several varieties of smiley emoticons and emoji, together
with the strings re welcome and great to hear found these forms
in 6.2% of responses, suggesting that in a significant subset of
cases, the problem may have been resolved before the final turn
(e.g., great to hear suggests that the user figured out a solution,
or that the underling problem was solved).

These observations lead us to believe that the data used in
the Task 2 do not fully represent the challenges of customer
service agents, and that future tasks, while remaining conversa-
tional and data-driven, should be either more goal completion-
oriented, or, drawing on in-domain side data as external re-
sources, information-oriented [10].

6. Conclusions
DSTC6 Task 2 provided a valuable opportunity to investigate
the possibility of fully data-driven conversation in a more goal-
oriented scenario than the casual chitchat that we have focused
on in the past. It also furnished a useful framework in which
to explore the applicability of MMI when trained and tested on
Twitter customer service exchanges, and to calibrate our system
with others on the basis of a shared dataset. We found that MMI
did improve BLEU and diversity metrics over the baseline sys-
tem, and over our own ”vanilla” Sequence-to-Sequence model.
However, it is not entirely clear that the MMI models are suited
to the task as presently formulated, inasmuch as dataset itself is
intrinsically skewed towards a particular type of commonplace
response in which the communication is taken offline.

We recommend that future tasks might be either more
explicitly goal-completion-oriented or more side-information-
oriented in order to mitigate some of the issues that became
apparent in the course of performing this DSTC6 task.
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