Adversarial score matching and improved sampling for image generation
- Alexia Jolicoeur-Martineau ,
- Rémi Piché-Taillefer ,
- Remi Tachet des Combes ,
- Ioannis Mitliagkas
Denoising score matching with Annealed Langevin Sampling (DSM-ALS) is a recent approach to generative modeling. Despite the convincing visual quality of samples, this method appears to perform worse than Generative Adversarial Networks (GANs) under the Fréchet Inception Distance, a popular metric for generative models. We show that this apparent gap vanishes when denoising the final Langevin samples using the score network. In addition, we propose two improvements to DSM-ALS: 1) Consistent Annealed Sampling as a more stable alternative to Annealed Langevin Sampling, and 2) a hybrid training formulation, composed of both denoising score matching and adversarial objectives. By combining both of these techniques and exploring different network architectures, we elevate score matching methods and obtain results competitive with state-of-the-art image generation on CIFAR-10.
Code available on GitHub (opens in new tab).