Evaluation of a Multithreaded Architecture for Cellular Computing
- Călin Caşcaval ,
- José G. Castaños ,
- Luís Ceze ,
- Monty Denneau ,
- Manish Gupta ,
- Derek Lieber ,
- José E. Moreira ,
- Karin Strauss ,
- Jr Henry S. Warren
HPCA 2002 (High Performance Computer Architecture) |
Published by IEEE
Cyclops is a new architecture for high performance parallel computers being developed at the IBM T. J. Watson Research Center. The basic cell of this architecture is a single-chip SMP system with multiple threads of execution, embedded memory, and integrated communications hardware. Massive intra-chip parallelism is used to tolerate memory and functional unit latencies. Large systems with thousands of chips can be built by replicating this basic cell in a regular pattern. In this paper we describe the Cyclops architecture and evaluate two of its new hardware features: memory hierarchy with flexible cache organization and fast barrier hardware. Our experiments with the STREAM benchmark show that a particular design can achieve a sustainable memory bandwidth of 40 GB/s, equal to the peak hardware bandwidth and similar to the performance of a 128-processor SGI Origin 3800. For small vectors, we have observed in-cache bandwidth above 80 GB/s. We also show that the fast barrier hardware can improve the performance of the Splash-2 FFT kernel by up to 10%. Our results demonstrate that the Cyclops approach of integrating a large number of simple processing elements and multiple memory banks in the same chip is an effective alternative for designing high performance systems.
© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.http://www.ieee.org/