Retrieving k-Nearest Neighboring Trajectories by a Set of Point Locations
- Lu-An Tang ,
- Yu Zheng ,
- Xing Xie ,
- Jing Yuan ,
- Xiao Yu ,
- Jiawei Han
Proceedings of the 12th Symposium on Spatial and Temporal Databases - SSTD 2011 |
Published by SSTD 2011
The advance of object tracking technologies leads to huge volumes of spatio-temporal data accumulated in the form of location trajectories. Such data bring us new opportunities and challenges in efficient trajectory retrieval. In this paper, we study a new type of query that finds the k Nearest Neighboring Trajectories (k-NNT) with the minimum aggregated distance to a set of query points. Such queries, though have a broad range of applications like trip planning and moving object study, cannot be handled by traditional k-NN query processing techniques that only find the neighboring points of an object. To facilitate scalable, flexible and effective query execution, we propose a k-NN trajectory retrieval algorithm using a candidate-generation-and-verification strategy. The algorithm utilizes a data structure called global heap to retrieve candidate trajectories near each individual query point. Then, at the verification step, it refines these trajectory candidates by a lower-bound computed based on the global heap. The global heap guarantees the candidate’s completeness (i.e., all the k-NNTs are included), and reduces the computational overhead of candidate verification. In addition, we propose a qualifier expectation measure that ranks partial-matching candidate trajectories to accelerate query processing in the cases of non-uniform trajectory distributions or outlier query locations. Extensive experiments on both real and synthetic trajectory datasets demonstrate the feasibility and effectiveness of proposed methods.