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Summary

A common attraction to functional programming is the ease with which proofs can be
given of program properties. A common disappointment with functional programming
is the difficulty of expressing input/output (I/O) while at the same time being able to
verify programs. In this dissertation we show how a theory of functional programming
can be smoothly extended to admit both an operational semantics for functional I/O and
verification of programs engaged in I/0.

The first half develops the operational theory of a semantic metalanguage used in the sec-
ond half. The metalanguage M is a simply-typed A-calculus with product, sum, function,
lifted and recursive types. We study two definitions of operational equivalence: Morris-
style contextual equivalence, and a typed form of Abramsky’s applicative bisimulation. We
prove operational extensionality for M—that these two definitions give rise to the same
operational equivalence. We prove equational laws that are analogous to the axiomatic
domain theory of LCF and derive a co-induction principle.

The second half defines a small functional language, H, and shows how the semantics of
H can be extended to accommodate I/O. H is essentially a fragment of Haskell. We give
both operational and denotational semantics for H. The denotational semantics uses M
in a case study of Moggi’s proposal to use monads to parameterise semantic descriptions.
We define operational and denotational equivalences on H and show that denotational
implies operational equivalence. We develop a theory of H based on equational laws and
a co-induction principle.

We study simplified forms of four widely-implemented I/O mechanisms: side-effecting,
Landin-stream, synchronised-stream and continuation-passing I/O. We give reasons why
side-effecting I/O is unsuitable for lazy languages. We extend the semantics of H to
include the other three mechanisms and prove that the three are equivalent to each other
in expressive power.

We investigate monadic I/O, a high-level model for functional I/O based on Wadler’s
suggestion that monads can express interaction with state in a functional language. We
describe a simple monadic programming model, and give its semantics as a particular form
of state transformer. Using the semantics we verify a simple programming example.
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Prayer

Let the light of truth, and the help of grace, be vital principles of action in us;
that we may, in the time of life, attain the ends for which we live;

and that our religion, which begins in knowledge,

may proceed in action, settle in temper, and end in happiness.
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Preface to the Book Edition

This book is a slight revision of the submitted dissertation. I have simplified the language
M introduced in Chapter 3, incorporated some changes made to Chapter 7 when it was
published in FPCA’93 [45] and simplified Chapter 8 somewhat. I have not, however,
attempted to take account in the main text of the publications that have appeared or
come to my attention since submission. These include the following.

Semantics of Functional Languages Recent textbooks [48, 152] cover domain-
theoretic semantics of recursively-typed languages such as M. Pitts gives a
simple proof of adequacy [115] in the context of recursively-defined domains, a
result derived from his theory of relational properties of domains [113]. A domain
theoretic semantics for a fragment of M appears in a paper with Crole [26]. Mason
and Talcott [81] and Felleisen et al. [39] have written series of papers on entirely
operational theories of functional programming. Their work goes beyond this disser-
tation in considering side-effects. It does not however take advantage of applicative
bisimulation and co-induction in the way Chapter 6 does. Applicative bisimulation
is studied by Pitts and Stark [111] in the presence of dynamically allocated names
and by Sands [128] as a measure of performance. Jeffrey [65] and Launchbury [78]
have recently developed theories of call-by-need evaluation.

Graphical User Interfaces Several recent implementations, including Concurrent
Clean [4], Fudgets [20] and Budgets [125], express graphical user interfaces in a
functional style. Noble [103] is an extensive survey.

Monadic I/O Peyton Jones and Wadler’s work [110] has been further developed by
Launchbury and Peyton Jones [79]. The MRC project using monadic I/O is still in
progress. Programs and specifications are based on the monadic model suggested in
Chapter 8, although formal proofs of program properties are impractical at present.

This is a good opportunity to thank my examiners, Simon Jones and Andrew Pitts. Fi-
nally, I want to thank Lindy for all her support and encouragement. Her company is
good.

Andrew D. Gordon
4 May 1994
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Chapter 1

Introduction

One of the main arguments in favour of functional programming is that it is easier to
prove properties of functional programs than of imperative programs. Proofs of functional
programs are claimed to be easier to construct than proofs of imperative programs. On
the other hand, input/output (I/O) has long been viewed as problematic for functional
languages. I/O mechanisms for functional languages have either been impractically in-
expressive or not been integrated into the language semantics. The working programmer
can argue that there is no published evidence—such as realistic examples—of how prop-
erties can be proved of functional programs that perform realistic I/O. Hence a major
theoretical advantage of functional programming—that programs are easy to understand
and verify—does not carry over to practical programs engaged in I/0O.

This dissertation is a study of how to give semantics to I/O mechanisms for functional
languages, and how to use such semantics to prove properties of programs engaged in
I/O. It is meant as a step towards convincing the working programmer that functional
programming can be practical, though much remains to be done.

The purpose of this chapter is to introduce the problem of functional I/O, survey previ-
ous work, and outline the contribution of this dissertation. §1.1 defines terminology used
here concerning functional programming. §1.2 discusses previous work on I/O in func-
tional languages, and identifies four widely-implemented mechanisms. Any semantics of
functional I/O has to build on a semantics of functional languages; §1.3 reviews semantic
methods suitable for functional languages. §1.4 states the hypothesis of this dissertation.
§1.5 outlines each chapter. §1.6 states the original results of this dissertation and §1.7
offers advice to the reader. Finally, §1.8 introduces some of the mathematical material
needed here.

1.1 Functional programming

Many functional (or applicative) languages have been put forward since the pioneering
work on LISP [83], ISWIM [77] and POP-2 [17] in the 1960s. For the purpose of this
dissertation, we distinguish two classes of functional languages, depending on the seman-
tics of function application. Recall the terms call-by-value and call-by-name from ALGOL
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60. When a function is applied to an actual parameter under call-by-value semantics
the function’s formal parameter is bound to the value obtained by evaluating the actual
parameter. Under call-by-name semantics, the formal parameter is bound to the un-
evaluated actual parameter, and each time the value of the formal is required, the actual
parameter is evaluated. An eager language is one in which function application has call-
by-value semantics; a lazy language is one in which function application has call-by-name
semantics. By this definition, LISP, Scheme and ML are eager, whereas Miranda, Lazy
ML and Haskell are lazy. For the sake of efficiency, application in lazy languages is usually
implemented using call-by-need, as in graph reduction [109, 143] for instance. Call-by-
need is the same as call-by-name, except that after the first evaluation of the actual
parameter its value is retained and used whenever the formal parameter is subsequently
used.

The primary focus of this dissertation is I/O for lazy languages such as Miranda or Haskell,
although we discuss eager languages briefly. We make no claim to have considered all the
varieties of functional language; for instance, the work here is not immediately applicable
to dataflow languages like Lucid [6, 147] or Silage [44] in which every expression stands
for an infinite stream.

Much has been written in praise of functional programming. The curious reader is referred
to the paper by Hughes [61] or any of the many textbooks on functional programming
[1, 13, 40, 52, 106]. My own motivation when beginning this research was the thought
that unlike imperative programs, lazy functional programs are easy to manipulate when
proving program properties, but it was not clear how to reason about programs engaged
in I/O.

1.2 A brief history of functional I/0O

Many mechanisms have been implemented and proposed for functional I/O. We identify
four classes of I/O mechanism which together cover most of the proposed schemes.

Side-effecting I/0

Like functional programming, functional I/O begins with McCarthy [83]. LISP 1.5 had a
side-effecting I/O mechanism. The core of LISP 1.5 can be explained as applications of
functions to arguments, but the LISP Programming System needed other operations such
as “commands to effect an action such as the operation of input-output” which were called
“pseudo-functions” [83]. The pseudo-function print wrote its S-expression argument to
the printer. The pseudo-function read took no arguments, but returned an S-expression
from the input device. This side-effecting style of I/O persists in LISP and is also used in
other eager languages such as Scheme or ML. Many language theorists have viewed side-
effecting I/O with suspicion because unlike pure LISP, the evaluation of programs using
side-effects cannot simply be explained as the applications of functions to arguments. To
paraphrase Stoy [134], there is more to the meaning of an expression than just its value;
the side-effects and order of evaluation of subexpressions become significant. The same
suspicions are aroused by LISP or ML programs that use the assignment statement.
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Although suspicious to some, side-effecting 1/0 is by far the most widely-used I/O mech-
anism in eager languages. In an eager language it is fairly easy to predict the order in
which expressions are evaluated so programs using side-effecting I/O can be fairly simple
to write and debug, if not to reason about formally. To the best of the author’s knowledge,
Williams and Wimmers’ paper [151] is the only work to consider how to prove properties
of programs using side-effecting 1/O in an eager language. They develop an algebra for
FL [9], a descendant of Backus’ FP [8]. I/O is achieved in FL by operations on histories,
objects that encode the status of all I/O devices and which are implicitly passed to and
from every function. One can view this as a form of side-effecting 1/0.

On the other hand, it is not usually easy to predict the order in which a program in a lazy
language will call such side-effecting “pseudo-functions.” Evaluation order is determined
by data dependencies which can be hard to predict in advance. Side-effects mixed with
lazy evaluation make programs hard to understand. Another reason why side-effecting
I/O is hard to use with a lazy language is that call-by-need can cease to be a correct
implementation of call-by-name, as we show in Chapter 7.

Landin-stream I/0

A stream is a potentially endless list of values, generated as need arises. Streams were
used by Landin in his A-calculus semantics of ALGOL 60 to represent the values of loop
variables [76]; he remarked that streams could have been used to represent I/0 in AL-
GOL 60. Streams were being used about the same time by Strachey in his (imperative)
GPM language to represent I/0O [137]. Streams can be represented as elements of certain
recursively defined domains. In an influential paper [71], Kahn applied domain theory
to concurrency using collections of stream-processing functions to model the semantics
of certain kinds of process network. With MacQueen [72] he showed that these process
networks could be implemented in POP-2 extended with certain side-effecting operations
on streams.

About the same time, the pioneers of lazy languages [41, 54] argued that the list cons
operation, like any other function, should not evaluate its arguments. In an eager language
like LISP, every list is finite. On the other hand, if the cons operation does not evaluate
its arguments, infinite lists can be represented whose elements are computed on demand.
Notionally infinite lists are an important tool for the programmer in a lazy language [61].

The idea emerged that the input and output streams used in giving semantics to I/O
could be implemented within a lazy language itself. In what we call Landin-stream
I/0O, interaction with a teletype is specified by a functional program that maps a lazy list
of input characters to a lazy list of output characters. The reduction mechanism needs
to be extended so that demand for values in the input stream is met by obtaining fresh
input from the keyboard. Jones and Sinclair [67] credit Henderson [53] as being the first
to propose the use of a stream-processing function to implement teletype 1/O. By the
mid-1980s this was a standard technique [5, 142, 154] covered in introductory textbooks
[13, 109].
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Synchronised-stream I/0

Synchronised-stream I/O is a generalisation of Landin-stream I/O where the program
is a function mapping a stream of acknowledgements to a stream of requests. In Landin-
stream 1/0, inputs and outputs need not be synchronised: inputs occur when demand
arises for the value in the input stream; outputs occur when the value of the next item in
the output stream has been determined. In synchronised-stream I/0, input and output is
synchronised: the functional program must produce an output request before examining
the corresponding input acknowledgement. The power of synchronised-streams is that the
type of requests can encode any kind of imperative command. Synchronised-streams were
first reported as the underlying implementation technique for Karlsson’s Nebula operating
system [74]. The same essential idea was independently discovered by Stoye [136] in his
operating system for SKIM-II and also by O’Donnell [104]. Synchronised-streams were
chosen as the basic I/O mechanism in Haskell [59].

Continuation-passing I/0O

Karlsson derived continuation-passing 1/O operations from the underlying
synchronised-stream mechanism of Nebula [74]. In the context of teletype I/0,
continuation-passing I/0 is based on a type CPS (short for “continuation-passing style”)
with three operations INPUT:(Char -> CPS) -> CPS, OUTPUT::Char -> CPS -> CPS and
DONE::CPS. The type CPS can be implemented as an algebraic type within the functional
language. There is no change to the language’s evaluation mechanism, but a top-level
program of type CPS can be interpreted or executed as follows. To execute INPUT(k),
input a character v from the keyboard and then execute k v. To execute OUTPUTvq,
output character v to the printer, and then execute program q. To execute DONE, simply
terminate. The style is called continuation-passing because the argument k to the INPUT
operation is reminiscent of continuations in denotational semantics [127, 134]. Holm-
strom used a continuation-passing style in PFL [57], an eager dialect of ML extended
with concurrency primitives. Perry [107] and McLoughlin and Hayes [86] implemented
continuation-passing I/O mechanisms in lazy dialects of Hope. Rebelsky’s recent proposal
of I/O trees is essentially a form of continuation-passing I/O [123]. Unlike side-effecting
and either kind of stream-based I/O, the continuation-passing style is suitable for either
lazy or eager languages.

The Haskell I/O system [59] is based on synchronised-stream I/O (based on a type called
Dialogue) but there is a standard set of continuation-passing operations. These operations
are programmed in terms of the underlying synchronised-stream mechanism (in the same
spirit as Nebula). Hudak and Sundaresh discuss translations between the two mechanisms
that were discovered by the Haskell committee [60]. One fruit of the formal semantics for
functional I/O developed in Chapter 7 is a proof of correctness of translations between
Landin-stream, synchronised-stream and continuation-passing 1/0.
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Combinators for I/0O

Programmers using eager languages find that programs using side-effecting I/O are fairly
easy to understand, if not to reason about formally. The order of evaluation, and hence of
side-effects, is fairly easy to control. On the other hand, programs using stream-based I/O
can be hard to develop for two reasons: explicit “plumbing” of streams around a program
is easy to get wrong; the order in which input and output is interleaved can be hard to
predict because of lazy evaluation. Wray [154] and Dwelly [32] report problems of this
sort.

Several authors have derived combinators to abstract operations that are commonly needed
with stream-based programming. Karlsson [74] programmed continuation-passing oper-
ations using a synchronised-stream mechanism. Wray [154] suggested combinators for
sequential composition and iteration. In his seminal work on the semantics and pragmat-
ics of Landin-stream I/0 in lazy languages, Thompson suggested a range of combinators
with which to construct Landin-stream programs. The combinators construct programs of
type interact a b; a program of this type is intended to represent an interactive compu-
tation with state of type a that when executed will return a value of type b. Thompson’s
combinators include operations such as sequential composition and iteration. He devel-
oped a trace theory to verify their correctness—the first work on semantics of 1/0 for lazy
languages.

In developing the Kent Applicative Operating System (KAOS) [28, 144], a 14,000 line
Miranda program, John Cupitt refined Thompson’s combinators. He worked with a type
interact a, which represented interactive computations that return values of type a. He
used two basic combinators, return and comp.

return :: a -> interact a
comp :: (a -> interact b) -> interact a -> interact b

A program return v is the trivial computation that immediately returns the value v; a
program comp f p is a sequential composition: first execute p to return a value v, and
then execute program f v. Stream-based programs, such as KAOS, written using these
and other combinators have neither of the disadvantages mentioned earlier. There is no
explicit plumbing of streams. The order of input and output is controlled by sequential
composition.

Moggi [100, 101] has shown that structures of the form (interact,return, comp) occur
often in the denotational semantics of programming languages. The semantics of such
a structure can be given as a computational model, in the sense of Moggi, a categorical
structure based on a strong monad. Wadler [149, 150] showed that such structures are a
versatile tool for functional programming, particularly when writing programs to interact
with state.

Influenced by the work of Cupitt, Moggi and Wadler, Chapter 8 of this dissertation advo-
cates what we call monadic I/0, in which combinators like Cupitt’s are used to structure
programs. Monadic I/O is a high-level construct that can be implemented using any of
the four low-level I/O mechanisms. Monadic programs are easier to understand than pro-
grams written in the three low-level styles suitable for lazy languages; there are no explicit
streams or continuations to tangle a program.
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Summary of previous work on functional I/O

We have discussed four classes of I/O mechanism. These will be covered in greater length
in Chapter 7 in the context of teletype I/O. The semantic tools developed earlier in the
dissertation will allow us to give semantics to each of the four I/O mechanisms.

To summarise, we considered side-effecting, Landin-stream, synchronised-stream and
continuation-passing mechanisms of I/0O. Side-effecting I/O is not suitable for lazy lan-
guages because of the difficulty of predicting the order in which side-effects occur. The
semantics of both eager and lazy languages are complicated by the presence of side-effects,
making program properties harder to prove. Although the input stream needs to be im-
plemented specially, the semantics of a lazy language need not be affected by the presence
of stream-based I/0; input and output streams are simply lazy lists. (I/O mechanisms in
certain eager languages [18, 72, 98] have been based on streams, but the type of streams
is kept distinct from lists and used only for I/0.) Continuation-passing I/O has been used
with both lazy and eager languages. Evaluation of expressions remains unchanged, but
some kind of interpreter needs to be added to the implementation to execute continuation-
passing programs. Various sets of combinators have been proposed for programming at a
higher level than the basic I/O mechanism.

The four classes cover the most widely-implemented mechanisms for functional I/O. To the
best of the author’s knowledge, the only mechanism suitable for teletype I/O not covered
here is the extension of Landin-stream I/O with hiatons [147] as implemented in Lazy ML
[7]. The problem is for a program to be able to poll the keyboard. Landin-stream I/O has
blocking input in the sense that once demand arises for the next input value, computation
is halted until a key is typed. The solution is that a special value, a hiaton, appears
in the input stream whenever demand has arisen for a character, but none is available
from the keyboard. Hiatons have not been widely implemented. Another solution to the
polling problem is to add a command to poll the keyboard to synchronised-stream [136]
or continuation-passing 1/O [43], but we do not pursue this idea here.

There are good literature surveys on functional I/O by Hudak and Sundaresh [60], Jones
[67] and Perry [108]. Historically, many ideas about functional I/O have arisen from adding
nondeterminism or concurrency to functional languages. We do not study such mecha-
nisms in this dissertation. We refer the interested reader to papers containing surveys on
the following topics: functional programming and operating systems [67], nondeterminism
and stream-based semantics [15], real-time functional programming [22, 50] and concur-
rent extensions of ML [11]. Kelly’s book [75] cites many works on parallel systems based
on functional languages.

Although there has been a great deal of work on functional I/0, there has been very little
work on semantics. The primary goal of this dissertation is to explain the semantics of
functional I/O, and hence make properties provable of functional programs engaged in
I/O. To the best of the author’s knowledge, Thompson’s paper [141] on the semantics
of Landin-streams in Miranda, is the only prior work on the semantics of I/O in lazy
languages. In the context of eager languages , there is Williams and Wimmers’ [151]
work on semantics for what is essentially side-effecting I/0O, and several papers giving
operational semantics for concurrent constructs [11, 19, 57, 126], but with no development
of a theory for program proofs. Dybjer and Sander [34] report work on the related problem
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of expressing concurrency using streams. They verify a communications protocol expressed
as a concurrent network of stream-based functions.

1.3 Semantics of functional languages

To obtain a theory of functional I/O, we must begin with a theory of functional program-
ming itself. In the context of this dissertation, such a theory has two purposes: to specify
precisely the computational behaviour of functional programs so that implementations
could be verified; and to enable program properties to be stated and proved.

Abramsky [2] points out that although the untyped A-calculus has often been viewed as the
prototypical functional language, actual implementations of lazy languages do not conform
to the standard theory [10]. Abramsky considers two functional programs, (\x ->£2) and
Q, where (2 is a looping or divergent program. He points out that according to the standard
theory, the two are equal, but in the implementation of lazy languages such as Miranda
or Lazy ML, evaluation of the first converges whereas evaluation of the second diverges.
Motivated by this example, Abramsky develops his lazy A-calculus as a step towards a
theory of lazy functional programming. Following Plotkin’s study of PCF [117], Abramsky
equips the lazy A-calculus with a structural operational semantics [55, 119] and a domain-
theoretic denotational semantics. He then proves an adequacy theorem to relate the two
semantics.

As far as this dissertation is concerned, Abramsky’s key manoeuvre is to view his lazy A-
calculus as a process calculus. Led by Milner, a great many operationally-based methods
have been developed for the CCS theory of concurrency [93, 94]. Bisimilarity, found by
taking the greatest fixpoint of a certain functional [31], is a cornerstone of this theory.
Since it is a greatest fixpoint it admits co-inductive proofs [97, 114]. Abramsky builds
a bridge between CCS and the A-calculus by proposing applicative bisimulation as
the notion of operational equivalence in the lazy A-calculus. Applicative bisimulation is a
reworking of CCS bisimulation for the A-calculus.

We follow Abramsky and construct a theory of functional programming based on struc-
tural operational semantics and applicative bisimulation. Verification of an implemen-
tation could be based on the operational semantics, but this is beyond the scope of the
dissertation. Proofs of program properties are based on a theory of applicative bisimulation
that parallels that of CCS. It is important that applicative bisimulation is a congruence
relation, that is, a substitutive equivalence relation. Abramsky’s original proof that ap-
plication bisimulation is a congruence depended on domain-theoretic results. Stoughton
and Howe made two suggestions for how congruence could be proved directly from the
operational semantics. Stoughton suggested a variant of Milner’s context lemma [12, 91].
Howe, with an ingenious construction, proved congruence for a broad range of lazy compu-
tation systems [58]. In Chapter 4 we will investigate both the context lemma and Howe’s
method. In related work, Milner [95] and Sangiorgi [129] link the lazy A-calculus with the
theory of m-calculus, a development of CCS with mobile processes [96]. Smith [133] builds
on Howe’s work to construct semantic domains from operational semantics.

A semantics of functional programs [21, 54] has often been based on domain-theoretic
denotational semantics [102, 118, 130, 134]. Stoy’s classic paper [135] shows how domain-
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theoretic methods such as Scott induction can be applied to prove properties of functional
programs. Instead of domain theory we use operational semantics to specify the I/O be-
haviour of functional programs. Were we to appeal to domain-theoretic principles in proofs
of functional programs, we would need to relate the operational and domain-theoretic se-
mantics. Lester [80], Simpson [132] and Burn [16] have proved such a relation (usually
known as adequacy) in the context of a lazy functional language; other related work is
more theoretical [25, 90, 117, 120, 139]. We leave the relation between the operational and
domain-theoretic semantics of the functional languages studied here as future work. For
the purpose of proving program properties we have not felt the lack of a domain-theoretic
semantics as a loss; examples arising here that might have required Scott induction in a
domain-theoretic setting have been proved using co-induction.

In summary, as a step towards a theory of functional I/O, we develop a theory of functional
programming in which the functional language is viewed as a kind of process calculus. The
theory is based on structural operational semantics and applicative bisimulation.

1.4 Hypothesis

This dissertation aims to show the following.

e An operational theory of functional programming is suitable for precisely specifying
a functional language and proving properties of functional programs.

e Such an operational theory can be extended to specify and prove properties of the
most widely-implemented mechanisms for I/O in lazy functional languages.

e A semantics for a simple form of monadic I/O may be expressed within the func-
tional language. Hence programs using monadic I/O may be verified using standard
techniques.

1.5 Synopsis

The first half of the dissertation defines a semantic metalanguage, M, which is used in
the second half for the investigation of functional I/0O.

Chapter 2: A calculus of recursive types. In this chapter we prove a technical result
needed in Chapter 3. Mendler has proved confluence and strong normalisation for
the Girard-Reynolds polymorphic A-calculus extended with positive recursive types.
This chapter proves strong normalisation for an extension, called urA2, of Mendler’s
calculus.

Chapter 3: A metalanguage for semantics. The metalanguage M is a simply-typed
A-calculus with product, sum, function, lifted and recursive types. This chapter
defines its syntax, type assignment relation and its lazy and deterministic operational
semantics. The main result of this chapter is a convergence theorem—that, apart
from terms of lifted types, evaluation of every term converges.

Chapter 4: Operational precongruence. We investigate two operationally defined
preorders on the terms of M: contextual order (after Morris and Plotkin) and ap-
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plicative similarity (after Milner and Abramsky). We define a notion of operational
adequacy to mean that a preorder respects evaluation in a certain way. We show
that each preorder is an operationally adequate precongruence. The proofs use a
variant of Milner’s context lemma [91] for contextual order, and a typed reworking
of a method due to Howe [58] for applicative similarity. Given that applicative sim-
ilarity is a precongruence, it is routine to establish operational extensionality
[14]: that applicative similarity coincides with contextual order.

Chapter 5: Theory of the metalanguage. We adopt applicative bisimilarity, the
equivalence corresponding to contextual order and applicative similarity as equiva-
lence on terms of M. We prove equational laws that are analogues of the axiomatic
domain theory of LCF [46, 105]. We derive a principle of co-induction from the
definition of applicative bisimilarity. We investigate properties of empty, one-point,
iterated sum, iterated product, boolean and natural number types.

The second half investigates a range of ways in which functional languages can be extended
to express I/0:

Chapter 6: An operational theory of functional programming. We define a
functional language, #H, which is essentially a subset of Haskell. #H has lazy al-
gebraic types and both call-by-name and call-by-value function applications. We
give a deterministic operational semantics and a denotational semantics using M.
The denotational semantics is a case study of Moggi’s proposal to use monads to
parameterise semantic descriptions. We prove a close correspondence between the
operational and denotational semantics. We define operational and denotational
equivalences as object-level applicative bisimilarity and equivalence in the metalan-
guage respectively. We show that a theory of programming, which consists of a
set of equational laws together with a co-induction principle, holds for operational
equivalence. The equational laws are valid for denotational equivalence, but we
leave open whether the co-induction principle holds. We conclude the chapter by
considering the semantics and theory of HX, a language obtained from H by adding
a parameterless exception mechanism.

Chapter 7: Four mechanisms for teletype I/O. We take teletype I/O—interaction
with a keyboard and printer—as a simple I/O model. In this context, we discuss
the formal semantics of four widely-implemented mechanisms for functional 1/0:
side-effecting, Landin-stream, synchronised-stream and continuation-passing 1/0.
We explain why side-effecting I/O combines badly with call-by-name semantics of
function application. The other three mechanisms are suitable for use with call-
by-name semantics. We prove in a precise sense that they are of equal expressive
power.

Chapter 8: Monadic I/0O. We develop a monadic style of functional I/O to support an
application of functional I/O at the Medical Research Council (MRC) in Edinburgh.
We describe a simple monadic programming model, and express its semantics within
‘H as a particular form of state transformer. Using the semantics we verify a simple
programming example.

Chapter 9: Conclusion. Conclusions are drawn and further work suggested.
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1.6 Results

The main contribution of this dissertation is to develop an operational theory of lazy
functional programming, to extend it to accommodate various I/O constructs, and to
show how it can be applied to prove properties of functional programs engaged in 1/0.
Here are specific original results.

e A theory of a non-trivial functional language, H, based on equational reasoning and
co-induction, and developed operationally from first principles.

e A case-study of the monadic approach to denotational semantics, based on an
operationally-defined metalanguage, M. Proof that the denotational semantics cor-
responds closely to the operational semantics.

e A formal semantics for side-effecting, Landin-stream, synchronised-stream and
continuation-passing 1/0.

e A proof that Landin-stream, synchronised-stream and continuation-passing I/O are
equally expressive in the context of teletype 1/0.

e A case-study of the monadic approach to I/O, motivated by an application of func-
tional programming to medical electronics.

e An investigation of the relationship between the context lemma and Howe’s method
of proving precongruence for operationally-defined preorders.

1.7 How to read the dissertation

A bird’s eye view can be had by reading this chapter, reading the unnumbered introductory
sections of Chapters 2 to 8, and then the whole of the last chapter. The introductory
sections are intended to motivate and sketch the results of each chapter without mentioning
any mathematical details.

As mentioned above, the first half develops a semantic metalanguage, M, for use in the
second half to give denotational semantics for a functional object language, H. H is the
basis for the study of functional I/O in the second half. The argument in the dissertation
is linear in that almost every chapter depends on all its predecessors to some degree, but
none on its successors. That said, a great deal of the second half can be understood
without knowing the development of M in detail. After obtaining a bird’s eye view, the
reader primarily interested in functional I/O might skim §3.1 to §3.3 to get an impression
of the definition of M, browse Chapter 5 on the theory of M, and begin reading more
thoroughly at Chapter 6.

The extension of Mendler’s calculus developed in Chapter 2 is only used explicitly in §3.4.
The reader wishing to understand M in detail is advised to begin at Chapter 3 and skip
§3.4 on first reading, and then to study Chapter 2 before reading §3.4.
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1.8 Mathematical preliminaries

Syntax, alpha-conversion and the variable convention

We deal with three formal languages in this dissertation: prA2 introduced in Chapter 2,
M introduced in Chapter 3, and H introduced in Chapter 6. Chapter 6 also introduces
a variant of H, called HX. Here we state general syntactic conventions that apply to all
these languages (except that term variables are treated specially in prA2).

We assume two countably infinite sets of type variables and term variables, ranged
over by the metavariables X, Y, Z and f, g, u, v, w, z, y, 2, respectively. We almost
always refer to term variables simply as variables. We will point out binding occurrences
of variables when defining each formal language. If ¢ is a phrase of syntax, we write ftv(t)
and fu(t) for the sets of type and term variables respectively that occur free in ¢. The
iterated notation fu(ti,...,t,) is short for fu(t1) U--- U fu(t,); we use a similarly iterated
form of ftv. If t and #' are phrases of syntax, we write ¢[t'/X] and ¢[t'/z] for the outcomes of
substituting ¢’ for each free occurrence of X or z, respectively, in ¢, with change of bound
variables in ¢ to avoid variable capture. =~ We refer the reader to Hindley and Seldin’s
textbook for a clear treatment of substitution and alpha-conversion [56]. We make free
use of the properties of substitution and alpha-conversion developed in Section 1B of their
book.

We follow the standard practice of identifying phrases of syntax up to alpha-conversion,
that is, treating a syntactic phrase as if it were its alpha-equivalence class. We use the
symbol = for alpha-conversion. We adopt Barendregt’s variable convention [10] and as-
sume that all the bound variables in a term are distinct from each other and from any free
variables. This is legitimate when phrases of syntax are identified up to alpha-conversion.

We will make it clear whenever we are not treating a phrase of syntax as its alpha-
equivalence class. When we are not, we can write bv(t) for the set of bound term variables
in t. A context, C or D, is a term possibly containing one or more holes, written as [].
We write C[t], which we call an instantiation, for the term obtained by filling in each
hole in C with the term t. Contexts are not identified up to alpha-conversion; we write
C = D to mean that contexts C and D are literally the same. The only significant use of
contexts is in Chapter 4; contexts are covered in greater detail in §4.1.

Types and polymorphic definitions

Each of the formal languages prA2, M and H is a typed A-calculus in which terms are
tagged with type information. Such type information can often be inferred from the
narrative text, and then we omit it. Occasionally we omit type information from the
defining equation of an M or H term, and specify a type scheme. For instance, we might
make the definition id % (Az.z) and comment that term id has type scheme (o — o). The
idea of type schemes or polymorphic types [92] is widely used in functional languages like
ML or Haskell. Rather than burden the reader with a formal mechanism of polymorphic
types, we trust that the equation id def (Az.z) (and others like it) can be understood as
the definition of a whole family of terms, id” = (A\z:0. z) for each type o.
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Relations

If S and T are sets, we treat a binary relation between S and T" as a subset of the product
SxT. R CSxT we write sRt and (s,t) € R interchangeably. Relational composition
is written as juxtaposition; that is, if Ry C 57 x Se and Ry C S5 x S3, then R1 Ry C 51 %X S3
is the composition of R; and Ry. If R C S x S, then R and R* are its transitive closure
and reflexive transitive closure respectively. We write Id for the identity relation. If R is
a relation, R™! is its inverse.

Bisimulation and co-induction

We make extensive use of preorders and equivalence relations defined to be the greatest
fixpoints of certain functionals. The prototypical use of this technique in computer science
is bisimilarity in CCS [94], suggested by Park and developed by Milner.

We will introduce such relations by first defining the functional, denoted parenthetically
by [-] or (-). Then we define notions of simulation and similarity as introduced in the
following theorem, which states general properties of the relations defined in this way:

Proposition 1.1 Suppose the following:

e Metavariable t ranges over a set of terms, Term.
e Metavariable S ranges over subsets of Term x Term.

e Functional [-] is a monotone function over subsets of Term x Term

(that iS, ifSl g 82 then [81] g [82])
e A simulation is a relation S such that S C [S].

e Similarity, <, is defined to be the union of all simulations.
We have:
(1) Similarity is the greatest fixpoint of [-].
(A fixpoint of [-] is a relation S such that S = [S].)
2) Similarity is the greatest simulation.

3) t <t iff there is a simulation S such that tSt'.

5

6) If S~! is simulation whenever S is, then < is symmetric.

(2)

(3)

(4) If the identity relation on Term is a simulation, then < is reflexive.

(5) If §1S; is a simulation whenever both §; and So are, then < is transitive.
(6)

Proof. Part (1) is a special case of the Knaster-Tarski theorem in fixpoint theory; see
Davey and Priestley [31, pages 93-94].

(2) That similarity is a simulation follows from (1). It is the largest since by definition it
contains any other.

(3) For the forwards direction, take the simulation S to be < itself. For the backwards
direction, we have S C <, so (t,t') € S implies (¢,t') € <.

(4) For any t, pair (¢,t) is in a simulation (the identity relation), so by part (3), we have
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t<t.

(5) For arbitrary t1, to and t3, suppose that ¢; < to and ty S t3. Since similarity is a simu-
lation, so is the composition S<. We have ¢ SStg by definition of relational composition,
so pair (t1,t3) is contained in a simulation. Hence by (3) we have t; < t3, as required.

(6) Suppose that ¢t <t'. Since < is a simulation, we have ¢’ <t as required. [ ]

Property (3) of this proposition is an important proof technique: to prove ¢t St', it suffices
to find some S containing pair (¢,t') and prove that S C [S]. This technique has been
called Park’s rule or greatest fixpoint induction or co-induction [97, 114].

If the relation < defined by a functional [-] is a preorder (a reflexive and transitive relation),
we call < a similarity and any S such that S C [S] we call a simulation (as we did
above). On the other hand, if relation < is an equivalence, we call < a bisimilarity and
any S such that S C [S] we call a bisimulation.
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Chapter 2

A calculus of recursive types

This chapter prepares the way for Chapter 3, where we will define a simply-typed metalan-
guage for programming language semantics, M. We wish to prove in Chapter 3 that for
every term in a certain class of M types, evaluation cannot diverge. This result is used in
Chapter 5 where we will develop a theory of M. We obtain this result by translating such
terms of M into a polymorphic A-calculus that possesses a strong normalisation property:
that no infinite reduction sequence starts from any term.

The types of M we wish to encode are sums, products, functions and a certain class of
recursive types, called positive recursive types. A recursive type uX.o is positive
just when each occurrence of the bound type variable X within type o is to the left of an
even number of function arrows. For instance, the types (uX.1+ X), of natural numbers,
or (uX.1+ (7 x X)), of finite lists of type 7, are positive recursive types. As an example
of a non-positive type, consider (zX. X — X) which can encode any term of the untyped
A-calculus. Evidently there are terms of this type whose evaluation diverges.

We seek a calculus with a strong normalisation result whose type structure is expressive
enough to encode the types of M, and hence to be the basis of a normalisation proof
for M. One candidate is the polymorphic A-calculus, A2, of Girard and Reynolds, which
has a rich type structure able to encode a wide range of types. Functions are primitive
in A2 and there are standard encodings of sums and products. As for recursive types,
Girard [42] outlines a scheme for encoding the class of recursive types which are sums of
products, and equipping each with primitive recursive functions. Wraith [153] describes
a general scheme for encoding any positive recursive type and primitive recursion within
A2. A second candidate is Mendler’s extension of A2 [89, 88]! which adds new type
constructors for positive recursive types, together with constants and reduction rules to
construct terms of recursive types, and compute primitive recursive functions. Mendler
proves that his extension of A2 is Church-Rosser and strongly normalising.

We use Mendler’s calculus because it allows a direct representation of recursive types. In
this chapter we augment Mendler’s calculus with two new families of constants that are
needed to simulate certain operators in M. The purpose of the chapter is to prove that
even with the additional constants, and their reduction rules, all the terms of the calculus

!Paul Francis Mendler is also known as Nax Paul Mendler.
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are strongly normalisable.

§2.1 defines the type structure of urA2, the calculus developed in this chapter, to be the
same as in Mendler’s calculus. §2.2 defines the term structure of urA2 to be the same as
in Mendler’s calculus, but for the addition of two new families of constants. §2.3 defines
the reduction relation for terms of urA2, and states Mendler’s theorem, that any term of
ur A2 is strongly normalisable, provided none of the new constants occurs in it. §2.4 defines
combinators in Mendler’s calculus that correspond to the new constants. §2.5 shows in two
examples that the combinators can simulate the new constants. §2.6 proves that the new
constants can always be simulated by combinators contained within Mendler’s original
calculus.

2.1 Types of uvi2

Calculus pur A2 is a generalisation of A2, the Girard-Reynolds polymorphic A-calculus. We
assume a countably infinite set of type variables, ranged over by metavariables X, Y, Z.
The set of types, with metavariables o and 7, is given by the grammar:

o= X (type variable)
| (00— 1) (function type)
| (VX.o) (polymorphic type, X bound in o)
| p (recursive type)

p = plv

p == (uX.o0) (initial type, X bound in o)

v == (vX.o) (terminal type, X bound in o)

Conventional notions of free type variables and substitution apply, as stated in §1.8. Types
are identified up to alpha-conversion.

We say that a type variable X occurs positively in a type 7 iff each occurrence of X in
7 is to the left of an even number of —’s. Dually, a type variable X occurs negatively
in a type 7 iff each occurrence of X in 7 is to the left of an odd number of —’s.

Recursive types take one of the forms (uX.o) or (vX.o). Beware that the symbol p (or
v) is used both as a metavariable for initial types (or terminal types) and as part of the
syntax as the type constructor itself. For an M type 7 to be well-formed we require two
properties of any recursive type, (uX.o) or (vX.o), that occurs in 7. First, we require
that each such recursive type is positive, which is to say that the bound variable X occurs
positively in o. Second, we require that each recursive type is closed, or equivalently that
ftv(o) € {X}. For instance, type (uX. X — X) is closed but not positive; type (uX. uY. X)
is closed and positive, but is not well-formed because it contains a type (uY. X) which is
positive but not closed. If we make the standard definitions of sums and products,

o+1 ¥ VZ (0= 2) > (1= 2)>2Z) Z ¢ ftu(o,1)

oxr VZ(oc—=T1—2Z)— Z) Z & ftu(o, 1)
Mendler points out that X occurs positively in such types iff X occurs positively in types
o and 7. Let type 1 be (vX. X), a one-point type (which we investigate in the context of
M in §5.2). If 7 is a well-formed closed type, we can define well-formed types (pX. 1+ X),
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(uX. 14 (7 x X)) and (vX. 7 x X) of natural numbers, finite 7-lists and notionally infinite
T-streams respectively.

We insist that recursive types be closed and positive for the following reasons. Recursive
types that are not positive are problematic because they can type terms that are not
normalisable. For instance, the type (uX. X — X) can type a version of the 2 combinator
from the untyped A-calculus. Positive recursive types that are not closed complicate some
of the syntactic constructions used in this chapter. We rule them out as a convenience
just for this reason. Mendler requires recursive types to be positive, but not necessarily
closed. We will assume implicitly that any type we deal with is well-formed. Note that
the set of well-formed types is closed under substitution.

Parentheses will often be omitted when the intended grouping is implied by associativity
and scope rules. These rules are that the function arrow, “—,” associates to the right,
and the scope of bound variables continues as far to the right as possible. For example,
the type o1 — 09 — 03 is short for (o7 — (02 — 03)).

2.2 Terms of puvi2

As mentioned in §1.8, type variables are treated specially in purA2. We assume given a
countably infinite set of names, ranged over by metavariables f, g, =, y, z. (This set
of names is the same as the set of term variables used in M and H.) In prA2, a term
variable (called simply a variable in the following) is of the form z?, where z is a name,
and o is a type. The raw terms of pr A2, with metavariables L, M and N, are produced
by the grammar:

M == x° (typed variable)
| (Az?.M) (abstraction, variable 7 bound in M)
| (M N) (application)
| (AX.M) (type abstraction, X bound in M,
X not free in any type occurring in fv(M))
| (M o) (type application)
| k (constant)

where constants k are drawn from the set of constants, Con, given below:
Con ¥ {Intro”, Elim*, R, Intro”, Elim”, S"}

Let ftv(M) and fv(M) be the sets of all type and term variables that occur free in M:

M ftv(M) fo(M)
z? ftv(o) {z7}
(Az?. M) | ftv(o) U fto(M) | fu(M) — {z°}
(M N) | fiv(M) U fto(N) | fo(M) U fu(N)
(AX.M) | (M) = (X} | fo(M)
(Mo) |fio(M)Ufro(o) | o)
k @ @

Type and term substitution is written as M[9/X] and M[N/z]. Alpha-conversion is up to
renaming of the names of bound term variables, but not their type labels; (Az?. M) =
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(Ay°. (M[¥°}x°))) if y° & fo(M). We identify terms up to alpha-conversion. The restriction
on variables in type abstractions comes from the A2; without it, fu(AX.z%X) is not well
defined up to alpha-conversion of terms [42]. We adopt a name convention for ur2,
that all the names of all the bound variables in a term are distinct from each other and
from the names of any free variables; we can always achieve this by alpha-conversion.

The only difference between the calculus purA2 given here and Mendler’s calculus is the
presence of the constants Elim* and Intro”. To obtain his calculus, Mendler added the
initial and terminal types to A2, the Girard-Reynolds calculus, together with the constants
Intro”, R¥, Elim” and S”. (We use a notation slightly different from Mendler’s: Elim instead
of In, Intro instead of out, VX.7 instead of AX.7, and different metavariables.) We need
the extra constants so as to model corresponding Intro and Elim operators in M.

The type assignment relation of purA2, a predicate of the form M:o, where M is a raw
term and o is a type, is defined inductively by the rules

Intro”:o[WX] —

Elim:u — o[#/X]
RENVWVY. (VX (X = p) = (X =Y)=20—=Y)=pu—Y)
Intro”:o[V/X]| — v
Elim”:v — o[V/X]

(VY. (VX.(v—=X) = (Y =>X)=Y =0)=>Y =)

M:T M:o M:(oc—T) N:io  M:(VX.T)
(Az7. M):(c - 1) (AX.M):(VX.0) (M N):r (M o):T[o/X]

where y = pX.0 and v = vX.o. If M:o can be inferred we say that M is a term, and
that it has type o. Henceforth the metavariables L, M and N will range over just the
terms, rather than all the raw terms.

For the sake of legibility type superscripts will often be omitted. Parentheses will often
be omitted when the intended grouping is implied by associativity and scope rules. These
rules are that type and term applications associate to the left, and the scope of bound
variables continues as far to the right as possible. For example, the term L M N is short
for (L M) N); and the term A\z. (Ay. zy)y is short for (Az. ((Ay. (zy)) y)).

2.3 Reduction in pvA2

Let us say that a binary relation R on terms of ur A2 is compatible just when it is closed
under the following rules:

MRN MRN MRN
(Az?. M)R(Az°.N) (MLR(NL)  (LM)R(LN)

MRN MRN
(AX. M)R(AX.N) (M o)R(No)
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Let 1d” stand for the identity function (Az?.z7). The reduction relation on terms, —, is
the least compatible relation closed under the following eight axiom schemes:

e (\z7. M) N — M[N/x7]

o \z?. (Mz%)— M if 27 ¢ fu(M)
(AX.M)o — M[9/X]

AX. (M X)— M if X ¢ fto(M)

Elim# (Intro# M) — M

Rto M (Intro# N) — M p 1d* (RFo M) N
Elim” (Intro” M) — M

Elim"(SYo M N) = Mv Id” (SYo M) N

In this dissertation we take advantage of the following theorem.

Theorem 2.1 (Mendler) If no constant Elim* or Intro” occurs in a term M, then M
is strongly normalisable, which is to say that there is no infinite sequence of reductions
starting from M.

Proof. The proof is contained in an article by Mendler [88]. His calculus does not contain
the new families of constants Elim* or Intro”. The reduction rules applicable to terms of
pr A2 that do not contain the new constants are exactly the same as the rules in Mendler’s
article. If M — M’ is a reduction, and M does not contain one of the new constants,
then neither does M’. Therefore any sequence of reductions starting from a term not
containing the new constants can be exactly simulated by a sequence of reductions in
Mendler’s calculus. Therefore his result tells us that any term M in prA2 is strongly
normalisable, provided that none of the new constants occurs in M. [ |

In a private communication (June 1991) Mendler said that he omitted the Elim* and Intro”
constants from his calculus to simplify the confluence proof (which we make no use of in
this dissertation), and was not concerned at the loss of expressiveness because they can be
mimicked using the recursion constants R* or S¥, respectively. This present work appears
to be the first to work through a construction of combinators to mimic the constants
omitted by Mendler.

The rest of this chapter is devoted to a proof that any term of urA2 is strongly normalis-
able.

2.4 Combinators to simulate Elim* and Intro”

We prove that every term of purA2 is strongly normalisable by simulating the new con-
stants Elim* and Intro” with combinators elim" and intro”, definable in Mendler’s original
calculus from constants R* and S* respectively. Before defining these combinators in
Definition 2.3 we define two auxiliary functions, Spec and Gen:

Definition 2.2 We define the partial functions (not terms of the calculus), Spec and
Gen, that map quadruples of the form (p, X, 0, M) to a term, where p is a recursive type,
X is a type variable, o is a type and M is a term. First choose some name f. Then define
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the two functions simultaneously by structural induction on o (the third argument):

Spec(p, X, X, M) © (fX7 M)

Spec(p, X,Y,M) ¥ M ifX£Y

Spec(p, X, p', M) df pr

Spec(p, X, (VY. 1), M) LN Spec (p, X, 7,MY) whereY ¢ ftv(X, M)
M)

Spec(p, X, (= 7), Az™. Spec (p, X, 12, M (Gen(p, X, 71, 2™)))
where 71 = 11 [P/X]
and name z # f does not occur in fv(M)

def

Gen(v, X, X, M) ¥ (=X M)

Gen(p, X,Y,M) ¥ M ifxX£Y

Gen(p, X, p', M) et

Gen(p, X, (VY.T), M) LAY, Gen (p, X, 7,MY) whereY ¢ ftv(X, M)
Gen(p, X, (11 = 1), M) = Xz™. Gen (p, X, 12, M (Spec(p, X, 1,2™)))

where name = # f does not occur in fv(M)

The functions are partial only so far as Spec(v, X, 7, M) and Gen(u, X, 7, M) are undefined
when 7 is the type variable X; this is unproblematic because we only apply Spec to a
terminal type (vX.o) or Gen to an initial type (uX.o) when X occurs negatively in 7.

Definition 2.3 For each initial type p = (uX.0), let & be the type o[#/X], and define
the combinator family, elim", as follows:

elim" % Ru g (AX NfX71 NgX 29 X2, Spec (4, X, 0,27))

Dually, for each terminal type v = (vX.0), let 6 be o[V/X], and define the combinator
family, intro”, as follows:

intro’ & s (AXAf'7X Ag?7 X Xz, Gen (v, X, 0,27))
The name f is the same as the one chosen in the definition of Spec and Gen.
In §2.6 we will prove that these combinators possess the following properties:
o clim*(Intro#(M)) =T M
e Elim”(intro¥(M)) -+ M

for any suitably typed term M. Given these properties it is not hard to show that every
term in pvA2 is strongly normalising. First we show two examples.

2.5 Two examples

First, recall the type 1 = (vX. X). We can calculate the combinator intro! as follows:

ST (AX AfI7X Mg X Azl Gen (1, X, X, 21))
ST (AX AfI7X Agi X Azt f12X gl

introt
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Now we can check that Elim!(intro'(M)) =+ M for any term M of type 1.
Elim! (intro' (M)) Elim (S 1 (AX. Af17X Ag X Azl f12 8 21 M)

— (AX AN A X Az f1oX 2 1 IdY dntrot M
— (AL Ag L A f gy 1dt introt M

— (Ag'7Lazt 1dt zb) intro' M

— (Azl. 1dt 2y M

— Id' M

- M

Second, let o be the type (X — 1) — 1 and initial type p be (uX.o). We begin by
calculating Spec(u, X, o, %), which has type (p — 1) — 1.

Ayt Spec (p, X, 1,27 (Gen(p, X, (X — 1), y#71)))
MyP=t Spee (u, X, 1,27

(=X Gen (1 X, 1,1 (Spec(, X, X,25)))))
MyP=t Spee (u, X, 1,2

(A2X. Gen (u, X, 1yt (X721 2Y))))
Ayt =t Spec (p, X, 1,27 (A2t gt (fAR2Y))
)\y,uﬁll e ()\ZX y,uAI (fX%,u ZX))

Spec(i, X, 0,27

The combinator elim* is defined as follows, where & is (u — 1) — 1.
elim" = RF G (AX. NfX71 NgX 79 Aa?. Spec (u, X, 0,27))
We can check that elim”(Intro#(M)) =+ M for any term M of type 6.

elim”(Intro"(M)) = RM& (AX. AfX7H AgX2% Xz, Spec (p, X, 0,27))
(Intro#(M))
— (AXNfX7H NgX2 X2, Spec (u, X, 0,27))
wld* elim® M
— (AfETENGHTO N2,
AL g (At (fET 1))

[d* elim" M

— (AgF7 Az AP % (A2 gL (1dH 2H)))
elim" M

— Az APtz (At oy (1dP 1)) M

— (AP M (A2 gt (1dH 2H)))

— (AyP7 L M (A2t yr 7l 21)

- ()\yuﬁl‘My,uﬂl)

- M

Notice that the reductions make use of the beta and eta rules, and depend on the variable
named f being replaced by the identity function.

2.6 Strong normalisation for uvA2

We prove a series of propositions that culminates in a strong normalisation result for purA2.
The first proposition states all the properties that we rely on in the functions Spec and
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Gen; parts (1la) and (1d) are of particular interest.

Proposition 2.4 Let pu be any initial type pX.o9 and let s be the substitution
[w/x[\d"/fr—=1]. Then for any type T and term M,

(1) If M:1 and X occurs positively in 7, let N = Spec(u, X, 7, M), and then
(a) N has type T[W/X],
(b) fu(N) C fo(M) and name f does not occur in fu(N),
(c) ftu(N) C fto(r) U fto(M) U {X}, and
(d) Ns —=* Ms.
(2) If M:7[/X] and X occurs negatively in 7, let N = Gen(u, X, 7, M), and then
(a) N has type T, and
(b) fu(N) C fo(M) and name f does not occur in fu(N),
(c) ftu(N) C fto(r) U fto(M) U{X}, and
(d) Ns —»* Ms.

Proof. We prove all parts simultaneously by induction on the size of the type 7, and
proceed by analysis of its structure. For the sake of brevity, we omit all the details of
parts (b) and (¢). They are no harder to prove than the other parts.

Case 7 = X.
(la) Here N = (fX~* M) which has type p, which equals 7[#/X].
(1d) Ns = (Id (Ms)) — Ms.
(2) Gen(u, X, X, M) is undefined, but this case cannot arise because X occurs pos-
itively in X.
Case 7 =Y # X.
la) N = M:Y and Y = 7[H/X].
1d) Ns = Ms —* Ms.
2a) N=M:Y and Y = 7.
2d) Ns = Ms —* Ms.
Case 7 = p. This case is trivial because of the restriction in purA2 that all recursive

types be closed. If we had not made this restriction, the definitions of Spec and Gen
would be rather more complicated.

(
(
(
(

(l1a) Here N = M, which has type p. All recursive types are closed, so p = 7[W/X].
1d) Ns = Ms —* Ms.

(1d)
(2a) N = M, which has type 7[//X] = 7, since all recursive types are closed.
(2d) Ns = Ms —* Ms.

Case 7 = (VY.0). We may assume Y ¢ ftv(X, M) since types are identified up to
alpha-conversion.
(l1a) Here N = AY. Spec (u, X,0,MY'). By IH, we have that Spec(u, X,o, MY) is
of type o[/X]. Therefore N is of type VY. (o[¥/X]) = 7[WX].
(1d)Ns AY. (Spec(p, X,0, MY)s)
* AY. ((MY)s) (IH)
AY. (Ms)Y

Lo

3
S
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(2a) N = AY. Gen (u, X,0,MY'). By IH, Gen(u, X,0, MY') is of type o. Therefore
N is of type (VY.0) = 7.
(2d)Ns AY. (Gen(p, X,0,MY)s)
* AY. ((MY)s) (IH)
AY. (Ms)Y
Ms

Lo i I

Case 7 = (11 — T2).
(la) N = Az. Spec (p, X, 72, M (Gen(p, X, 71,2))), where = has type m1[H/X].
Since X occurs negatively in 7, by IH we have Gen(u,X,7,x):7;. Then
M (Gen(p, X, m1,2)) has type 7o. Since X occurs positively in 7o, by IH we
have Spec(u, X, 19, M (Gen(u, X, 11,2))) has type m3[#/X]. Therefore N has type
71 [MX] — m2[#/X] which equals 7[¥/X].

(1d)Ns x. (Spec(p, X, 10, M (Gen(u, X, m1,x)))s)

M? (M (Gen(p, X, 1,2)))s) (IH)

Az. (Ms) (Gen(p, X, T1,7)s)

Az. (Ms) (zs) (IH)

(M) x

*

Lo oo
é’

Ms

(2a) Dually, N = Az. Gen (u, X, 79, M (Spec(u, X, 71,2))), where x has type ;. Since
X occurs positively in 71, by IH we have Spec(u, X, 71, x) has type 7 [#/X]. Then
M (Spec(p, X, 11,2)) has type [#/X]. Since X occurs negatively in 75, by IH we
have Gen(u, X, 79, M (Spec(pu, X,71,))) has type 7o. Finally, N has type 7 — 7
which equals 7.

(2d)Ns = Az.(Gen(u, X, 1, M (Spec(p, X, T1,x)))s)
=" Az (M (Spec(p, X, 71,2)))s) (TH)
= Az.(Ms) (Spec(p, X, 11, x)s)
—* Ax. (Ms) (xs) (TH)
= Az.(Ms)z
— Ms u

The following is analogous to Proposition 2.4, but for terminal types.

Proposition 2.5 Let v be any terminal type vX.oy and let s be the substitution
-[/x][\d"/fv=]. Then for any type T and term M,

(1) If M:1 and X occurs negatively in 7, let N = Spec(v, X, 7, M), and then
(a) N has type 7[V/X], and
(b) fu(N) C fo(M) and name f does not occur in fu(N),
(c) ftu(N) C fto(r) U fto(M) U {X}, and
(d) Ns —=* Ms.
(2) If M:7[¥/X] and X occurs positively in 7, let N = Gen(v, X, 7, M), and then
(a) N has type T, and
(b) fu(N) C fu(M) and name f does not occur in fu(N),
(c) ftu(N) C fto(r) U fto(M) U{X}, and
(d) Ns —* Ms.
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Proof. Omitted, but dual to the previous proof. [ |
Now we prove properties of the combinators elim* and intro”:
Proposition 2.6 For any recursive types p = uX.o and v =vX.o,

(1) There are no type or term variables free in elim* or intro”, that is, they are combi-
nators.

(2) The type assignments elim*:(u — o[/X]) and intro”:(c[V/X] — v) are derivable, that
is, the combinators are well-typed.

(3) For any term M,
(a) if M:o[W/X] then elim*(Intro*(M)) =+ M.
(b) if M:0[V/X] then Elim” (intro”(M)) —* M.

Proof. (1) Consider the term elim”. Let 6 be the type o[#/X]. Since
fn(Spec(u, X,0,27)) C {z,f}, we can calculate fn(elim") = fn(Spec(u,X,0,27)) —
{f,z,9} = @. Therefore fv(elim") = @. Similarly, ftv(Spec(u, X,0,z%)) C ftv(c)U{X} =
{X}, since ftv(o) C {X}. We have:

fto(elim*) = (ftv(p,6,X = p, X = 6,0) U ftu(Spec(p, X,0,2%)) —{X} =02
Similarly we can check that the term intro” has no free type or term variables.

(2) Combinator elim” will be well-typed if Spec(u, X, 0, z7) is of type o[#/X], and Propo-
sition 2.4(1a) says so. Similarly, for intro” to be well-typed, the term Gen(v, X, o, x”[V/X])
needs to have type o, and according to Proposition 2.4(2a) it does.

(3) Again let 6 be o[#/X]. By appeal to Proposition 2.4(1d) let us calculate:

elim* (Intro*(M))
REG (AX. AfX7H AgX77. Az, Spec (1, X, 0, 27)) (Intro” (M)
(AX. NfX78 NgX 79 Aa?. (Spec(p, X, 0,27))
wld? elim* M
(AfHHE NGHT A%, (Spec (i, X, 0, 17) [H/X]))
[d* elim* M
(Ag#7 A (Spec, X, ,2%) [X][Id"fr=]))
elim* M
(N2 (Spec(a, X, 0, 07) X" ] elim” jy—so])) 11
(Aa? . (Spec(ju, X 0, %) X[ fr0])) M
(Aa?. (a4 fr0])) M
ld” M

1 3o

4

*

(TR

By a similar calculation we can compute the other part of the proposition. [ |

Now that we know how to simulate the new constants that appear in our extended calculus
in terms of the original calculus, we can simulate each term IV of the extended calculus
by a term M with each of the new constants replaced by one of the combinators we have
just defined.
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Definition 2.7 Define the simulation relation, M > N, on terms of uvA2, as the least
compatible relation closed under the following axiom schemes:

e clim"” > Elim*

e intro” > Intro”

e k> k for any k € Con — {Elim",Intro”}.
Later we will rely on the fact that simulation is preserved by substitution:
Lemma 2.8 For any terms M and N such that M > N,
(1) If M > N then fo(M) = fo(N) and ftv(M) = ftv(N).
(2) M[9/X] > N[9/X] for any o and X; and
(3) M[Ljx]) > N[L')x] for any L, L' and x with L > L'.

Proof. Part (1) is an easy induction on the depth of inference of M > N. Part (2) is also
by induction on the depth of inference of M > N. We show several cases:

Case M = elim" > Elim#¥ = N. Since neither side contains any free type variable,
MI[9/X] = M > N = N[9/X]. Similarly, since neither side contains a free term
variable, M[L/z] > N[L'/x].

Case M = intro¥ > Elim"* = N. The result follows by the same argument as the previous
case, that neither side contains a free type or term variable.

Case M =k >k = N. Same again.

Case M =y > y” = N. Wehave M[9/X] = N[9/X], so M[?/X] > N[9/X]. For (2), either
x =y or not. If so, M[Ljx] = L > L' = N[L'/x]. If not, M[Ljx] = y™ > y" = N[L'/x].

Case M = (A\y".M;) > (A\y".N;) = N. We may pick the bound variable y such that
y # x. By induction hypothesis we have M;[0/X] > Ny| U/X ] and Ml[X/ ] > Ny[L'fe].
Then we can derive that M[0/X] = (Ay""A) My[o/x]) > (A7) My[o/x]) =

N[o/X] and M[Ljz) = \y™. My [Lz]) > (Az™. My[L'/z]) = N[L'/z] as required.
Case M = (M) M3) > (N1 N2) = N. By induction hypothesis, M;[?/X] > N;[9/X] and
M;[Ljx] > N;[L/z] for i = 1,2. Then we have
M[o/x] = (My[7/X] M2[0/X]) > (N1[7/X] N2[7/X]) = N[7/X]
and M[Lix]) = (M [Le) My[Lfz)) > (N1 [L'fz] No[L'/e]) = N[L'/z] as required.
The case for A-abstractions is similar. Part (3) follows by a similar argument. ]

Now we come to the key property of the simulation relation: that if M > N, then any
reduction of N can be mimicked by a non-empty sequence of reductions starting from M:

Proposition 2.9 If M > N and N — N' then there exists M' such that M —+ M' and
M' > N'.

Proof. The proof is by induction on the depth of inference of N — N’, proceeding by
an analysis of how the inference was derived. We show here only the two cases where
combinators do the work of constants, and one of the inductive cases:
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Case N = Elim*(Intro# N;) — Ny = N'.
Since M > N we have M = elim#(Intro* My) with M; > Nj.
Set M' = M; and by Proposition 2.6(3a) we have M —+ M’  and we know M’ > N'.

Case N = Elim”(Intro” N;) = N; = N'.
Since M > N we have M = Elim”(intro” Ny) with M; > Nj.
Set M' = M; and by Proposition 2.6(3b) we have M —* M’, and we know M’ > N'.

Case N = (Az.N;) — (Az.Nj) = N'.
where N1 — Nj. Since M > N we have M = (Az. My) with My > Nj.
By induction hypothesis, there is M/ such that M7 —+ M{ and M{ > Nj.
Set M' = (Az. M) and we have M —+ M’ and M’ > N'.

The other cases of the proof follow the same pattern. [ |
A simple consequence of Proposition 2.9 is strong normalisation:

Theorem 2.10 FEach term N of uvA2 is strongly normalisable.

Proof. Suppose to the contrary, that there is a well-typed term N that admits an infinite
chain of reductions. Construct a term M such that M > N by replacing each constant
of form Elim# or Intro” that occurs in N by the corresponding combinator elim* and
intro¥ respectively. From Proposition 2.9 it follows that since there is an infinite chain of
reductions starting from N, there is also one starting at M. But M is a term of Mendler’s
published calculus, which is known to be strongly normalising, Theorem 2.1, so we have
reached a contradiction. Therefore each term of urA2 is strongly normalisable. |

We have extended Mendler’s second-order A-calculus with recursive types, to have two
new families of constants, Elim* and Intro”. This provides a basis for the normalisation
proof of the semantic metalanguage, M, developed in later chapters of this dissertation.



Chapter 3

A metalanguage for semantics

The purpose of this chapter is to define a metalanguage for programming language se-
mantics, called M. In Chapter 6 we define a small functional language, called H. We will
give a denotational semantics for H in terms of M, and also show how the denotational
semantics can be extended to account for an exception mechanism and side-effecting I/0.
Hence each of the four classes of functional I/O discussed in Chapter 7 can be defined
from the denotational semantics for H, extended as necessary.

We adopt a variant of Plotkin’s threefold methodology for denotational semantics [120].
First, he developed a theory of partial functions and so-called bottomless domains. Second,
he proposed a typed A-calculus as a semantic metalanguage; his calculus had product,
sum, function, lifted and recursive types. His calculus had both domain-theoretic and
operational semantics. He proved adequacy results relating the operational and domain-
theoretic semantics of his metalanguage. Third, to study a particular object language, he
gave a direct operational semantics and an indirect domain-theoretic semantics induced by
mapping the object language into the metalanguage. Proof of the correspondence between
the operational and domain-theoretic semantics of the object language can take advantage
of the adequacy results for the metalanguage. This approach is general in that for each
object language studied, the proof of adequacy factors into two: a general result proved
once and for all for the metalanguage, and a comparatively simpler proof relating the
semantics of the object and metalanguages. Plotkin’s work has been developed by Moggi
[99] and Jones [66].

We develop in this dissertation a simply-typed A-calculus called M for the denotational
semantics of H and its variants. The most important difference between the operational
semantics of Plotkin’s calculus and M is that in M the evaluation of any term of a certain
class of types cannot diverge. In Plotkin’s calculus, there is a divergent term at every type.
We partition the types of M in two: the possibly-divergent types are the lifted types;
the certainly-convergent types are all the others. One reason for this is to convey
information about operational behaviour in the type system; for instance, any numeral in
‘H is mapped to an M term of type Num, which is a certainly-convergent type representing
the natural numbers. The type of the translation of the numeral conveys that it cannot
diverge.

In this and the following two chapters we investigate M before applying it to the study

27
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of functional programming and I/O in Chapters 6 and 7. In this chapter we define M
and assign it an operationally-based rather than domain-theoretic semantics. M has a
type system similar to Plotkin’s calculus: product, sum, function, lifted and recursive
types. Using a methodology similar to Plotkin’s, we use the metalanguage to decompose
a more complex object language, H. In Chapter 4 we investigate two operationally-
defined preorders on the terms of M: Morris-style contextual order and a typed form
of Abramsky’s applicative bisimulation. We will prove them to be equal, and take the
equivalence they generate as equivalence on terms of M. In Chapter 5 we develop a
theory of M based on equational laws and a co-induction principle. We study certain
derived M types that are needed for the semantics of #: booleans, natural numbers and
iterated sums and products.

§3.1 defines the syntax of M. The type system is defined in §3.2 and the operational
semantics in §3.3. §3.4 proves the major result of this chapter, that only terms of lifted
type can diverge.

3.1 Syntax of M

We assume countably infinite sets of type variables and term variables, ranged over by
letters X, Y, Z and f, g, x, y, z respectively. The syntactic conventions of §1.8 apply to
M. The types are given by the following grammar

o,7 ui= X|ox7|o+7|o—=7|oL | pX. 0
and the terms by the grammar in Table 3.1.

A type is possibly-divergent iff it is a lifted type, that is, has the form ;. Any other
type is certainly-convergent. The main result of this chapter is a convergence theorem
(Theorem 3.11) which says that evaluation of any closed term of a certainly-convergent
type must converge. A corollary is that only terms of a possibly-divergent type may
diverge. The product, disjoint sum and function types, (o X 7), (0 + 7) and (o — 7)
respectively, are certainly-convergent types.

Recursive types are certainly-convergent. They take the form (uX. o). Just as in Chapter 2
the symbol p is used both as a metavariable for recursive types and as part of the syntax
as the type constructor itself. There are two syntactic restrictions on these types: (1)
each free occurrence of the type variable X in o must be to the left of an even number of
—’s; and (2) the only type variable free in o can be X. Restriction (2) rules out mutually
recursive types. These conditions are required so that the convergence theorem can be
proved by mapping any certainly-convergent type in M to a corresponding type in uvA2.
We will assume implicitly that types are well-formed. The set of well-formed types is
closed under substitution.

3.2 Type assignment in M

An environment, I', is a finite mapping from variables to closed types, written as
T1:01,...,Tn:0,, Where the variables in the list are pairwise distinct. The domain of
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Syntax
UV == (M,N) (pair)
| Inl"(M) | Inr? (M) (injection)
|  (Az:o. M) (abstraction, x bound in M)
| Lift(M) (Lift-term)
| Intro* (M) (Intro-term)
L, M,N =z (variable)
| V (canonical term)
| Split(M,z.y.N) (Split-term, x, y bound in N)
| Case(M,z1.Ny,z5. Na) (Case-term, z; bound in N; (i =1,2))
| (MN) (application)
| Seq(M,z.N) (Seg-term, z bound in N)
| Fix”(x. M) (Fix-term, z bound in M)
| Elim(M) (Elim-term)
Table 3.1: Terms of M
F'kz:(x)
'EM:o 'EN:T FFM:(ocxT) I,z.oy:r N 7'
C'H(M,N):(ocxT) [+ Split(M,z.y.N): 7'
'EM:o 'EM:T
CHInl"(M): (o +71) TEInr" (M) : (o +71)
F-M:(c+71) I,z1:0 - Ny :0' I',zo:T Ny : 0’

'+ CaSE(M,iIfl.Nl,l'g.Nz) . U’

De:obM: T F'FM:(c—r1) 'FN:o
' (Az:o.M):(c—T1) F'F(MN):r
I'EM:o, x:ob N1 o, WM :0oy

I'EM:o

T+ Lift(M) : oy

L'+ M:o[MWX]

I'+Seq(M,z.N): 71,

p=(pX. o)

PFFix%(z. M) :0,

'EM:p w=(pX.o)

'k Intro" (M) : p

'k Elim(M) : o[H/X]

Table 3.2: Type assignment rules for M
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an environment I' is denoted by Dom(I"). We write (I',I') for the concatenation of two
environments; this notation is well-formed only when Dom(T') N Dom(I") = @.

Definition 3.1 The M type assignment relation, I' - M : o, is inductively defined by
the rules in Table 3.2. Each rule has the implicit side-condition that any environments
appearing in the rule are well-formed.

We show that the type assignment relation possesses some standard properties.
Proposition 3.2

(1) fT-M:0andT'- M : 7 then o = 7.

(2) fT,z:7 =M :0 and T = N : 7 then T = M[N/jz] : 0.
(3) IfT'+ M : o then fu(M) C Dom(T).

(4) FTF M :0 and T C T/ then ' - M : 0.

Proof. (1) By structural induction on M. The proof is straightforward because terms are
labelled with type information where necessary to ensure unique type assignment.

(2) By induction on the depth of inference of the type assignment I',z:7 F M : 0.
(3,4) By simple inductions on the depth of inference of '+ M : o. ]

We define classes of programs and confined terms.
Definition 3.3

(1) A program is a term M such that @ = M : 7 (and hence ftv(M, 1) = &), for some
(necessarily unique) type 7. The type 7 is called the type of M, which itself is
called a T-program.

(2) A confined term is a pair (I' = M) such that there is a (necessarily unique) type
7 with T'F M : 7. The type 7 is called the type of (I' = M) and T is called the
environment of (I' - M). Occasionally we represent a confined term (I' - M) of
type T with the type assignment sentence (I' = M : 7) itself.

3.3 Operational semantics of M

We define a deterministic operational semantics for M programs. We use an auxiliary
notion of an experiment, E, which is a function on programs such that E(M) is obtained
by wrapping a selector around program M. Experiments are discussed at greater length
in §4.2. They are an alternative to Felleisen’s evaluation contexts [38].

Definition 3.4 Experiments, F, are defined by the grammar at the top of Table 3.3.
Write E(M) for the term obtained by replacing the occurrence of “” in E by the term
M.

Thereduction and evaluation relations for M are the binary relations on M programs,
— and |} respectively, defined inductively by the rules in Table 3.3.

The canonical programs are the outcomes of evaluation. The operational semantics is
lazy in the sense that subterms of canonical programs may be non-canonical. Witness
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Reduction Semantics
E == Split(-,x.y. M) | Case(-,x1. Ny, x2. No) | (- M) | Seq(-,z. N) | Elim(-)

M—N
E(M)— E(N)

Spllt((Ml, M2>, T1.T2. N) — N[Ml/l’l][MZ/Z’z]
Case(InI(M), 1. Nl, Ty. NQ) — Nl[M/Llil]
Case(lnr(M), .- Nl, . N2) — NQ[M/.I'Q]

(Az. M)N) — M[N/x]
Seq(Lift(M),z. N) — N[M/z]
Fix(z. M) — M[Fix(z. M)/z]

Elim(Intro(M)) = M

Evaluation Semantics

ViV

Ly (M, M) N[Myfa J[Mafwy] 4V
Spllt(L, T1.T2. N) v

Limli(M) N [Mp )4V Linr(M)  No[Mjo] 4V
Case(L,ml.Nl,mg.Ng)UV CaSG(L,l’l.Nl,l'g.Nz)UV

L (\z. M) M[NE Vv
(LN)yV

L{Lift(M)  N[Mp) v
Seq(L,z.N) |V

M[Fix(x. M) ] LV
Fix(z. M)}V

M{lntro(N) NUV
Elim(M) | V

Table 3.3: Evaluation rules for M
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Inr(Fix(z. z)), which is canonical but has non-canonical Fix(z.z) as a subterm.
Proposition 3.5

(1) If gt M:0 and M — N then o+ N : 0.
2 foFM:0cand M|}V theno -V :0.
3) If L—+ M and L —+ N then M = N.

4) fLYU and LYV thenU = V.

5) The canonical terms are the normal forms of one-step reduction, where a normal
form is a program that cannot be reduced, that is, a term M such that for no term
N does M — N.

(6) Suppose M — N. Then for any V., N || V implies M || V.
(7) M |V just when M —* V.

(2)
(3)
(4)
(5)

Proof. Parts (1) and (2) follow by straightforward inductions on the depth of inference of
M — N and M |} V respectively. Parts (3) and (4) follow similarly by inductions on the
depth of inference of L — M and L || U respectively.

For part (5), we must show that each canonical program has no reductions, and that
if a term has no reductions, then it is canonical. First, no canonical program has any
reductions, because none of the reduction rules in Table 3.3 is applicable to any canonical
program. Second, each program is either canonical, a Fix-term, or of the form E(M) for
some experiment E and program M. There are rules in Table 3.3 to reduce a Fix-term
and each possible well-typed term E(M), so any program with no reductions must be
canonical.

Part (6) is by induction on the depth of inference of the reduction M — N. The forwards
direction of (7) is by induction on the depth of inference of evaluation M |} V. We prove
the backwards direction of (7) via a method used in Crole’s dissertation [25]. Suppose that
M=My—-M —---— M, 1 — M, =V. We show that M |} V by filling in the following
diagram from right to left, starting with the fact that M, = V | V, and establishing for
each i that M; |} V from M;;, |} V and part (4) of the proposition.

M=My—-> M —- -+ > M, > M, =V

\ \ \ Y
Vv \%4 Vv \%4
Both directions established, part (7) is proved. [

We define terminology for termination of evaluation.

Definition 3.6 Suppose that M is a program. Say that M converges and write M|}
iff there is a (necessarily unique) canonical program V such that M |} V. Conversely, say
that M diverges and write M1 iff M does not converge.

3.4 Convergence

The argument that certainly-convergent types deserve the name proceeds as follows:
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Types

[X] = X
[ox7] = (
[o+7] = (
[o =71 = (o]
[ou] = (
[nX.0] = (
Terms
[[F 2] € 20@]1
[CH(M,N): (0 x7)] & (AX.AfIeI=I1=X £ [T+ M] [T F N])
[T+ Split(M,z1.22.N) : 7] = [T+ M][r]
Azl Aal2) [0 2100, 2000 F N])
where I' F M : (01 X 032)
[CF (M) : (0 +7)] € AX AfLI=X \gITI=X [T+ M]
[CEIne(M): (0 +71)] T AXAfld=X N\glTI=X g0 F M]
[T+ Case(M,z1. Ny,z5. No) : 7] < [T+ M][7]
(Ax%glﬂ. [T, z1:01 F N1])

Al [0, 2y:00 - Vo))
where ' F M : (01 + 02)

[T+ (Az:o. M)] :f (Azlel [T, z:0 F M])
[T+ (M N)] j{ (Ir - M] [T - N])
[T F Lift(M)] = (AX. Az, 2X)
[[FSeq(M,z.N)] % (AX. Az¥X.2¥)
[+ Fix(z. M)] % (AX. AaX.2X)
[T+ Intro?(M)] < (IntrolI[T" F M)
[+ Eim(A)] < (EimPI0 - M])  whereTF M :p

Table 3.4: A translation of M types and terms into prA2

(1) In Table 3.4 we define a translation of M types and terms into yrA2. Proposition 3.8
proves that well-typed terms of M are translated into well-typed terms of puvA2.
Lemma 3.9 is a substitution lemma saying that the translation of an M term into
pr A2 is preserved under type and term substitution.

(2) We prove a simulation theorem, Theorem 3.10: if an M program M of certainly-
convergent type reduces to program N, then the translation of M into purA2 reduces
to the translation of V.

(3) The Convergence Theorem for certainly-convergent programs, Theorem 3.11, then
follows easily from the simulation theorem and the fact (Theorem 2.10) that no
infinite chains of reductions exists in purA2.

Definition 3.7 FEach M type o is translated to a uv A2 type [o] according to the mapping
inductively defined by the rules in Table 3.4.
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FEach M confined term (I' - M) is translated to a uvA2 term [I' F M] according to the
mapping inductively defined by the rules in Table 3.4. Any bound names that appear in
the right-hand side of translations but not in the left-hand side are assumed to be new.

The purpose of this construction is to show that each reduction of a certainly-convergent
term in M is simulated by one or more reduction steps in purA2, so as to prove by con-
tradiction that no certainly-convergent term diverges. The translations of products and
sums are the standard ones mentioned in §2.1. For the present purpose there is no need
for reductions of possibly-divergent terms to be simulated by their translations; indeed, it
would be impossible. Hence we simply map each possibly-divergent type to (VX. X — X)
and can map any possibly-divergent term to (AX. \zX.z¥).

Proposition 3.8

(1) For any M type o, ftu([o]) = ftv(o).

(2) For any M confined term (I' - M) of type 7, ftv([I' H M]) = @ and the set of A2
names free in [I' - M] equals the set of M variables free in M.

(3) If M confined term (I' = M) has type 7, prA2 term [I' = M] has type [7].

Proof. Parts (1) and (2) are by induction on the structure of o and the depth of inference
of (I' = M : 7) respectively.

(3) By induction on the depth of inference of the type assignment I' - M : 7. [

We need some substitution properties of the translation.

Proposition 3.9

(1) [71(loYx] = [ro/x]]-
(2) If(Tyz:7r M :0) and (T'+ N : 7)
then [I' - M[Nj]] = [T, z:7 = M][IT'F Nj].

Proof. (1) By induction on the structure of 7. We show several cases. Suppose 7 =Y. If
X =Y then both sides equal [¢]. If not, then both sides equal [7]. Suppose 7 = (11 X 72).
Then lhs = (VY. ([r1][le)/x] = [][lcl/X] = Y) = Y) where we may assume that bound
variable Y ¢ ftv(o,7,X). By IH, lhs = (VY. ([n[9/X]] = [m2[9/X]] = Y) = Y) = rhs. The
other cases are similar.

(2) By induction on the depth of inference of I, z:7 - M : 0. [
Here is the key theorem of the argument.

Proposition 3.10 For any two M programs of the same certainly-convergent type, M
and N, if M — N, then [@ - M] =1 [o + N]J.

Proof. The proof is by induction on the depth of inference of M — N. As one might
expect as the translations are standard, the reductions of products, sums and functions
go through straightforwardly. We show the case of products as an example, and also the
inductive case.
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Case M = Split((My, My), z1. x9. M3) — M3[Mifx,|[M2/zs) = N.  We may assume type
assignments @ = (M, M) : 01 X 09, @ F N : 7 and x1:01,29:090 & M3 : 7. We have
[oF M] = [o+ (M, M)] [7] A2l Azl 21201, 20000 - M3])
and
[0+ (M, M2)] = (AX. AfII2l= X f o= Mi] [o - Ma)).
So
[oF M] =2 O™ 22l [21:00, 20100 - M3)) [0 F Mi] [0 - Ms]
=2 [z1:00, z9:09 = M3][[2 F Milje, |[[© F Ma]/e,]

and hence by the substitution lemma, Proposition 3.9(2), we have
[+ M] =t [oF N]
as required.

Case M = E(M;) — E(N;) = N where M; — N;. First note from the type assignment
rules in Table 3.2 that since M is a program of certainly-convergent type, then so too
are My and N;. Therefore the induction hypothesis applies to the reduction M; — Ny,
and we have [@ - M;]—"[@ F N1]. Then the conclusion, that [o - M]—*[2 - N,
follows by inspection of the translation in Table 3.4 of any possible E(M;) and E(Ny).

Reductions involving recursive types also go through straightforwardly. Reductions con-
cerning lifted types do not arise, because only terms of certainly-convergent type are
considered. [

Theorem 3.11 If ¢ is a certainly-convergent type and M is a o-program, then there is
a canonical program V for which M || V.

Proof. By contradiction: assume that there is an infinite chain of M terms, beginning
M — My — Ms — ---. By the previous proposition, there is a chain of prA2 terms,
beginning [@ - M]—*[o + Mi]—"[2 - My]—7 ---. But this is a contradiction, because
by Theorem 2.10 prA2 is strongly normalising, so no such chain can exist. Therefore the
theorem follows. ]
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Chapter 4

Operational precongruence

We will develop in the next chapter an entirely operational theory of the semantic meta-
language M. The purpose of the present chapter is to investigate how an operational
equivalence can be defined on terms of M. For the sake of simplicity we consider in this
chapter operational preorders. Each such preorder induces an equivalence in the usual
way.

The theory of M in Chapter 5 depends on M having an operationally adequate precon-
gruence. An operationally adequate preorder is one that respects M evaluation in certain
ways. A preorder < is a precongruence iff whenever M < N then C[M] < C[N] for all
contexts C. Roughly speaking, a context, C, is a term containing holes; the term C[M] is
obtained by filling in each hole in context C with the term M.

We consider two candidate preorders: contextual order, <C, and applicative similarity,

§A. §4.4 investigates contextual order, attributed by Abramsky [2] to Morris, and used
by Plotkin [116, 117] and Milner [91]. If M and N are two M programs of the same type,
then M < N iff for all contexts C, if C[M] converges then so does C[N]. It is not hard to
show that contextual order is a precongruence. We show that it is operationally adequate
by defining an auxiliary preorder, experimental order, SE, which is evidently operationally
adequate, and showing that experimental and contextual order are the same. To do so,
we use a variant of Milner’s context lemma [91].

The other candidate preorder is applicative similarity, SA, investigated in §4.5. This
is a typed formulation of Abramsky’s applicative bisimulation. Applicative similarity
is the greatest fixpoint of a certain functional. Roughly speaking, if M and N are two M
programs of the same type, then M S,A N iff whenever M || V, there is U with N | U such
that U and V have the same outermost syntactic constructor, and their corresponding
subterms are applicatively similar. It is not hard to prove that applicative similarity is
operationally adequate. We show that it is a precongruence via a typed reworking of an
ingenious method due to Howe [58].

In §4.6 we prove an operational extensionality result [14], that contextual order equals
applicative similarity. Hence we have two independent characterisations of the same pre-
order. This preorder generates an equivalence in the usual way, which we refer to as
operational equivalence or applicative bisimilarity in the remainder of the disserta-

37
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tion.

Mathematical material needed to do the work of the chapter is introduced at the beginning.
Contexts are defined in §4.1. Experiments were used to define the reduction semantics of
M in Chapter 3 and they are needed here to define experimental order. In §4.2 we recall
the definition of an experiment and define contextual-experiments, which are experiments
that act on contexts and terms. The detailed syntactic operations in §4.1 and §4.2 are
used here only in the study of contextual and experimental orders. The theory of M in
Chapter 5 is based on programs and confined terms, which were defined in Chapter 3. In
§4.3 we formulate certain properties of relations on confined terms or programs that are
needed later.

4.1 Contexts

Intuitively, a context is a term possibly containing holes, written []. A context is pro-
duced from the grammar for M terms, with metavariables C and D instead of M and
N, augmented with an additional rule, C ::= []. Contexts are not identified up to alpha-
conversion, unlike phrases of abstract syntax, such as terms, which are. Write C = C’ to
mean that contexts C and C’ are literally the same. The sets of free and bound variables
of a context C are written fv(C) and bv(C) respectively. A canonical context, V, is a
context generated from the grammar for M canonical terms, with metavariable V instead
of V, augmented with an additional rule, V ::= [].

For any term M and context C, define the instantiation of M in C, C[M], to be the term
obtained by filling each hole [] in C with the term M. Variables free in M may become
bound in C[M], such as z when M = (z,y) and C = (Az.[]). If V is a canonical context,
then term V[M] is canonical, for any term M.

Suppose C and D are contexts, and z is a variable. If bv(C) N fu(D,z) = @, define
the substitution C[D/z] to be the context obtained by replacing each occurrence of the
variable z in C with the context D. This is a literal substitution; there is no renaming of
the variables bound in C, which have been assumed to be distinct from the variables free
in D.

We show that in certain circumstances, substitution and instantiation commute.
Lemma 4.1 Suppose C and D are contexts, x is a variable and M is a term. If bv(C) N
fo(D,z) = @ and x ¢ fu(M) then C[D/x][M] = C[M][PIM]/x].

Proof. By structural induction on context C. We consider the following cases in detail.
Case C=[. Ihs = ([)[M]= M. rhs = M[PIM]/x] = M since z ¢ fu(M).

Case C = . lhs = D[M]. rhs = z[PIM]jz] = D[M].

Case C=y #z. lhs = (y)[M]=vy. rhs = (y)[PIM]z] = y.
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Case C = (C1 Cy).

~

(C1Co)[Dfa][M]

(C1[Pfx)[M]) (Co[Dfz][M])
(C1[M][PIMYz]) (Co[M][PIM ) (IH)
(C1[M] Co[M))[PIM ]

(61 Cy)[M][PIM]/z]

Case C = (Ay.C'). We have y # z since bv(C) N {z} = @.
.C")[Dfe][M]

1[M]))
[PIM]e])) (IH)
E)[D[M]/w]

The other cases follow similarly to the last two and are omitted. [ |

4.2 Experiments and contextual-experiments

Experiments were defined in Definition 3.4 and used in Table 3.3 as an economical notation
for defining the reduction relation on programs of M. Recall the defining grammar:

= Split(-,z.y. M) | Case(-,z1. N1, z2. N2) | (- M) | Seq(-,z. N) | Elim(-)

We use experiments in this chapter to define experimental order on programs. When we
come to prove that experimental order coincides with contextual order, we will use a variant
of Milner’s context lemma. In this variant, we need to extend the idea of an experiment
to contexts. A contextual-experiment, £, is given by the following grammar:

E == Split(-,z.y.C) | Case(-,z1.C1,22.C2) | (-C) | Seq(+,z.C) | Elim(-)

The symbol “-” occurs once in each experiment or contextual-experiment. The term E(M)
and the context £(C) are obtained by replacing the occurrence of “” in E or £ by the
term M or context C respectively. Intuitively, an experiment wraps a destructor term
around a term; similarly, a contextual-experiment wraps a destructor context around a
context. Experiments are identified up to alpha-conversion; contextual-experiments are
not. We define fu(E) and fv(€) to the sets of variables free in experiment £ and contextual-
experiment £ respectively.

If E is a possibly-empty list of experiments Ey, ..., E, then write E(M) to mean the term
Ey(--- (Bn(M))---). Similarly, if £ is a possibly-empty list of contextual-experiments
&1y, &y write £(C) to mean the context E1(--- (E,(C)) - +).

Lemma 4.2
(1) If M is a program, then there is a unique list of experiments E such that either

e M = E(V) for some canonical program V, or
e M = E(Fix(z. N)) for some program Fix(z. N).
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(2) If C is a context, then there is a unique list of contextual-experiments € such that

either
o C=&([) or
e C = &(x) for some variable x, or
e C =&(V) for some canonical context V, or
e C = E(Fix(z.C)) for some context Fix(x.C)
Proof. By structural inductions on program M and context C. [ |

Experiments relate to reduction as follows:

Lemma 4.3 For any experiment E, list of experiments E, and programs M and N, such
that terms E(M), E(N), E(M) and E(N) are programs:

(1) E(M)— E(N) if M — N;
(2) E(M)— E(N) it M = N;
(3) whenever E(M) || V there is U such that M | U and E(U) | V;
(4) whenever E(M) || V there is U such that M | U and E(U) | V.

Proof. (1) In Table 3.3 reduction is closed under this inference rule, so part (1) holds.
Part (2) is a corollary of (1). Part (3) follows by an inspection of the five kinds of
experiment, and the corresponding evaluation rules in Table 3.3. The proof of (4) is by
induction on the size of the list £. The base case when the list is empty follows at once.
Otherwise, suppose that E(E'(M)) |} V. By IH there is some U’ such that E'(M) | U’ and
EU') | V. By (3) there is some U such that M | U and E'(U) | U'. From (2) we have
E(E'(M)) —»* E(E'(U)) =* E(U') =* V, that is, E(E'(M)) | V. ]

If £ is an experimental context and M is a term, then the instantiation of £ with M,
E[M] is the experiment obtained by filling in each occurrence of a hole in £ with the term
M.

Lemma 4.4 For any contextual experiment &, context C, term M, and list of contextual
experiments £ we have:

(1) €(C)[M] = E[M](C[M])
(2) E(C)[M] = E[M](C[M])
Proof. (1) Suppose & = Split(-,z.y.C"). Then &£(C) = Split(C,z.y.C"), and we have

E[M] = Split(-,z.y.C'[M]) so E(C)[M] = Split(C[M],z.y.C'[M]) = E[M](C[M]). The
other four cases are similar. Part (2) is a corollary of (1). ]

]
]
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Rules of R
TFzRaz

rt+ MiRN,' (l = 1,2) 'k MlRNl F,;E:O',y:T F M2RN2
Tk (M, My) R (N1, No) Tk Split(My, z.y. M) R Split(Ny, . y. Ny)

I'F MRN I'+MRN
THInl(M)RIn(N) Tk lar(M) R Inr(N)

'+ MlRNl F,xi:cn F MZRNZ (Z = 2,3)
rk+ CaSG(Ml,ilig. M2,:E3. Mg) ﬁCase(Nl,xg.Ng,xg.Ng)

T,z:0 - MRN I'+MRN; (i=1,2)

~ ~

'k (Azio. M) R (Ax:0. N) '+ (My M3) R (N1 Na)
L'+ MRN L+ MRN, T,z:i0 b MyRN,
[k Lift(M) R Lift(N) T F Seq(My,z. M) R Seq(Ny,z. N»)

T,z:o0, F MRN
I'F Fix?(z. M)R Fix? (. N)

' MRN ' MRN
T+ Intro(M) R Intro(N) T+ Elim(M) R Elim(N)

Table 4.1: Definition of R

4.3 Ground and confined relations in M

Recall that we defined notions of programs and confined terms in Definition 3.3.
Definition 4.5

(1) A ground relation, R, is a binary relation between programs of the same type.

(2) A confined relation, R, is a binary relation between confined terms of the same
type and environment. Write I' = M'RN to mean that (I' - M,I' - N) € R.

We can immediately make precise the notion of operational adequacy, which we seek to
prove for contextual order and applicative similarity. Let M program 2 be Fix(z.z), of
type scheme o for any o.

Definition 4.6 A ground relation, R, is operationally adequate iff for all programs
M, N, and canonical programs V :

(1) If M — N then NRM.
(2) If M |}V then VRM.
(3) M iff MRS
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Properties of Confined Relations

' MRN
Weak ——
I,I' - MRN
I,I' - MRN
Stren
' MRN
I',x:0 - M1 RM, I'-N:o
Spec
T F M, [N/z]R My [N/z]
' MRN
Precong ——MMmMmm—
I' F C[M]RC[N]
I'-MRN
Comp
I'- MRN

F,QZ’ZO' F MlRNl '+ MQRNQ

Sub
T F M, [M2/z]RN,[No/z]

Table 4.2: Rules concerning confined relations.

(4) M iff for some canonical V., VRM.

Confined relations are important for the theory of M in Chapter 5. We formulate some
useful operations and properties of confined relations, including precongruence.

Definition 4.7
(1) If R is a confined relation, let the confined relation R be defined by the rules in
Table 4.1.

(2) We define inference rules Weak, Stren, Spec, Precong, Comp and Sub in Ta-
ble 4.2. All these rules have the implicit side-condition that any sentence denoting
a pair of confined terms is well-formed. A sentence I' F MRN is well-formed iff
pairs (I' = M) and (I' = N) are confined terms of the same type.

(3) A confined relation is natural iff the rules Weak, Stren and Spec are valid.
(4) A confined relation is a precongruence iff the rule Precong is valid. A congru-

ence is a confined relation that is both a precongruence and an equivalence relation.

Proposition 4.8

(1) IfR is transitive and rules Spec and Precong are valid, then rule Sub is valid too.

(2) IfR is a preorder, then rule Precong is valid iff rule Comp is valid.
Proof. (1) Suppose I'yz:c F M;RN; and I' + MyRN,. By Precong we have

[+ M;[M2fe]RM;[N2/r] where we treat term M; as a context. By Spec we have
[+ My [No/e]RN1[N2/z]. By transitivity we have [' = My [Mz/x]R Ny [Vo/z].
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(2) (=) Given that R is a preorder and Precong is valid, we are to prove that (I"
MRN) implies (I' = MRN). We proceed by an analysis of which rule from Table 4.1
derived (I' F M RN ). We examine the rule for Case-terms as a typical example. Given
the inference
' MiRN; U, z;:0; F MRN; (i =2,3)
'+ Case(Ml, x9. MQ, 3. M3) 7% Case(Nl, 9. NQ, 3. N3)

we are to show that I + Case(My,z9. Mo, z3. M3)R Case (N1, x2. Ng,x3.N3). From
Precong we can calculate:

It Case(Ml,:vg. Mg,Ig. M3)R Case (Nl,.’L‘Q. M2,$3. M3)

'+ Case(Nl,xg.Mg,a;g.Mg)R Case (N1,$2.N2,$3.M3)
It CaSE(Nl,.’EQ.NQ,.’L‘g,.Mg,)R Case (Nl,.’L‘Q.NQ,Ig.Ng)

These together with the transitivity of R prove the result. The other cases are similar.

(«<=) Given that rule Comp is valid for preorder R, we prove by induction on the structure
of context C that for all I', M, and N, if ' - MRN then I' - C[M] R C[N]. Consider any
C and choose any I', M and N that satisfy the assumption I' F M RN. We examine three
cases.

Case C =[]. Goal I'+-C[M]RC|N] is precisely I' - MRN.

Case C =z. ' 2Rz follows from reflexivity of R.

Case C = Case(Cy,z.Cy,2.C3). By IH we have I' = C1[M]RC1[N], I, z:01 = Co[M]RCy[N]
and I, z:01 = C3[M|RC3[N]. These, together with the rule for Case-terms in Table 4.1
give I' - C[M] R C[N] and hence I' - C[M] R C[N] as required.

The other cases are similar. []

We will often need to induce a confined relation from a ground relation, and vice versa.
Definition 4.9

(1) Let I' be an environment x1:01,...,Tp:0,. Then a I'-closure is an iterated substi-
tution -[L1/z,]- - [Ln/r,], where each L; is a o;-program. (The order of substitution
does not matter because the variables are disjoint and each L; is closed.)

(2) The confined extension of a ground relation R is the confined relation R such
that I' = M'RN iff for all I-closures -[L/i], M[L/z|RcN[L/z].

(3) If R is a confined relation, then its ground restriction is the ground relation
{(M,N) |2+ MRN}.

(4) If R is a confined relation, write M'RN to mean that pair (M, N) is in the ground
restriction of R.

We typically use the same symbol for a ground relation and its confined extension. If R¢g
is a ground relation, and R is its confined extension, we write R to mean R.

Proposition 4.10 The confined extension of a ground relation is natural.

Proof. We are to prove rule Weak, Stren and Spec. To begin with the first two, we
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must show the following inferences are valid,
' MRN I,I"+ MRN
Weak ——— Stren
I, MRN ' MRN

where R is the confined extension of a ground relation R, for any given I', IV, M and

N, such that the sentences I' - MRN and I',T' F M'RN are well-formed. By definition

of R, these inferences would be valid if the following condition were true,
MLARGNLz it MIYEL/# RN L] (+)

for all I'-closures [f//a?] and I''-closures -[I//a?’]. But we know that fo(M, N) C Dom(I') from
the well-formedness of sentence I' - M'RN, and therefore we have M [L/z)[L'fe] = M[L/z]
and N[L/z][L'/#'] = N[L/z]. These equations immediately imply condition (), as required.
Finally, we are to prove the validity of the Spec rule.
I x:0 - MiyRM, '-N:o
T = My [N/e)RMs[N/x]

The sentence I', z:0 = M;RM; means that M [i/a?] [L'/e] RNy [f//a?] [L'/x] for any o-program
L' and suitably typed program list L. Let L' be N [E/a"c], which we know to be a program
since fo(N) € Dom(T') = &. Since M;[L/z][Lfe] = M;[L/z][NE/#)e) = M;[N/e)[L/z] for each
i, we have M [N/z][L/z] R Ms[N/z][L/z], which is to say that T + M;[N/e|RM[Nfz], as
required. [ ]

4.4 Contextual and experimental order

We begin with a notion of operational ordering [116], which we call contextual order:

Definition 4.11 Define contextual order to be the confined relation, SC, such that

I'+ M <Y N iff, for all contexts C, such that C [M] and C[N] are programs of the same
type, if C[M] converges so does C[N].

Programs C[M] and C[N] can be of any type; in Plotkin’s formulation they must be of
ground (integer) type.

Proposition 4.12 Contextual order is a precongruence.

Proof. It suffices to verify the Precong rule for SJC. Suppose that I' - M SC N. For
some particular context D, we are to show that I' - D[M] <¢ D[N]. This is to say that for
all contexts C, such that C[D[M]] and C[D[N]] are programs of the same type, if C[D[M]]
converges, then so does C[D[N]]. This follows at once from T' -+ M <° N by definition. m

It is not so straightforward to prove that contextual order is operationally adequate.
We do so by defining a second relation, experimental order, which is not hard to show
operationally adequate, and then showing that contextual and experimental order coincide.
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Definition 4.13 Ground experimental order <F is the ground relation such that

) o~ )

M <" N iff whenever E is a list of experiments with E(M) and E(N) programs of the
same type, if E(M) converges so does E(N). The confined relation experimental order
is the confined extension of ground experimental order.

It is not hard to see that ground experimental order is reflexive and transitive, and hence
that experimental order is a preorder. We prove operational adequacy.

Proposition 4.14 Ground experimental order is operationally adequate.

Proof. We are to show for all programs M, N, and canonical programs V:
(1) If M — N then N <" M.
(2) If M |}V then V <" M.
(3) My iff M <P Q.
(4) M iff for some canonical V, V <% M.

(1) We are to show for all experiment lists E, if E(N){ then E(M)|. Since M — N we
have E(M) — E(N). So if the latter converges so must the former. (2) Corollary of (1)
and the transitivity of SE.

(3) For the forwards direction, suppose that M{. To show M ,SE Q, we need that for
all E, if E(M) converges then so does E(Q). But for no E does E(M) converge. For
the backwards direction, suppose that M SE Q. So for all E, if E (M) converges then so
does E(Q) Proceed by contradiction and suppose that M converges. Taking E to be the
empty list, we have that €2 converges since M does. Contradiction.

(4) For the forwards direction, M|, means that M || V for some V. Then by part (2) we
have V §E M. For the backwards direction, suppose that V' ,SE M. From the definition
of SE we have that if V' converges, then so does M (take the list of experiments to be
empty). But V converges, being canonical. [ |

It is not hard to show the following.

Proposition 4.15 Contextual order implies experimental order.

Proof. Suppose that I' - M §C N for some context I' = zy:01,...,z,:0, and terms M
and N. It is necessary to show for any I'-closure [f//a?] that M <¥ N, where M = M [f//a?]
and ]\7~ =N [If/.i'] This is to say that for each suitably typed E, if E(M) converges then so
does E(N). Pick some list £ and define context C = E((Az1:01. ... Azpion.[]) L1 ... Ly).
We have C[M] =" E(M) and C[N]—" E(N). Then if E(M) converges then so must C[M].
If C[M] converges then so too does C[N], given that I' - M <“ N. But then E(N) must
converge, as required. [ |

The other direction is harder. The next two lemmas are needed to prove Proposition 4.18,
that the ground restriction of contextual order coincides with ground experimental order.

Lemma 4.16 Suppose context C = £(V) for some contextual experiment € and canonical
context V. Then there is a context D such that for all programs L such that C[L] is a
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program, C[L] — DI[L].

Proof. We assume that all the bound variables in context C are distinct (if they are not
we can easily find a context C' in which all bound variables are distinct such that for
any program L, C'[L] alpha-converts to C[L]). Since C[L] is a program, fv(C) = fv(€) =
fu(V) = @. Given such a C, the context D can be defined as follows:

if V = (C1,C2) and € = Split(-, z.y.C3) then D = C3[C/z][C2/y);

e if V =1Inl(C’) and & = Case(-,z1.Cy1,z2.C2)) then D = Cl[cl/;vl];

e if V=Inr(C’) and £ = Case(-,z1.C1,z2.Cs)) then D = Co[C'/xs];

e if V= (\z.C;) and € = (-Co) then D = C;[C2/z);

e if V = Lift(C;) and £ = Seq(-,z.C3) then D = Co[C1/z];

e if V =Intro(C’) and £ = Elim(-) then D = C;

Given the assumptions we have made about context C, in each case we can check that the
conditions hold for substitution of a context into another to be well-formed; we omit the
details. From the type assignment rules in Table 3.2 all the cases when C[L] is a program
are covered above, and from the definition of one-step reduction, it is not hard to see that
C[L] — D[L], given Lemma 4.1. ]

The proof of the following lemma is based on a similar proof due to Allen Stoughton for
the lazy A-calculus, and based on Milner’s context lemma [12, 91].

Lemma 4.17 (Context) For any two programs M and N of the same type with MSE
N, and any context C such that C[M] and C[N] are both programs of the same type, if
C[M] converges, then C[N] converges.

Proof. Choose any two programs M and N of the same type, and assume M ,SE N. We
prove the following hypothesis by mathematical induction on n, that for any context C
such that C[M] and C[N] are programs of the same type,

if C[M] converges in n steps, then C[N] converges.

We proceed by a case analysis of C. According to Lemma 4.2(2) there is a possibly-empty
list of contextual experiments, £, such that one of four cases holds:

Case C = £(V). Either list € is empty—in which case both C[M] and C[N] are canonical,
and hence converge—or the list takes the form &', € and we have C = £'(£(V)). Let
C' = £(V) and by Lemma 4.16 there is a context D’ such that for any program L,
if C'[L] is a program, then C'[L] — D'[L]. Let D = £'(D'), and for any program L,
we have C[L] = £(E(V))[L] = &'[L](C'[L])) — E'[L)(D'[L]) = D[L] using Lemmas 4.3
and 4.4. Since M and N are programs we have C[M]|— D[M] and C[N]—D[N]. Now
D[M] must converge in n — 1 steps, so by the induction hypothesis, D[N] converges,
and therefore so too does C[N], as reduction is deterministic.

Case C = E(Fix(z.C')). We may assume that all the bound variables in context C are
distinct (if they are not, we could prove the hypothesis by working with a con-
text C"” in which all bound variables are distinct and such that for any program
L, C"[L] alpha-converts to C[L]). Set D = &(C'[Fix(z.C")iz]). For any program L,



4.4. CONTEXTUAL AND EXPERIMENTAL ORDER 47

we have C[L] = £(Fix(z.C"))[L] = E[L](Fix(x.C'[L])) — E[L](C'[L][Fix(z.C'[L])fz]) =
E[L](C'[Fix(x-C")jz][L]) = D[L] using Lemmas 4.1, 4.3 and 4.4. Hence we have
C[M] — D[M] and C[N] — D[N]. Just as in the previous case, since D[M] must
converge in n — 1 steps, by the induction hypothesis, D[] converges, and therefore
so too does C[N].

Case C = £([]). Let context D = £(M) and then D[M] = E[M](M) = C[M], so D[M]
converges in n steps. But context D must take one of the forms already considered,
so we can conclude that D[N] = E[N]|(M) converges. But we have M <F N, so
E[N](N) converges, and E[N](N) = C[N].

Case C = £(z). Trivial because for no term L is C[L] a program.

All cases considered, the hypothesis is proved for all n, and the lemma follows. [ |

A corollary of this lemma and Proposition 4.15 is that ground experimental order and the
ground restriction of contextual order are the same.

Proposition 4.18 For all programs M and N of the same type, M ,SC N iff M §E N.

Proof. The forwards direction is a special case of Proposition 4.15. For the backwards
direction, suppose that M SJE N and that C[M] converges, where C is a context. Hence
by the context lemma C[N] converges too. |

We can extend this result to open terms via the next three lemmas.

Lemma 4.19 If M %E N then M §E N, where programs M and N are as follows:
(1) M = (M, M) and N = (N1, Na);

2) M = Split(My,z1.2z2. L) and N = Split(Ng, 1. x9. L);

3) M =Inl(M;) and N = Inl(Ny);

4) M = Inr(M;) and N = Inr(Ny);

5) M = Case(My,x;. Ly, x9. Ly) and N = Case(Ny,x1. Ly, x9. L);

6) M = Lift(My) and N = Lift(Ny);

7) M = Seq(My,z.L) and N = Seq(Ny,z. L);

8)

9)
)

(10

M = Intro(M;) and N = Intro(Ny);
M = Elim(M;) and N = Elim(Ny);
M = (M1 MQ) and N = (N1 Ng)

(
(
(
(
(
(
(
(

Proof. Since each M; and N; is a program and M; §E N;, in each case we have M; §C N;
by Proposition 4.18. Contextual order is a precongruence so M SC N in each case, and
therefore M ,SE N by Proposition 4.15, as required. [

Lemma 4.20 If M SJE N then M ,SE N, where programs M and N are as follows:
(1) M= (A\z.M') and N = (Az.N');
(2) M = Split(L,z1.x2. M') and N = Split(L, z1.z2. N');
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(3) M = Case(L,z1. My, z9. M) and N = Case(L,z1. Ny, z2. No);

(4) M = Seq(L,z.M") and N = Seq(L,z. N').
Proof. (2) For any list £, suppose that E(M)|.. We are to show that £(N){. We have that
M by Lemma 4.3(4). Hence L { (L1, L2) and we have M —7 M'[Lafz)][L2frs] and N —+

N'[L1/e, |[L2fey]. From M < N we can deduce M'[Ly/z,|[Lofwy] <F N'[Lijwi][L2/r,]. Since
E(M) converges we have that E(M'[L1/z;][L2/x,)) converges, and so E(N'[L1/z][Lafa))
converges. Since E(N) —T E(N'[Li/z,][L2/z,]) we have that E(N) converges as required.

Parts (1), (3) and (4) follow by similar arguments, which we omit. ]

Lemma 4.21 If M <" N then M <" N, where program M = Fix(z. M') and N
Fix(z. N").

Proof. The proof is a generalisation of the argument in the context lemma. We prove the
following hypothesis by mathematical induction on n, that for any context C such that
C[M] and C[N] are programs of the same type,

if C[M] converges in n steps, then C[N] converges.

So we actually prove that M 50 N, from which M ,SE N follows by Proposition 4.15. Just
as in the context lemma, Lemma 4.17, we proceed by a case analysis of C. There is a
possibly-empty list of contextual experiments, £, such that one of four cases holds:

Case C = £(V). The argument of the context lemma is valid here, because it took no
account of the structure of programs M and N.
Case C = £(Fix(x.C')). For the same reason, the argument of the context lemma applies.

Case C = £([]). Let D be the context &(M'[[/z]) (where term M’ is being used as a
context; we can assume that the bound variables in context M’ are distinct from z).
So C[M] = E[M](M) — EIM(M'[M/z]) = E(M'[[Jfx])[M] = D[M] and hence D[M]
converges in n — 1 steps. By IH we have that D[N] = E[N](M'[N/z]) converges.
Since M <" N we have that M'[N/z] <" N'[Njz]. Therefore, since E[N](M'[N/z])
converges, so does E[N](N'[N/z]). But C[N] — E[N](N'[N/x]), so C[N] converges.

Case C = £(z). Trivial because for no term L is C[L] a program.

Proposition 4.22 IfI'F M §E N then '+ M §E N.

Proof. By considering each rule from Table 4.1 in turn. We consider the rule for Case-
terms in detail. We have M = Case(M;, xy. My, x3. M3) and N = Case(Ny, z3. No, z3. N3):

LM <END Dozpoib M; <EN; (i =2,3)

r-M<’N

Let [i/a"c] be any T-closure and for any term L, write L for L[i/;f:]. We are to prove that
M ,SE N, that is:

CaSE(Ml,LEQ.MQ,ng.Mg) SE Case(Nl,xg.Ng,xg.Ng) (*)
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Using Lemmas 4.19 and 4.20 we have:
Case(Ml, 9. MQ, 3. M3) <E Case(Nl, 9. MQ, xs3. M3) from @+ Ml SE Nl

~

Case(Nl,Ig.Mg,Ig.Mg) <E Case(Nl,Ig.Ng,.’L‘g,.Mg) from €I9:09 F Mg SE NQ

~

Case(Nl,xg.Ng,xg.Mg) <E Case(Nl,xg.Ng,mg.Ng) from xr3:03 F M3 SE N3

~

Then by transitivity of experimental order we have (x) as required. Each of the other
cases follows similarly. [ |

This proposition together with Proposition 4.15 establishes that experimental and con-
textual order are the same, and hence that contextual order is an operationally adequate
precongruence.

4.5 Applicative and compatible similarity

We now define the ground preorder applicative similarity, which we will prove in §4.6 to
be an independent characterisation of contextual order.

Definition 4.23 Define function [-] over ground relations such that
MIS]N iff whenever M |} U there is V with N |V and U SV.

An applicative simulation is a relation S such that S C [S]. Define ground applica-
tive similarity, §A, to be the union of all applicative simulations. Define applicative

similarity, SA, to be the confined extension of ground applicative similarity.

Proposition 4.24

(1) Function [-] is monotone.

2) The identity ground relation is an applicative simulation.

(2)
(3) If each S; is an applicative simulation, then so is §1S5.
(4)

4) Ground applicative similarity is the greatest fixpoint of || and is the greatest ap-

plicative simulation.
(5) M 5‘4 N iff there is an applicative simulation S such that M SN

(6) Ground applicative similarity is a preorder.

Proof. Parts (1), (2) and (3) are easy to check from the definition. The remaining parts
then follow from Proposition 1.1. [ |

Definition 4.25 An applicative bisimulation is a relation S such that both S and
S~! are applicative simulations. Ground applicative bisimilarity, ~*, is the ground
relation such that M ~4 N iff M SA N and NSA M. Applicative bisimilarity, ~4, is

the confined extension of ground applicative bisimilarity.

Clearly applicative bisimilarity is an equivalence relation. Furthermore, for any programs
M and N, M ~* N iff for some applicative bisimulation S, (M, N) € S.

Proposition 4.26 Ground relations ,SA and ~* are both operationally adequate.
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Proof. When R stands either for applicative similarity or bisimilarity, we need to prove
each of the following properties.

(1) If M — N then NRM.

(2) If M | V then VRM.

(3) M iff MRQ.

(4) M iff for some canonical V, VRM.

To prove parts (1) and (2) it is sufficient to show that S15 is an applicative bisimulation,
where S1o is given by:

Si; (N, M) | M —* N}

Observe first that if M —* N then for any U, M | U iff N |} U, from Proposition 3.5(6),
and that Id C S15. Suppose (N, M) € S13 and N | U. Then M U and U IdU. Similarly,
suppose (M,N) € S;;' and M JU. Then N | U and U Id U.

For the forwards direction of part (3) we show that S3 below is an applicative bisimulation:

Sy € {(M,Q) | -3U.M J U}

For any pair (M,N) € S3, neither M| nor N|, so S3 is trivially an applicative bisimu-
lation. For the backwards direction of (3), either M ~4 Q or M ,SA Q implies that pair
(M, Q) is contained in some applicative simulation. Hence, as {2 cannot converge, neither
can M.

The forwards direction of part (4) follows immediately from the definition of M|} and part
(2). For the backwards direction, either U ~4 M or U SA M implies that pair (U, M) is
contained in some applicative simulation, so M} since U |}. [ |

We prove that applicative similarity for M is a precongruence by a typed reworking of
Howe’s method [58].

Definition 4.27 Define the confined relation compatible similarity, <", to be the
least set closed under the following rule.

PFL<SM  THRM<SAN
I'-L<"N

(Beware the ambiguous notation: the ‘*’ in ‘<™ does not denote reflexive transitive clo-
sure.)

Proposition 4.28
(1) Applicative similarity is natural (that is, rules Spec, Weak and Stren are valid).

2) Confined relations <* and <" are reflexive.

3) Confined relations é\* and SA both imply <*
4) IfT = My <" My andFFM2§AM3 then T + My <" M.

(2)
(3)
(4)
(5)

5) (Sub) If T, z:m = My S Ny and T+ My S* Ny then T+ My [Ma/a] <* Ny [Nofa].
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6) If @ U <* M then there is V such that M |}V and @ - U <* V.
7) If oM <"N and M U then o U <* N.

8) T +M<"N then T+ M <* N.

9) Applicative similarity is a precongruence.

(6)
(7)
(8)
(9)

Proof. (1) Applicative similarity is natural because it is the confined extension of a ground
relation (Proposition 4.10).

(2) By structural induction on M one can easily verify that T' = M <" M, so <” is reflexive.

A corollary is that %\* is reflexive.

(3) Corollary of part (2) and the definition of compatible similarity.

(4) If T + My <* M then for some N, T - M; <* N and T' F N <* M,. Since < is

transitive, we have ' F N SA M3. Then by definition we have I' - M; <" Mj.

(5) The proof is by induction on the depth of inference of I', z:7 = M; <" Ny. By definition,

there is N| such that T',z:7 = M, é\* N{ and T,z:7 - Ny <* Ni. By Spec we have

[+ N{[Nojx] <A [Va/z]. Proceed by a structural analysis of M; and show in each case,

that T = M;[M2/z] <* N{[V2/z]. The result will then follow by part (4). We show three

cases. The other cases are similar.

Case M; =x. So N| =z. We have I' - My <" Ny by assumption.

Case My =y #z. So N| =y. We have ' -y <" y by reflexivity, part (2).

Case M; = M\y:0. My. So N| = M\y.Ny and T, 2:7,y:0 = My S* Ny. By IH T, y:0
Mo[Mofe] <* No[Nofz]. So I' + My[Mfe] <* NI[No/e] by definition. Then we have
[+ M;[Ma/z] <* N{[N2/e] by part (3), as required.

(6) In each case there must be a program N such that U ,%\* N and N SA M. Proceed by

a structural analysis of canonical program U:

Case U = Az:7. M;. So N = Az. Ny with z:7 = M; <" Ni. Then N SA M implies that
M | Az. N| with z:7 = Ny <A N!{. Therefore z:7 = M; <" N{ by part (4), which
implies U <* (Az. N]) as required.

Case U = (M1, M3). So N = (N1, Np) with M; <" N; for i = 1,2. Then NSAM implies
that M l} (LI,L2> with Nl SA LZ So MZ g* Ll by part (4), and U = (Ml,M2> SO
U <" (Ly, Ly) as required.

(7) By induction on the depth of inference of M |} U, proceeding by analysis of M:

Case M canonical. Immediate.

Case M = (Mj M3). We have M; | Az:7. M3 and M3[Mz/z] || U. From M <* N there

are N1, Ny such that each M; <* N; and (Ny N») ,SA N. Since M; | Ax:7. M3 and
M; <" Ny we have (Az:7. M3) <* Ny by TH. By (6) there is N3 with Ny |} Az:7. N3 and
7:7 = M3 <" N3. By Sub, M3[Ma/z]<* N3[N2/x], and then by IH we have U <* N3 [Vo/z].
Since (N7 No) = N3[No/z] we have N3[Nz/x] <* (N1 Ny) by operational adequacy.
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From (N NQ)SAN we have N3 [NZ/x],SAN by transitivity. Finally from U <" N3[Nz/z]
we have U <* N by (4).

The other cases follow the same pattern as the ones above.

(8) First we prove that the ground restriction of compatible similarity is an applicative
simulation. Suppose for any programs M and N that M <" N. We are to show that

whenever M || U there is V such that M || V and U ,%\* V. Suppose that M || U. By (7)
we have U <" N. By (6) there is V such that N |} V and U <* V.

Suppose now that I' - M <" N. We are to prove that I' MSJA N, which is to say that for
all I'-closures, -[f//a?], programs M [i/a?] and N [f//a?] are paired in an applicative simulation.
But by Sub and reflexivity we have M [E/a"c] <IN [E/;f:], and since the ground restriction of
compatible similarity is an applicative simulation, we are done.

(9) A corollary of (3) and (8) is that applicative and compatible similarity are the same
confined relation. We know applicative similarity is a preorder from Proposition 4.24(6).
We know that rule Comp holds for compatible similarity from part (3). Therefore by
Proposition 4.8(2) applicative similarity is a precongruence. [

4.6 Contextual order and applicative similarity

Contextual order equals applicative similarity. Our proof is essentially a typed reworking
of Howe’s Theorem 3 [58].

Lemma 4.29 Ground applicative similarity equals the ground restriction of contextual
order.

Proof. Let § be the ground restriction of contextual order.

S € {(M,N) |+ M5 N}

To see why ,SA C S, it is enough to consider any (M, N) € ,SA and show that M§C N. If

C[M]{ for some context C, then C[M] <te [M] (since <" is a precongruence) and therefore
C[M]{ as required.

For the reverse inclusion, it suffices by co-induction to show that symmetric § is an
applicative simulation. Suppose then that (M, N) € § and that M |} V. Since M 50 N
there must be U such that N | U (or else the trivial context C = [] would distinguish M
and N). Based on the following case analysis of V' we show that V' S U, as required for S
to be an applicative simulation.

Case V = Inl(M'). Since U and V have the same type, U must take one of the
forms Inl(N') or Inr(N'). We can rule out the latter, or else the context C =
Case([],z. L,y. ), where L is some convergent program such as Lift(Az.z), would
distinguish M and N. Let context D be Case([], z. z,y. M"). We have D[M] < D[N]

since <% is a congruence. Moreover D[M] —+ M’ and D[M]—* N'. By operational

adequacy and determinacy the reduction relation — and its inverse —~! are in-
cluded in <*. Hence we have M’ <* D[M] and D[M] <™ N'. Since <* C S we have
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(M',N") € S and therefore V S U.

Case V = Az:0. M'. This time U must take the form A\z. N'. To show (Az. M")S(A\z. N'),
it suffices to prove that (M'[L/z], N'[L/z]) € S for arbitrary o-program L. Let context
D be ([ L). We have D[M] < D[N]. Since D[M] -+ M'[L/z] and D[N]—+ N'[L/x]
we may obtain (M'[L/z], N'[[/z]) € S as in the previous case.

Case V = Lift(M’). Again we may conclude that U takes the form Lift(N'). To show
that Lift(M’) 8 Lift(N'), it suffices to prove that M’ <¢ N’. Suppose then for an
arbitrary context C, that C[M'] and C[N'] are programs of the same type, and that
C[M'] converges. We must show that C[N'] converges too. We may suppose that
C[M'] and C[N'] are of lifted type; otherwise by the convergence theorem for M it
follows that both always converge. Set context D to be Seq([],z.C[z]). We have
that D[M] —T C[M'] and D[N] =+ C[N']. As before we have that C[M'] < D[M]
and D[N] < C[N']. Since M < N we have also D[M] <% D[N] and therefore by
transitivity that C[M'] < C[N']. Therefore if C[M'] converges, so does C[N']. Hence
we have established Lift(M’) S Lift(N'), as required.

The other cases follow by similar reasoning. [ |
Theorem 4.30 (Operational Extensionality) <¢ = <*

Proof. We must show
Fr+-M<ONETHFMSMN (%)

for arbitrary I', M and N. The backwards direction follows by the same argument as used
in the previous lemma to prove that ,SA C S. As for the forwards direction, we must show
that

MLz <t N(Lz

for any I'-closure [f//a"c] Set context D to be (Azy---xy,.[]) L1--- L, and we have o +
D[M] <¢ D[N] by precongruence. By Lemma 4.29 we have @ - D[M] <A D[N] and since

DM -+t M [E/;f:] and D[N|] -1t N [INJ/;Y:] we have @ = M [E/;f:] AN [E/ic], as required. |

In summary, this chapter considered two independent definitions of operational order,
contextual order and applicative similarity, and proved that they are in fact the same
relation, henceforth denoted by <. We use ~ for operational equivalence, equal to 505*1,
also known as contextual equivalence or applicative bisimilarity. Both characterisations
are of interest. By definition, contextual order is perhaps the simplest congruence induced
by the evaluation relation. By definition, applicative similarity is a greatest fixpoint,
giving rise to a powerful principle of co-induction used extensively in Chapter 5. Given
operational extensionality, Howe’s method and the context lemma method amount to the
same thing: a proof that operational order is an operationally adequate precongruence.
In a calculus where operational extensionality fails, the two methods would be of separate
interest.
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Chapter 5

Theory of the metalanguage

We conclude the three chapters on M by obtaining results about evaluation and equiva-
lence needed in connection with the denotational semantics of H in the next chapter. We
make extensive use in this chapter of the principal results obtained in Chapters 3 and 4:
that no term of a certainly-convergent type can diverge and that operational equivalence
(that is, contextual equivalence or applicative bisimilarity) is an operationally adequate
congruence.

In §5.1 we prove basic facts about operational equivalence; these facts parallel the axioms
of LCF [46, 105] but are simpler in that there are divergent terms only at lifted types. This

is a consequence of the convergence theorem proved in Chapter 3 via Mendler’s calculus
developed in Chapter 2. §5.2 investigates empty and one-point types in M, 0 def uX. X

and 1 ¥ 00 respectively. There are no programs of type 0. Any two programs of type 1
are operationally equivalent. §5.3 sketches the standard construction of iterated sum and
product types from binary sums, binary products and the empty and one-point types. We
conclude the chapter by investigating types of booleans and natural numbers in §5.4 and
§5.5 respectively.

5.1 Laws of operational equivalence in M

Recall that operational equivalence and order, ~ and <, equal the confined relations of

applicative bisimilarity and similarity, ~* and ,SA respectively. We know that both these
are operationally adequate precongruences. Let ground equivalence be the ground
restriction of operational equivalence.

Proposition 5.1 All the laws from Table 5.1 hold for operational equivalence:

(1) Exhaustion law;
2
3
4
)

Congruence;
Canonical Freeness;

(2)
(3)
(4) Beta, strictness and eta laws;
(5)

Co-induction.

95
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Exhaustion Law
If M is a o-program and o is certainly-convergent then (3V:o. M ~ V).
If M is a (oL )-program then either M ~ Q or (IN:0. M =~ Lift(N)).
Congruence
If (' M 2 N) then (I' - M ~ N).

Canonical Freeness

If(THFU~V)then (CHU=V).
Beta Laws
L F Split((My, My), z1. 2o. N) =~ N[Mijx,][M2/e,]
I+ Case(Inl(M), 2. Ny, x3. Ny) ~ Ny [M/x)]
[+ Case(Inr(M), 1. N1, x2. Na) ~ NQ[M/.'L'Q]
TF ((Az. M) N) ~ M[N/z]
I F Seq(Lift(M),z. N) ~ N[M/z]
T+ Fix(z. M) ~ M[Fix(z. M)/
I’ - Elim(Intro(M)) ~ M
Strictness Law
I'F Seq(,z.N) ~ Q
Eta Laws
'k Split(M, z1. . (x1,22)) ~ M
'k Case(M,z1. Inl (z1), 2. Inr (z2)) @ M
' (Ae.(Mz)) ~M if x ¢ fu(M)
I+ Seq(M, z. Lift (x)) ~ M
I'F Intro(Elim(M)) ~ M

Co-induction
A bisimulation-up-to-~~ is a ground relation, S, such that whenever
MSN, either M ~ N =~  or there are canonical programs U and V
such that M ~U, N~V and USV.

Any bisimulation-up-to-=~~ is a subset of ground equivalence.

Table 5.1: Laws of equivalence in M




5.1. LAWS OF OPERATIONAL EQUIVALENCE IN M o7

Proof. (1) Suppose that M is a o-program and that o is certainly-convergent. By the
convergence theorem, Theorem 3.11, M|, which is to say, (3V. M || V). By operational
adequacy, we have M ~ V.

Suppose that M is a (o )-program. Either M1} or M. In the first case we are done. In
the second case, there is some canonical program V such that M || V. Since V:o, by
inspection of the typing rules there must be a o-program N such that V' = Lift(N). By
operational adequacy, we have M ~ V ~ Lift(IN) as required.

(2) Congruence for applicative bisimilarity is a corollary of Proposition 4.28, in which we
showed that applicative similarity and compatible similarity coincide. (The congruence
rule in Table 5.1 is the same as the Comp rule in Table 4.2. The Precong rule in
Table 4.2 is a common way to define precongruence. We showed in Proposition 4.7(3)
that for any preorder, such as applicative similarity or bisimilarity, rule Comp is valid iff
rule Precong is valid.)

(3) Note first a corollary of Proposition 4.28(6): for any canonical programs U and V,
USVimpliesU S V.

We are to show for any I'-closure, -[f//;f:], that U[E/;f:] ~ V[i/a"c]. We have I' - U ~ V', which
is to say that for all I'-closures, -[E/a?], U[E/a?] o~ V[E/a?]. Since U and V are canonical, terms
U[i/;f:] and V[i/a"c] are canonical programs. Therefore, the corollary of Proposition 4.28(6)
applies, and we have U[E/a"c] ,% V[E/a"c], as required.

(4) Each law takes the form I' - My ~ Mp. First, we show that each law holds for
ground equivalence when I' is empty. For each beta law we can check by inspection that
M, —T Mg. In the strictness law Mp = Q and My ft. Therefore, by operational adequacy
we have Mj ~ Mp.

There are five eta laws. We can prove each law by a case analysis of program Mp based
on the exhaustion law. In the law for Split, there must be programs M; such that Mp ~
(M, Ms). By the beta law for Split we have M =~ Split((M;, M), 1. xs. {x1,x2)) =~
(w1, z9)[Mifr,][M2/x;] ~ Mpg. (Recall the general convention that bound variables, such
as r1 and x9 in the table, are distinct.) In the law for A-abstraction, there must be a
term M’ such that Mp ~ (A\y. M"). We know that = ¢ fo(Mg). So by the beta law for
A-abstraction, My, ~ ((Ax. M'[%/y]) = Mg. The other cases are similar.

Second, we prove each law for non-empty I'. Suppose we are to prove a law of the form
[+ Mj;, ~ Mp. We are to show, for any [-closure -[L/z], that My [L/z] ~ Mg[L/z]. Terms
are identified up to alpha-conversion, so we may assume that any bound variable in M,
or My is distinct from Z. Therefore the I'-closure can be distributed into the bodies of
terms My, and Mp to obtain programs M 1, and M r to which the law with I' empty can
be applied.

(5) Suppose S is a bisimulation-up-to-~. We will prove S~ C ~, where S~ is ~S~ (the
relational composition of ~, § and ~). Since S C S~ we will have established § C ~ as
required.

We show that S~ is an applicative simulation. Suppose then that M S~ N and that
M | U. We must find V such that N |V and U S~ V. Since M S~ N there must be
programs M’ and N’ such that M ~ M', M'SN' and N’ ~ N. Since M | U and M ~ M’
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there must be a canonical program U’ such that M’ |} U' and U = U’. Since M' |} U’ we
have M' ~ U’ which with M'SN’ implies there must be canonical U"” and V" such that
M ~U", U"SV" and V" ~ N'. Since V" ~ N’ there must be canonical V' such that
N V" and V"’ ~ V', From N’ || V' and N’ ~ N there must be a canonical V' such that
N |V and V' = V. In all we have

URU ~U"SV'~V' 2V

and therefore, by canonical freeness, that U RASRRV . Now, for any confined relations R

and R’, it is not hard to verify that RR' C RR'. Hence we have U S~ V, which completes
the proof that S~ is an applicative simulation. Since S~ is symmetric, we have shown
that S~ C ~ as required.

5.2 Empty and one-point types in M

Let type 0 def pX. X and 1 ety 0; in the following propositions we prove that 0 is
empty and that 1 has just one element.

Proposition 5.2 There is no program of type 0.

Proof. First, consider the relation ~» on programs of type 0, inductively defined by the
following two rules.

M- N M~ N

M~ N Intro® (M) ~+ Intro® (M)

By definition ~ includes the reduction relation —, but also reduces beneath Intros. Since
— is a partial function, so is ~». In Proposition 3.10 we showed that each — reduction of
an M program can be matched by one or more — reductions of its translation into pvA2.
According to Table 3.4 the translation [Intro®(M)] is urA2 program Introl®[M]; we can
strengthen Proposition 3.10 to the following.

IfgrFM:0and M~ N in M then [o - M] =T [@ F N] in prA2.

Hence we have a corollary analogous to the normalisation result for M, Theorem 3.11.
Let an ~-normal form be a program M of type 0 such that M 4.

For each @ - M : 0 there is an ~s»-normal form N such that M ~* N.

Any ~»-normal form is also an —-normal form, so it must look like Intro (M) where M
is also an ~s-normal form. So then each ~+»-normal form contains another ~+-normal form
that contains one less Intro®. If there is an ~»-normal form it must contain a finite number
of Intro®’s. Therefore if there is an ~»-normal form at all there must be one containing no
Intro”’s. But this is impossible, as each ~»-normal form is also an —-normal form, and
hence must contain an outermost Intro’. Hence there can be no ~»-normal forms, and
therefore no programs of type 0 at all. [ |

Proposition 5.3 There is a canonical program, %, of type 1 such that for any program
M, of type 1, M ~ x,
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Proof. Let * % Az:0. 2. To show that * is unique up to ~, it suffices to show that relation
S is a bisimulation.

S Y (M) |oFM:1}

Suppose that (x, M) € S. Since 1 is certainly-convergent there must be some canonical
term Az:0. N such that M | Az:0. N. Since * || *x = Az:0.x we must show that o F
* S Az:0. N, that is, for all programs L:0 that (z[L/z], N[L/z]) € S. But this is vacuously
true, as there are no programs such as L. [ |

5.3 Iterated products and sums in M

Define iterated product and sum notations by induction on n > 0:

1 ifn=0
(01 X -+ X 0op) def o1 ifn=1
o1 X (o2 X -+- X op) ifn>1
0 ifn=0
o1+ +on) ¥ o ifn=1

O'1+(02+"'+0n) ifn>1

Proposition 5.4 Suppose II = (o1 X -+- X 0,) and ¥ = (01 + -+ + 0,). Then
there are canomical terms (Mjy,...,M,)"" and In¥(M) for 1 < i < n, and terms
Split(M, zy. ...x,. N) and Case(M, z1. N1, ...,x,. Ny,) such that:

F'FM;:o0; (1<i<mn) '-M:1II L,zy:01,..., 200 F N : 7T

TH(M,...,M)":1I [+ Split(M,zy. ...z, N) : T
I'-M:o; r-M:x DzjojENi:m (1 <i<n)
I'FInP(M): % I'F Case(M,z1.Ny,..., 2. Np) : 7

MU (My,...,M,)"
Split(M, z1. ...z, N)=tN[Myz ] - [Mn/e,]

M |} InF (M)
Case(M,x1. N1, .., 2Zn. Np)—T N;[M/z;]

Proof. We can define the canonical terms as follows.

* ifn=20
(M, ..., M,)or<xon) €0 pp ifn =1
(M, (My, ..., M,_1)(@xxon)y jfp > 1
M ifn=1
{7t ton) () L )z teton) () ifn>1i=1

Ine” (In{72 ) (M) ifn > 1,0 > 1
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Given these definitions, it is straightforward to define terms Split(M, z;. ...z,. N) and
Case(M,z1.Ny,...,x,. Ny), and to prove the desired properties. [

5.4 Booleans in M

We define a boolean type Bool and two Bool-programs |#t| and |ff].

Bool 4 141

Ltt] % Ini(x)
def

L] = Inr(x)

Proposition 5.5 Any program of type Bool either equals |tt| or |ff]. Moreover, |it]
does not equal | ff|.

Proof. Suppose M is a program of type 1 + 1. By the exhaustion law, M either equals
Inl(N) or Inr(N) for some 1-program N. By Proposition 5.3, program N equals *, so M
either equals Inl(x) or Inr(x), that is, [¢t] or [ff].

To show that |#t| does not equal | ff |, proceed by contradiction and suppose that Inl(x) ~
Inr(x). By canonical freeness, Inl(x) = Inr(x). But there is no rule in Table 4.1 which could
derive Inl(x) = Inr(x), since the two terms have different outermost constructors, Inl and
Inr. Contradiction. ]

We define the notation if M then Ny else Ny to mean Case(M, u. N1, u. N3), where variable
u ¢ fu(N;). The if-notation has the following properties:

Proposition 5.6

(1) The following type assignment rule is valid:

'+ M : Bool CENj:7 (i=1,2)

' - if M then Ny else Ny : 7
(2) The operational behaviour is characterised by the following rules:
M ~ |it] M ~ |ff]

if M then N else No—TN; if M then N else No—1 Ny
(3) The following equational laws are valid:

'k (if| ¢t ] then Ny else Na) ~ N;

[+ (if |ff | then N; else Ny) ~ N,
I'F (if M then Nelse N) ~ N

Proof. (1) Immediate. (2) In the first rule, since M ~ |¢t|, we have M |} Inl(L) for some
1-program L. So Case(M,u. Ny, u. No) —* Case(Inl(L), u. N1, u. N3) = Ny. The second rule
follows by a similar argument. (3) These equations are simple consequences of the beta
and eta laws in Table 5.1. [
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5.5 Natural numbers in M

We define a type Num and a Num-program |n| for each natural number n € N.

Num % pX. 1+ X

10] % Intro(Ini(x))
ln+1] % Intro(Inr(|n)))
Proposition 5.7 Any Num-program equals |n] for some natural number n € N. More-
over |n] does not equal [n + 1], for any n € N.

Proof. The second part follows easily from canonical freeness. For the first part, we define
another extension, ~», of the reduction relation on Num programs.

M— N M- N M~ N
M~ N Intro(M) ~ Intro(M) Intro(Inr(M)) ~> Intro(Inr(N))

Evidently ~» is a partial function and is contained in ~. It is normalising in the sense that
if M is a Num-program, there exists an ~»-normal form N such that M ~* N. The proof
is by appeal to the embedding of M in purA2 from Chapter 3, similar to Proposition 5.3.
If Num-program M is ~»-normal, then it either takes the form Intro(Inl(N)), where N:1,
or Intro(Inr(N)) where N is also ~»-normal. Hence for any ~»-normal form M there is a
number n such that M ~ |n], by induction on the number of Intro’s in M. Moreover, for
an arbitrary Num-program M there is an ~»-normal form N such that M ~ N and hence
a number n such that M ~ |n]. ]

Let 0 — 7 abbreviate the partial function 0 — 7. The next proposition provides a general
method for defining partial functions by recursion.

Proposition 5.8 For each term F' that satisfies
FrFF:(c—=71)=(c—71)

there is a term Rec F' such that
I'FRecF:o0—1

and, if F' is a program
(Rec F)M —" F (Rec F) M

for any program M:o.

Proof. Let terms RECF' and Rec F' with types (0 — 7); and 0 — 7 respectively be as
follows.

RECF % Fix(fz. Lift (Az:0. Seq (fz,g. F g )))
Rec FF % \zwo. Seq (RECF,g.F gx)
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One can easily verify that Rec F' is of the desired type. Now, suppose that M is a program
of type 0 — 7. We may calculate as follows.

RECF Fix(fz. Lift (Az:0. Seq (fr,g9. F gx)))
Lift(Az:0. Seq (RECF,g. F gx))
Lift(Rec F)

(Az:0. Seq (RECF,g.F gz)) M
Seq(RECF,g. F g M)

Seq(Lift(Rec F'),g. F g M)

F (Rec F) M

(Rec F') M

Lo g

Hence we have the desired reduction behaviour. []

In order to define the elementary arithmetic operations needed in the denotational seman-
tics of H, we need the following programs.

Succ dZEf Az:Num. Lift (Intro(Inr(z)))
Pred % Az:Num. Case (Elim(z),w. Lift |0],y. Lift (v))
lter? (Z, F) d—Ef Rec(Ag:Num — o. Ay:Num.
Case(Elim(y), u. Lift (Z),y'. Seq (gy',z. F x)))

Proposition 5.9
(1) The type assignments

Succ : Num — Num
Pred : Num — Num

and
I'+-Z:0 I'rF:0—~0
I'Flter?(Z,F) : Num — o
are valid.

(2) These programs have the following reduction behaviour, where @ + Z : o and
gFF:0—0.
Succ|n] | Lift(|n
Pred 0] | Lift(|0]
Pred |n+ 1] | Lift(|n]
lter”(Z, F) [0] —* Lift(Z)
lter? (Z, F) Ln +1] =T Seq(lter®(Z, F) |n|,z. F z)

+1])
)
)

Proof. (1) By inspection. (2) From the beta rules of Table 5.1. We calculate the last two
properties. For any m we have

lter”(Z, F) [m] —* Case(Elim|m],u. Lift (2),y'. Seq (Iter”(Z, F)y',z. F x)).
When m = 0 we have

lter’(Z,F) [m]| —* Lift(2)
and when m =n+1

lter”(Z, F) [m] —* Seq(lter’(Z,F) |n],z. F z)
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as required. The other equations are no harder to prove. [ |

We can define some simple arithmetic operations:

N % jterNUm (a7, Suce) ¥

N % jterNum (a7, Pred) N

N % jeeNUm (0] Az 2|+ | M) N

M) Y Case(Elim(M), yy. | #t],y2. LfF])

M|<|N f Seq(N|—]M,z. if Iszero(z) then Lift(|ff]) else Lift(|¢t]))

]
M|=|N % Seq(M|<|N,b. if bthen Lift(|f ] )else
Seq(N|<|M,b. if bthen Lift(|ff]) else Lift(| ¢£])))

M
M|—
M

l_l—l—
X +
I._I_I_

Iszero

—~

Proposition 5.10

(1) L J+]1n] Y Lift([m + n])

—|ln] ¥ Lift([m —n])
L 1] Ln] ¥ Lift([m x n])
ua

)V
n+1)) 4 L]
JLift([¢t]) if m <n

]
JLift(Lff]) if n <m
=||m]| | Lift(|#t])
n| Y Lift(|ff]) if m #n

Proof. From the previous proposition by inductive arguments. [ |
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Chapter 6

An operational theory of
functional programming

The second half of this dissertation, which begins with this chapter, examines a small
functional language called H, and considers how theories for various forms of functional
I/O can be based on a theory of H. This chapter shows how to develop an operational
theory of programming for . Two parallel theories are developed: one based directly
on an operational semantics of H; the other based on a denotational semantics of A in
M. The former has been developed from first principles in this dissertation, whereas the
latter depends ultimately on Mendler’s result assumed in Chapter 2. This chapter is one
of the most important in the dissertation because of its potential applications far beyond
the study of functional I/0O.

H is essentially a fragment of Haskell. H contains the basic data and control constructs of
lazy functional programming—natural numbers, booleans, functions, recursion and lazy
algebraic types—but is small enough that its theory can be developed in this chapter. We
omit from H many constructs needed for practical programming but which are irrelevant
to the study of functional I/O—such as polymorphic types, type inference, modules and
realistic arithmetic.

In §6.1 we define syntax and typing rules for the object language H. The abstract syntax
of H is rather restrictive compared to Haskell notation. We show informally how certain
Haskell notations may be interpreted as H programs. This interpretation allows us to use
Haskell notation in Chapters 7 and 8 for A in our development of theories of functional
I/O. In a study like this which is meant to be relevant to practical programming, it is
good methodology to work with as realistic a notation as possible. Another merit of using
Haskell notation is that programs can be type checked and executed.!

We follow the pattern set by Plotkin [120] and give two semantics for #: a deterministic
lazy operational semantics and a denotational semantics in terms of the metalanguage M.
The style of denotational semantics is greatly influenced by the work of Moggi [100, 101]
and Pitts [112] on the computational A-calculus as a semantic metalanguage. The most
striking difference between the computational A-calculus and M is that the former’s se-

We have used Mark Jones’ Gofer system and also an implementation of H on top of Standard ML.
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mantics is ultimately domain-theoretic whereas the latter’s semantics is entirely opera-
tional. We finish §6.1 by proving a correspondence theorem between the operational and
denotational semantics: that evaluation of any H term e is exactly matched by evaluation
of its M denotation [e].

We base our theory of functional programming on equivalence of H terms. §6.2 develops
notions of ground and confined relations. We develop two relations: operational equiv-
alence and denotational equivalence. §6.3 develops operational equivalence directly from
the operational semantics of H. We prove that operational equivalence for H is a congru-
ence using Howe’s method, just as we proved the same result for M in Chapter 4. §6.4
defines denotational equivalence as the equivalence relation induced on H terms from the
denotational semantics in M. The main result of the section is a soundness theorem, that
denotational equivalence implies operational equivalence. We leave open the converse, full
abstraction.

In §6.5 we state a collection of basic programming laws, and show that they are valid for
both operational and denotational equivalence. §6.6 shows how a further collection of laws
and proof principles follow from the basic programming laws of the previous section. The
theory of functional programming developed in §6.5 and §6.6 is entirely operational, in
that it rests on operational equivalences defined from the operational semantics of either

M or H.

Finally, §6.7 considers what happens to the theory of functional programming if an ex-
ception mechanism is added to H. The resulting language is called HX and is needed in
Chapter 7 in the study of Landin-stream I1/0.

6.1 7, a small functional language

Table 6.1 shows the abstract syntax of 7, essentially a fragment of Haskell. The only
construct of H not present in Haskell is call-by-value function application, (ej“es). Call-
by-value is included in H because of the control it gives over evaluation order; such control
is useful when I/0O is expressed using side-effects.

We assume countably infinite sets of type variables and term variables ranged over by
metavariables X, Y, Z...and z, y, z...respectively. We assume there is a countably
infinite set of value constructors, ranged over by metavariable K. There are six cate-
gories of abstract syntax: types, o, 7, ...; algebraic datatypes, i; data-clauses, dc;
canonical terms, c; terms, e, p, q; and case-clauses, cc. Binding occurrences of type
and value variables are indicated in Table 6.1. The notations and conventions concerning
variables, substitution and alpha-conversion stated in §1.8 apply to H.

We let metavariable ¢ ranges over the set of literals, {#¢, ff} UN. We use metavariable &
to range over the arithmetic operators {4, —, x, =, <}. An # literal or operator is written
as £ or @; the corresponding canonical program in the metalanguage is written |£] or |® |
respectively. The H type Int includes just the natural numbers; we call this type Int for
the sake of compatibility with Haskell.

Suppose that p is the algebraic type (dataX = dcy | --- | dcp,). Then define functions
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Syntax
o,7 = X (type variable)

| Bool (booleans)
| Int (natural numbers)
| (01 ->02) (functions)
| (algebraic datatype)

p = (dataX =dcy | --- | dc,,)  (algebraic datatype, n > 0,

Con(dc;) = Con(dcj) iff ¢ = j,
X bound in each dc;)
dc = (Koy--om) (data-clause, m > 0)

c u={ (literal, ¢ € {tt, ff} UN)
| (\z:o->e) (abstraction, x bound in e)
| (K*ep em) (constructor application, m > 0)

e n= = (value variable)
| ¢ (canonical expression)
| (if e; thenejelsees) (conditional)
| (e1be2) (arithmetic, ® € {+, —, x,=,<})
| (e1e2) (call-by-name application)
| (e1"e2) (call-by-value application)
| rec’(z.e) (recursion, « bound in e)
| (caset e ofccy |-+ | ccp) (case-expression, n > 0)

cc == (K ->e) (case-clause)
Table 6.1: Syntax of H

Con(dc), Rank(K, ) and Arity(K, u) as follows:

Con(Koy---op,) e g
def

Rank(K,p) = i if K = Con(dc;)

Arity (K, p) © o ifde; = (Koy---om)
Operations Rank and Arity are well-defined functions because the side-condition on alge-
braic types in Table 6.1 requires that no two data-clauses contain the same constructor.

We place a further well-formedness condition on algebraic types: in any algebraic type
(dataX =dcy | --- | dcy,), for each clause dc; = (K 01 -+ 0y,), in each type o; we insist
that the type variable X occurs positively in each o, and that the only type variable free
in 0; is X. A type variable X occurs positively in a type 7 iff each occurrence of X in 7
is to the left of an even number of function ->’s. The only reason we make this restriction
is so that the types of H can be mapped into well-formed types of M. We implicitly
assume that any H type we deal with is well-formed. Just as in M, the set of well-formed
types is closed under substitution.

Type assignment in H

An environment ' is a list of variables paired with closed types, written
T1:01,...,Ty:0,, where the variables are pairwise distinct.? We adopt the same no-

*We follow Haskell in using the symbol :: for type assignment.



68 OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

Type Assignment
te{T,F} neN

Mxokbx:o ' 2 ::Bool 'Fn: Int

' ey :: Bool F'Fey:r F'keg::T

'k (if e; theneselsee3) T

I'kep::Int I'Fey::Int

®€e{+,—, x}
'k (e1Pes) :: Int
I'Fe;::Int I'ey::Int
D€ {<7:}
L't (e;@es) :: Bool
leiokexnr Pkes::(oc->71) I'ktes:o
Pk (\z:o->e):(0->7) Ck(erer) T
F'kej:(o->7) 'es::o Nziokeno
Tk (e1"es) T I'krec’(z.e) o
Ckeju(ojX]) (1<j<m) { p=(dataX =dc; | --- | dcy,)
FH(Ktey---ep)up de; = (K o1+ 0p)

Fke:u(op->=>0,->7)

(K ->e),(Koy--0m) T

(%)

Fkte:p Ik cey, (de[WX]) i (1<i<n)

u=(dataX =dcy | --- | dcy,)
Ik (caseteofcecy | -+ | cep) T
Canonical Terms
If c::Bool then 3b € {it, ff}.c =b.
If c::Int then dn € N.c = n.
If c::(0 =>7) then de.c = (\z ->e).
If c:pp then 3K e, ...,epm.c = (Kep - - ey).

Table 6.2: Type assignment rules for H
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tational conventions as defined for M environments at the beginning of §3.2.

Definition 6.1 The H type assignment relation, [' - e :: o, is inductively defined by
the rules in Table 6.2, which make use of an auxiliary relation I' - cc,dc :: o defined in the
rule marked with (x). Each rule bears the implicit side-condition that any environments
appearing in the rule are well-formed.

Proposition 6.2

(1) fT+ex7andI'Fe::o then T =0.

(2) ITtex7Tand CTV thenTV ke 7.

(3) IfT,zot ey =7 and ' eg :: o then I' - ej[®2/z] =2 7.
(4) If T+ e :: 7 then fu(e) C Dom(T).

(5)
(6) IfT"' e :: 7 then ftv(e,7) = @.

The statements about canonical terms in Table 6.2 are true.

Proof. Easy rule inductions. Part (6) depends on the fact that no type variable can occur
free in a type in the range of an environment, and that the environments used to derive
the type assignment relation must be well-formed. [ |

We define classes of programs and confined terms:
Definition 6.3

(1) A program is a term e such that @ + e :: 7 for some (necessarily unique) type T.
The type 7 is called the type of e, which is called a T-program.

(2) A confined term is a pair (I' F e) such that there is a (necessarily unique) type T
such that I' - e :: 7. The type 7 is called the type of (I' F e) and I is called the
environment of (I' - e).

Just as in M, the syntax of H carries enough type information that any program has a
unique type. We often omit type information from terms.

Interpreting Haskell in ‘H

We show in this section how some Haskell notations absent from # can nevertheless be
interpreted as derived forms of H. For tutorial and reference material on Haskell we refer
the reader to the Haskell report [59] and to Fasel and Hudak’s tutorial [37]. We shall use a
Haskell-like notation for the programming examples in the remainder of this dissertation.
We do not attempt a formal description of how Haskell can be interpreted in H, but
instead give a series of illustrative examples. Descriptions of similar interpretations are
well-known; for instance, Peyton Jones’ textbook [109] discusses in detail how Miranda
can be translated into a A-calculus notation of about the same level as H.

We will use the letters a, b and ¢ to stand for closed types of H. Type and value definitions
in Haskell may be polymorphic: that is, they may depend on one or more type parameters.
We interpret such definitions in H as defining families of closed types or terms indexed by
the type parameters. Here are three examples, the second of which also illustrates how
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id i a -> a
id x =X
fst : (a,b) > a
fst (a,b) = a
snd : (a,b) > b
snd (a,b) =b
const it a->b ->a

const a b

curry
curry f a b

uncurry
uncurry f ab

D)

(f . g x
head

head (x:xs)
tail

tail (x:xs)
(++)

[ ++ ys

(x:x8) ++ ys

map
map £ []
map £ (x:xs)

iterate
iterate f x

foldr
foldr £ z []
foldr f z (x:xs)

: ((a,b) =>¢c) >a >b -> ¢

: (a->b ->¢c) > (a,b) > c

: (b ->c) > (a->b) > (a->c)

f (g x)

: [a]l > a
X

: [a] -> [al
Xs

: [al —> [a] -> [a]

: (a ->b) > [a]l] -> [b]

: (a ->a) > a—-> [a]

a

f (a,b)

f (fst ab) (snd ab)

ys
x: (xs++ys)

1

f x : map f xs
X : iterate f (f x)
:(@a->b->b) >b ->1[a]l ->b

z
f x (foldr f z xs)

Table 6.3: Some standard functions
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id
fst
snd

const

curry =

uncurry =—

)

head =

tail

(++)

map

iterate
foldr

\x ->x)
\ab-> case ab of Tuple2ab->a)
\ab-> case ab of Tuple2ab->b)
\a->\b->a)
\f ->\a->\b->f (a,b))
\f ->\ab->f (fst ab) (snd ab))
\f ->\g->\x->1f(gx))
\xs -> case xs of

Nil ->Q

Cons X Xs -> X)

(
(
(
(
(
(
(
(

(\xs -> case xs of
Nil-> ()
Cons x Xs —> Xs)
rec(app. \xs -> \ys -> case xs of
Nil->ys
Cons x xs -> Cons x (app xs ys))
rec(map. \f -> \xs -> case xs of
Nil ->Nil
Cons x xs -> Cons (f x) (map f xs))
rec(iterate. \f ->\x->Cons x (iterate f (f x)))
rec(foldr.\f ->\z ->\xs ->case xs of
Nil->z
Cons x xs -> f x (foldr f z xs))

Table 6.4: Interpretations of Haskell functions in H
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Haskell-style algebraic datatypes are interpreted in H:
Polymorphic Haskell definition Interpretation in H

2

a->a Endo
Nil | Cons a (List a) | List® % (data X = Nil | Consa X)

type Endo a a->a)

data List a
id :: a -> a
id = (\x -> x)

iga @ (\x::a->x)

We use notation in typewriter font for H literals: for instance, interpret True, False, 563,
1441 and + as the boolean literals #£ and ff, the numeric literals 563 and 1441 and the
addition operator 4, respectively.

Write [a] as an abbreviation for List a. Define:

0 Y wi1 (empty list)
f .
ler,...,ent1] o (Conse; [eg,...,enr1]) (non-empty list)
(e:e) def (Consee’) (infix cons)

Define a series of polymorphic tuple types, indexed by m # 1:
data Tuplem al ... am = Tuplem al ... am

Define the following abbreviations for tuples, where m # 1:

(al,..-,am) def (Tuplemay - - ay) (m-tuple type)
(e1y---yem) def (Tupleme;...ey) (tuple)
(\(Z1,--.,2m) —>e) def (\y -> case y of (tupled abstraction,)
Tuplemxy - - Ty => €) y & fu(e))

The 0-tuple type, (), is called the unit type.

To discuss teletype I/O we need to support the Haskell type Char of ASCII characters.
For the benefit of simplicity (at the cost of cavalier software engineering) we define Char
to be Int. We interpret any Haskell character notation to be n, where n is the ASCII
code for the character. For instance, ’a’, >0’ and ’\n’ are interpreted as 65, 48 and 10
respectively. We interpret the Haskell functions ord:Char -> Int and chr:Int -> Char as
the identity function, id. We define a type of strings as in Haskell:

type String = [Char]

To illustrate how Haskell function definitions are to be interpreted in H, we show in
Table 6.3 some standard function definitions. Each of these function definitions can be
interpreted as an H definition as shown in Table 6.4. Let H program Q° def rec’(z.xz). We
use §) to represent undefined values (as in head or tail). The case-clauses in Table 6.4
use a derived syntax:

(Kzy...zp->€) def (K ->\z1->...\zp,—>e)
Indentation is used instead of | symbols to separate multiple case-clauses. Using the
theory developed later in this chapter, one can check that any of the definitions in Table 6.3,
when treated as an equation between programs, is provable from the corresponding H
definition in Table 6.4.
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Expressions in Haskell may contain local definitions. An expression (e where z = e') is to
be interpreted as the H expression (\z ->e)(e’). A Haskell list-comprehension of the form
[e |  =>¢'] is interpreted in H as (map (\z ->e)e’).

Operational semantics of H

The operational semantics of H is deterministic, and lazy in the sense that constructors
of algebraic types do not evaluate their arguments.

Definition 6.4 Left and right experiments, LE and RFE respectively, are functions
from terms to terms defined by the grammar at the top of Table 6.5. A left experiment
defines the leftmost position in a term where a reduction may occur. A right experiment
defines a position in a term where a reduction may occur provided terms to its left are
canonical. These are analogous to experiments in M, Definition 3.4.

The reduction and evaluation relations for H are the binary relations on H programs,

— and |} respectively, defined inductively by the rules Table 6.5.

Proposition 6.5

(1) IforexTande — e thenoke 7.
(2) IfotexTandel e thenotke 7.
(3) Ife — ¢’ and e — " then ' = e".
(4) Ifellc and e |} ¢’ then c = ¢’.

(5) The canonical terms are the normal forms of reduction.
(6) Ife || c then e —* c.

(7) Suppose e — e'. Then for any c, ¢’ || ¢ impliese | c.
(8)

e—*ciffelc.
Proof. Similar to the proof of Proposition 3.5. [ |

We define terminology for termination of evaluation:

Definition 6.6 Suppose e is a program. Say that e converges and write el iff there is a
(necessarily unique) canonical program c such that e |} c. Conversely, say that e diverges
and write ef) iff e does not converge.

Recall the program 22 defined earlier to be rec®(z.x), at each closed type a. We have
Q2 — O2; hence there is a divergent program at every closed type of H.

Denotational semantics of H

The denotational semantics of the object language H is given using M as a metalanguage.
The semantics is based on that of TINY-ML given by Pitts [112]. Classical domain-
theoretic semantics [118, 134] use explicit environments to model the binding of object
variables to their values. (These environments are typically denoted by the metavariable
p, and are not to be confused with the environments denoted by I' here.) Following
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LE ::

ell (K"e - em) CcCrannku) =K ->e') (e'er---en)lc

Reduction Semantics

~

(if - thene; elsees) | (-@e) | (-e) | (:"e) | (case-ofcey | -+ | ccyp)

RE := (£d") | (\z->e)")

(iftt theney else e3) — ey
(ifff thene; elsees) — e3
(Lob)hLel
(\z::0 ->e1) ex — e1[®2/1]
(\z::0 ->e)"c — e[a]
rec(z.e) — e[rec(z. e)/x]

CCRank(K,un) = (K - el)

(case(K" ey ---ey)ofcey | -+ 1 cc,) = (e'er -+ ep)

e e e e

LE(e) — LE(e') RE(e) — RE(e")

Evaluation Semantics

clc
et  eslc e bff  eslc
(if e; thenejelsee;)lc  (if e; thene,elsee;)|c
ety exllly
(e1en) Yty @ Ly
e1 § (\z->e3) es[€2/x] | c
(e1e2)dc
e1 J (\z->e3) ez || co es[2/z] | c
(e17e2) Y c
e[rec(z.e)/z] | c

rec(z.e){c

(casee ofccy | -+ | ccy) b c

Table 6.5: Operational semantics of H
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Pitts, we can take advantage of variable binding in the metalanguage and do without such
environments by mapping object variables to metavariables.

We structure the denotational semantics to reflect the distinction made by the operational
semantics between canonical and non-canonical terms. Computation is characterised op-
erationally either as a series of reductions or as a single evaluation. Canonical terms,
which are not reducible, are the answers from computation. Non-canonical terms, which
are reducible, represent a computation, which depending on the object language, may
terminate and return an answer or may diverge or may engage in other activity such as
I/O. We parameterise the denotational semantics on a metalanguage type constructor, 7',
with associated operations Let and Val that obey the following typing rules.

'-M:o '-M:To FvieEFN:TT
I'-Val(M): To '+ (Letv<=Min N): Tt

Free occurrences of v in N become bound in (Letv <« M in N). Type To represents
computations of type 0. To compute Val(N) simply return the answer N. To compute
(Letv < M in N), first compute M. If M returns an answer L, proceed to compute
NI[Lj] to obtain the answer from the whole computation. In principle, the benefit of
this parametric approach is that the same translation rules can be used with different
interpretations of the structure (7', Val, Let). For instance, in §6.7 we give an interpretation
where computations may raise an exception instead of returning an answer.

This parametric approach to denotational semantics was pioneered by Moggi [100, 101],
who defined a metalanguage, called computational A-calculus, into which object lan-
guages are translated, and whose own semantics is given by a computational model,
a category with a strong monad and other properties. Pitts [112] proposes the devel-
opment of evaluation logic for reasoning about the denotations of object programs in
computational A-calculus. Crole and Pitts [24, 25] investigate how to obtain the power
of general recursion in computational A-calculus. We have adopted Moggi’s parametric
approach but instead of using a metalanguage with a general categorical model, we use
M, a metalanguage based on Plotkin’s [120] but with a specific operational semantics and
effectively a term model. Rather than work in a general categorical framework we work in
a pragmatic operational framework in order to study a particular programming language
and its extensions for I/0.

We now give a denotational semantics of H in which computations may either diverge or
return an answer, to reflect the operational semantics of Table 6.5.
Definition 6.7 Make the following definitions of parameters T', Val and Let:

def
To =

Val(N)
Letv < M in N

oL
Lift(N)
Seq(M,v.N)

def
def
Given these parameters define denotations for the abstract syntax of H inductively ac-

cording to the rules in Table 6.6:

e to each type o, an M type [o];
e to each data-clause dc, an M type [dc];



76

OPERATIONAL THEORY OF FUNCTIONAL PROGRAMMING

Types
[x] < x
[Bool] 4 Bool
[Int] < Num
[0 ->7] € T[] - T[]
[data X =dci | -+ | dep] % (uX.[dei] + -+ + [den])
Data-clauses
[Koyom] € Tlo1] x - x T[om]
Canonical terms
\z::0 ->e] d% Az:T[o]. [e]
1 = |/
def
|KH ey - em| = Intro[[u]](lnRank(K,u)(([[el]]a BEEE) [[em]]>))
Terms
def
[2] = =
[e] = Val(lc|)
. def .
[if eq thenegelseeg] = Letv < [eq] in if v then [es] else [es]
[[61@62]] déf Letv, < [[el]] in Letvy, < |[ez]] in
) Seq(vy |®|ve, z. Val (x))
d
[e1es] = [er] o [es]
[e1"e2] def Letv; <= [e1] in Letwvs <= [ez2] in v1(Val(vz))
def .
[rec(z.e)] = Fix(z.[e])
[caseteof ccy | --- | ccp] C ety < [e]in
Case(Elimv, (v1. [cci1]k)), - - -, (vn- [ccn]k )
Case-clauses
[K ->e]” o Split(v,uy - ..U [e] ®us @+ 0uy) where m = Arity(K, p)
Table 6.6: Denotational semantics of H
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e to each canonical term c, an M term |c|;
e to each term e, an M term [e];
e to each case-clause cc, an M term [cc].
The bound variables v, v;, u; used to construct M denotations are assumed to be distinct

from any variables occurring free in object language terms. We use a derived notation for
function application.

MeN ® Letf<=MinfN

The notation associates to the left, that is, M; e M, e M3 means (M; e Ms) e Mj.
Finally, if H environment I' = zi:0q,...,2zy:0,, then [I'] is the M environment
z1:T[o1], ..., zn:T[on]-

Operations Val and Let are simply an alternative syntax for primitives Lift and Seq of M;
we use these abstract operations so that the rules of Table 6.6 can be re-used with other
interpretations of 7', Val and Let.

The only rules to make any assumptions about the type constructor 7" in the denotational
semantics rules in Table 6.5 are the ones for recursion and arithmetic. By translating
rec to Fix and using Seq in the translation of arithmetic we are assuming that 7" has the
property that for any o, T'o is a lifted type.

Proposition 6.8

(1) If 7 is an H type, then [7] is a well-formed M type.

(2) T Fe:: 7 then [I] F [e] : T[7].

(3) IfT,z::0 - ey = 7 and T' - ey :: o then [e][le2]/z] = [eq[o2/x]].

(4) [eo] ®---o[en] =eo --- en]-

Proof. Part (1) follows by structural induction on 7, given the restriction on the form of
algebraic types in H. Part (2) is by induction on the depth of inference of I' - e :: 7. Part
(3) is by induction on the depth of inference of ', z::0 - e; :: 7, and is straightforward

since the denotational semantics is compositional. Part (4) follows by an induction on 7.
|

Example denotations

We repeat the definition in A of the function head from Table 6.4.

def .
ccy = Nil->Q
def
ccy = Cons—>\x—>\xs—>x
def
head = \xs-> case xs of ccy | cco
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To illustrate the denotational semantics, we calculate the following denotations:

[[0]1] = (uX.1+4 (T]o] x TX))
[[1583]] = [Cons 1583Nil]
= Val(Intro(Inr([1583], [Nil]}))
= Val(Intro(Inr(Val|1583], Val(Intro(Inl*)))))
[head] = Val(Axs. [case xs of ccy | ccy])
= Val(Axs. Let v < [xs]in
Case(Elimv, v;. [[ccl]]gl[lnt]]], V3. [[ccz]]gz[lnt]]]))
fec I ™) = Split(vy, [920)
= Q
[[CCQ]]M:IMJ]] Split(ve, ur. ug. ([\x —>\xs ->x] e u; e uy))

[\x ->\xs ->xs] Val(Ax. Val (Axs. x))

We will return to these examples when we look at denotational equivalence in §6.4.

Operational correspondence between the semantics

First we show operational properties of the denotational constants—that is, the M type
constructor T" and operations Val, Let—used in the denotational semantics.

Lemma 6.9

(1) For any To-program M, either M1 or M | Val(N) for some o-program N.

(2) The operational behaviour of the denotational constants obeys the following rules:
Mo M |} Val(L)
(Letv <= M in N)ft  (Letv <= M in N)—=FN[Lp]

Proof. From the definitions of Val and Let. [ ]

We conclude this section on the definition of H with the proof of a close correspondence
between the operational behaviour of each H program and its denotation:

Proposition 6.10 For any H program e, canonical H program c, and canonical M
program V, we have:

(1) Ifel c then [e] | [c].

(2) If[e] 4V then there is c such that V = [c] and e |} c.
Therefore e || c iff [e] | [c].
Proof. Part (1) is proved by induction on the depth of inference of e |} c. We show two
example cases.

Case e |} e where e = c is canonical. We have [e] = Val|c| which is canonical, so [e]{[e].

Case e = (e1xez). We have ¢ = m; X mg where each e; | m;. By appeal to the induction
hypothesis and Proposition 5.10 we have the following.
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le] Letv) <= [e1] in Letvy <= [ez2] in Seq(vi|x]va,z. Val (z))
Letv; <= Val(|m1]) in Letwvy <= [ez] in Seq(vy| % |ve, z. Val (z))
Letvy <= [e2] in Seq(|m1 ][ X |ve,z. Val (z))

Letvy <= Val(|mz]) in Seq(|[m1]|x]ve,z. Val (z))
Seq([ma][x][mz], . Val (z))

Seq(|m1 x mg],z. Val (z)

Val(|m1 x ma])

[c]

Part (2) is proved by induction on the depth of inference of [e] || V, proceeding by a
structural analysis of e. Again we show two example cases.

(AR AR AN

Case e is canonical. We have [e] | V where V = [e], and e |} e.
Case e = (e;xe3). We have:
[e] = Letwv; <= [e1] in Letwy <= [e2] in Seq(vy| X |ve,z. Val (x))

Proceed by a case analysis of the evaluation behaviour of [e;] and [es]. From
Lemma 6.9(1), either [e;]f+ or (IN;. [e;] U Val(NV;)) for each i. But neither [e;] nor
[e2] can diverge or else by Lemma 6.9(2) [e] would diverge. So there are N; such
that [e;]{} Val(V;). By IH, we have e;{m; and [e;]{} Val(|m;|). Then by a calculation
similar to the one given for part (1) we have that [e] |} Val(|m; X mg|) and also that
e |l my X mo as required. [ |

6.2 Ground and confined relations in H

Before developing operational and denotational equivalence, we need several preliminary
definitions. This section reworks basic notions of ground and confined relations developed
first in §4.3. Recall the notions of program and confined term from Definition 6.3.

Definition 6.11

(1) A ground relation, R, is a binary relation between programs of the same type.

(2) A confined relation, R, is a binary relation between confined terms of the same
type and environment. Write I' - eRe’ to mean that (I'+-e,['Fe') € R.

We state a sense in which a ground relation respects the operational semantics. Recall
from §6.1 that program 2 of any type equals rec(z. z).

Definition 6.12 A ground relation, R, is operationally adequate iff for all programs
e, ¢, and canonical programs c:

(1) If e — €' then e'Re.

(2) Ifell c then cRe.

(3) eft iff eRQ.

(4) el iff for some canonical c, cRe.

The first half of Table 6.7 shows inference rules for constructing the confined relation R
from any confined relation R. The second half of the table shows six inference rules that
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Rules of R
F'FaRae THIRE

I'FeRe; (i=1,2) I'eRe, (i=1,2,3)

T+ (e1@es) R (e} Beh) I'F (if e; thenejyelsees) R (if e] thene) elsee})

[ zu7 F eRe' L'+ e;Re] (z =1,2)

F (\zuT ->e) R (\z:ir ->e') F (e1e2) R (e} e))
[, x::0 - eRe' '+ e;Re] n)

)R
(1<
'+ rec’(z.e) R rec’ (z.e') Ik (Ke e, R (K el -el)

I'-eRe' cc; = (K; > eg) cc, = (K; ->el) [ e;Re; (1<i<n)

[t (casee ofccy | --- | cc,) R (casee’ ofccy | --- | cch)

Properties of Confined Relations

I['FeRe
Weak ——MM—
[T+ eRe'
[T eRe

Tk eRe

Stren

Ix::oF e;Res F'ke o

Spec p p
L'+ e1[®/z]Res[® [x]

'k eRe
I+ Cle]RC[e]

Precong

I'teRe
Comp i
I'FeRe

[ z:0 e Re) 'k eyRe),

Sub -
[ ei[®2/z]Re! [2/x]

Table 6.7: Definition of R and rules concerning confined relations.
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may be valid for a confined relation.
Definition 6.13
(1) If R is a confined relation, then confined relation R is defined by the rules in the
first half of Table 6.7.

(2) The inference rules Weak, Stren, Spec, Precong, Comp and Sub are defined in
the second half of Table 6.7.

(3) A confined relation is natural iff the rules Weak, Stren and Spec are valid.

(4) A confined relation is a precongruence iff the rule Precong is valid. A congru-
ence is a confined relation that is both a precongruence and an equivalence relation.

As usual, the rules in Table 6.7 bear the implicit side-condition that any sentence in a rule
is well-formed. In rule Stren for instance, from the lower sentence (I' - eRe’) we may
deduce that fu(e,e’) € Dom(T), and then from the upper sentence (I, - eRe’) that
Dom(I') N Dom(I") = @, and hence that fv(e,e’) N Dom(I") = .

Proposition 6.14

(1) If rules Spec and Precong are valid for a transitive confined relation, then rule
Sub is valid too.

(2) If R is a preorder, rule Comp is valid iff rule Precong is valid.

Proof. Similar to that of Proposition 4.8. [ |

We will often need to induce a confined relation from a ground relation, and vice versa,
as follows.

Definition 6.15

(1) LetI' be an environment x1::01,...,%y::0,. Then a I'-closure is an iterated substi-
tution -[P1/z,]-- - [Pn/z,], where each p; is a o;-program. (The order of substitution
does not matter because the variables are disjoint and each p; is closed.)

(2) The confined extension of a ground relation R is the confined relation R such
that:

(T - eRe') iff for all T-closures -[P/z], e[P/i]R¢e'[P/i].
(3) If R is a confined relation, then its ground restriction is the ground relation

{(p,q) | @ - pRq}.

(4) If R is a confined relation, write pRq to mean that pair (p,q) is in the ground
restriction of R.

Proposition 6.16 The confined extension of a ground relation is natural (that is, rules
Weak, Stren and Spec are valid).

Proof. Similar to that of Proposition 4.10. [ |

We typically use the same symbol for a ground relation and its confined extension. If R¢g
is a ground relation and R is its confined extension, we sometimes write R¢g for R.
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6.3 Operational equivalence for H

In this section we define a notion of applicative bisimilarity directly from the operational
semantics of H. In §6.4 we will develop a second notion of equivalence from the de-
notational semantics. This operational theory of H parallels the theory of applicative
bisimilarity for M developed in Chapter 4. Just as in that chapter, one can also develop a
theory of contextual equivalence for H, and establish an operational extensionality result,
but for the purpose of studying functional I/O applicative bisimilarity is sufficient. We be-
gin with applicative similarity, the ground preorder from which we shall define operational
equivalence.

Definition 6.17 Define function [-] over ground relations such that
p[Slq iff whenever p |} ¢, there is ¢, with q |} ¢, and c, S Cq-

An applicative simulation is a relation S such that S C [S]. Define ground applica-
tive similarity, C, to be the union of all applicative simulations. Define applicative
similarity, C, to be the confined extension of ground applicative similarity.

We can restate the definition of [-] as follows:
Lemma 6.18 For any ground relation S, p[S]q iff

(1) whenever p || £ then q |} £;

(2) whenever p |} (\z::7 =>e1), then q || (\z:7 ->e3)
and for all T-programs p, (e1[P/z],e2[P/z]) € S;

(3) whenever p | (Kp1...pn), thenq{ (K qi...qn)
and (p;,q;) € S for each i.

Proposition 6.19

(1) Function [-] is monotone.

(2) The identity ground relation is an applicative simulation.
(3) If each S; is an applicative simulation, then so is §1S;.
(4) Ground applicative similarity is the greatest fixpoint of [-] and is the greatest ap-

plicative simulation.
(5) M C N iff there is an applicative simulation S such that MSN

(6) Ground applicative similarity is a preorder.

Proof. Parts (1), (2) and (3) are easy to check from the definition. The remaining parts
then follow from Proposition 1.1. [ |

Definition 6.20 An applicative bisimulation is a relation S such that both S and
S~ ! are applicative simulations. Ground applicative bisimilarity, =, is the ground
relation (C N C~'). Applicative bisimilarity, =, is the confined extension of ground
applicative bisimilarity.
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Clearly applicative bisimilarity is an equivalence relation. We have: for any programs e
and e', e = &' iff for some applicative bisimulation S, eSe’.

Proposition 6.21 Ground relations C and = are both operationally adequate.
Proof. Similar to the proof of Proposition 4.26. [ |

We adopt C and = as operational order and equivalence respectively on H.

Applicative similarity is a precongruence

We prove that applicative similarity for H is a precongruence by a typed reworking of
Howe’s method, just as we proved that applicative similarity for M was a precongruence
in Chapter 4.

Definition 6.22 Define the confined relation compatible similarity, C* to be the least
set closed under the rule:

[-eC*e” F'Fe"Cé
FFelC*é

Again, despite the notational ambiguity, C* is not defined to be the reflexive transitive
closure of C.

Proposition 6.23

(1) Applicative similarity is natural (that is, rules Spec, Weak and Stren are valid).
2
3
4
5
6
7
8
9

Confined relations E\* and C* are reflexive.

Confined relations E\* and C both imply C*.

If'tejC*egand'Hey Ceg then ' ep TF e3.

(Sub) If T, z::7 ey C* ¢} and I' - ey C* )y then I' F e[e2/z] T &) [ed/x].
If o+ ¢ C* e then there is ¢’ such that e |} ¢’ and ¢ C* ¢'.

IforeC*e andel c then @t cC* €.

IfT'FeC*e then'FeC €.

Applicative similarity is a precongruence.

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

Proof. The proof takes exactly the same form as Proposition 4.28. We omit the details of
parts (1) to (5), which are almost identical to the corresponding parts of Proposition 4.28.

(6) In each case there must be a program e’ such that ¢ C* ¢’ and @ F ¢’ C e. Proceed by

a structural analysis of canonical program c:

Case c =/£. So e’ =/£. Then £ C e implies that e | £, as required.

Case c = (\zu:T->e;1). So e = (\z->e)) with (z::7 - e; C* e)). Then &’ C e implies
that e | (\z->eY) with (z::7 F e} C ef). Therefore (z:7 - e; C* e!) by part (4),
which implies ¢ C* (\z -> ef) as required.

Case c = (Kpy...pn)- Soe = (Kqy...q,) with p; C* g; for each . Then ' C e
implies that e |} (K q} ...q},) with q; C q] for each i. By part (4) we have p; C* g/
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for each i, and therefore ¢ C* (K qf ...q),) as required.
(7) By induction on the depth of inference of e || ¢, proceeding by analysis of e:

Case e canonical. Immediate.

Case e = (e;Peg). We have e; | ¢; with ¢ = ¢, @ ly. From (e;Pes) C* €' there are

el (i = 1,2) such that e; C* e} and (e} Peh) C e’. By IH we have ¢; C* e, hence
£1®05) C* e'. From (£,®¥¢5) C* e’ by definition there are e/ such that ¢; C* e/ and
(L104 Lol y ; 4" ey
(ef@ef) T . By (6) we have e || ;. So (ef®el) | 1 ® Ly, and ¢ & 4y T (e ®e?)
by operational adequacy. Therefore ¢ C e’ by transitivity, and ¢ C* e’ by (3).

Case e = (ej e2). We have e; || (\z::7 ->e3) and e3[®2/z] |} c. From e C* &’ there are €]
(i = 1,2) such that e; C* e} and (e e5) C e’. Since e; || (\z::7->e3) and e; C* €]
we have (\z::7->e3) C* e} by IH. By (6) there is e} with e} | (\z::7 ->€}) and
(z::7 F e3 C* e}). By Sub, es[e2/r] C* e}[e5/z], then by IH we have ¢ C* e}[eb/z].
Since (e} e}) =+ e}[e5/z] we have ej[e5/z] T (e} e}) by operational adequacy. From
(e} eb) C e we have ej[e5/x] C e’ by transitivity. Finally from ¢ C* e}[5/z] we have
c C* e’ by (4).

Case e = (e;"ez). We have ey || (\z:iT —>e3), e2 |} c2 and e3[<2/z] | c. From e C* &’
there are e} (i = 1,2) such that e; C* e and (e "e}) C e'. Since e | (\z:7->e3)
and e; C* e] we have (\z::7 ->e3) C* e} by IH. Since es |} c2 and ey C* ef, we have
ce C* &), by IH. By (6) there is ef with e} | (\z::i7 ->e}) and (z2:7 - e3 C* &f).
By (6) there is c, with e} |} ¢} and cy C* c,. Therefore c; °* ¢} by (3). By Sub,
e3[C2/r] C* e[ch/z], then by TH we have ¢ C* ej[ch/z]. Since (e} eh) —+ e[ch/z]
we have e}[cs/z] C (e} e}) by operational adequacy. From (e} °e}) C e’ we have
e4[Cy/r] C e’ by transitivity. Finally from ¢ C* e}[C5/z] we have ¢ C* & by (4).

Case e = (casee; of --- | K;->e; | ---). We have e; || (K;p1...pp), for some j, and
(ejp1...pPn)  c. From e C* &' there are €] such that e; C* e} and (case e} of - |
K;—>e} | ---) Ce'. Sincee; | (K;pi...pn) and e; C* e} we have (K;p1...p,) CF €]
by IH. By (6) there are pj such that e} | (K, p} ...p;,) and p; C* p;. By Sub we have
(ejpP1---Pn) E* (e} P} ---Py), s0 since (ejp1...py) | c we have c °* (e p} ... py) by
IH. Since (case e} of --- | K;=>ej | ---) =7 (e} p}...p},) we have (e} p]...p},) C
(case €] of --- | K;->e] | ---) by operational adequacy. By transitivity and (4)
we have c C* €.

We omit the case for conditionals, which has the same structure as the cases above.

(8) First we prove that the ground restriction of compatible similarity is an applicative
simulation. Suppose for any programs e and e’ that e C* e’. We are to show that whenever
e |} ¢ there is ¢’ such that e |} ¢’ and ¢ £* ¢. Suppose that e | c. By (7) we have ¢ C* &’
By (6) there is ¢’ such that ¢’ | ¢/ and ¢ C* ¢’

Suppose now that (I' - e C* e’). We are to prove that (I' - e C €’), which is to say that
for all I-closures, -[P/i], programs e[P/z] and e'[P/z] are paired in an applicative simulation.
But by Spec and reflexivity we have e[P/z] C* e'[P/z], and since the ground restriction of
compatible similarity is an applicative simulation, we are done.

(9) A corollary of (3) and (8) is that applicative and compatible similarity are the same
confined relation, just as in Proposition 4.28. [ |
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To summarise this section, we have taken operational equivalence on H to be applicative
bisimilarity shown it to be an operationally adequate congruence.

6.4 Denotational equivalence for H

Two object terms are denotationally equal just when their denotations in the metalanguage
are equal. We take equivalence in the metalanguage to be a operational equivalence on
M, ~, the equivalence characterised as contextual equivalence and applicative bisimilarity
in Chapter 5.

Definition 6.24 Define denotational equivalence, ~, to be the confined relation:
(Mrexe) £ ([I]F[e] ~[e])

Since operational equivalence on M is a natural equivalence relation, so is denotational
equivalence on H. Next we prove that denotational equivalence respects the operational
semantics of H.

Proposition 6.25 Denotational equivalence is operationally adequate.

Proof. There are four parts to the definition of operational adequacy, Definition 6.12, to
establish. We appeal to operational adequacy for ground applicative bisimilarity in M,
Proposition 4.26, and the correspondence theorem between the operational and denota-
tional semantics of #, Proposition 6.10. We leave part (1) to the end of the proof.

Part (2). Suppose e |} c. Then [e] || [c] from the correspondence theorem. So [e] =~ [c]
from operational adequacy of M. Then e ~ ¢ by definition.

Part (3). We have been using the symbol Q to stand for Fix(z.z) in M and rec(z.z) in
H. Note that [Q] = Q, where Q is interpreted in H# and M in the left- and right-hand
sides respectively.
eff iff (-Jc.e )
iff (=3c.[e] I [c]) (Correspondence)

iff [e]
iff [e] ~Q (Operational adequacy for M)
iff [e] ~[Q] (since [Q] ~ Q)
iff e~
Part (4)

el iff (3c.elc)
iff (3c.[e] I [c]) (Correspondence)
iff (3c.[e] =~ [c]) (Operational adequacy for M)
iff (3c.e ~ )

a

Finally, part (1). Suppose e — ¢’. Either e’} or for some c, e’ |} c. In the former case, ef
too, so e ~ e’ ~ Q by part (3). In the latter case, e || c too, and e ~ e’ ~ ¢ by part (4). =

Moggi [100] defines a notion of computational model, based on a categorical strong monad,
as a general framework for reasoning with denotational semantics. We make an analogous
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definition of a computational monad in the context of M:

Definition 6.26 A computational monad is a structure (T, Val,Let) where T maps
any M type o, to an M type To, and Val and Let are M operations that obey the typing
rules:

'-M:o '-M:To FvieEN:TT
I'FVal(M) : To I'F(Letv <=M in N): Tt
together with the equations
I'-M:To Ivio N :To'
[+ (Letv < Val(M) in N) =~ N[M]

'FM:To
I'F (Letv <= M in Val(v)) ~ M

I'EM,:Toy [ viior My : Tog [ vgio9 = M3 : Tog

It (Letvg < (Letv1 < M;j in Mg) in M3) ~
(Letvl < Mj in (Letvg <= My in M3))

and the injectivity requirement that I' - Val(M) ~ Val(N) if T - M ~ N.

Lemma 6.9 stated properties of the evaluation behaviour of the operations used in the
denotational semantics as a preliminary to proving the correspondence theorem between
the operational and denotational semantics for H. In the following lemma we prove equa-
tional properties of the operations used in the denotational semantics as a preliminary to
proving the main result of this section: that denotational equivalence implies operational
equivalence.

Lemma 6.27 The structure (T, Val, Let) that parameterised the denotational semantics
of ‘H in Definition 6.7, is a computational monad.

Proof. The typing rules in Definition 6.26 follow by inspection. The first two equations
follow from the beta and eta laws for lifting in Table 5.1. Associativity of Let follows from
proving the following equation:

'+ Seq(Seq(Ml,vl.Mg),vg.M;,»)) >~ Seq(Ml,vl. Seq (Mg,’l)g.Mg,))

It suffices to prove the equation for I' empty, from which case the non-empty case follows.
By the exhaustion law in Table 5.1, either M; ~ € or M; ~ Lift(L) for some program L. In
the first case, both sides equal €2 by the strictness law in Table 5.1. In the second case, by
the beta law from we have lhs ~ Seq(Ms[L/v,],ve. M3) and rhs ~ Seq(Ms,ve. M3)[Lfv,] ~
lhs since vy ¢ fu(Ms3). Finally, the injectivity requirement follows from canonical freeness
in Table 5.1. ]

An example calculation

Before proceeding, we show an example calculation. Recall the denotations calculated on
page 77. We show that [head[1583]] ~ [1583] by calculating as follows, where we use
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only the laws of M from Chapter 5, the equational laws of a computational monad and
substitution properties from Proposition 6.8.

[head[1583]] = Letv <« [head] in v [[1583]]
Letv < Val(Axs. [case xs of ccy | cca]) in v[[1583]]
(Axs.[case xs of ccy | ccy]) [[15683]]
(Axs. Let v <= xsin
Case(Elim v, vy. [ccq]u, , va. [cca]y, ) [[1583]]
Letv < [[15683]1]in
Case(Elimv,v1. [cci]y,, v2. [cc2]w,)
Letv < Val(Intro(Inr([1583], [Nil]))) in
Case(Elimv,v1. [cci]y,, v2. [cc2]w,)
Case(Inr([1583], [Nil]), v1.[cc1i]v,, v2. [cC2]u,))
Tcoa],, (15831, IN311)
Split(([1583], [Nil]), u1. ug. [\x => \xs > xs] @ u; ® u2)
[\x ->\xs->x] o [1583] o [Nil]
Letv; < [\x=>\xs->x] o [1583] in vy [Nil]
Letv; <= (Letvy <= [\x—>\xs ->x] in vy [15683]) in vy [Nil]
Letv; <= ((Ax. [\xs ->x])[1583]) in vy [Nil]
Letv; <= [\xs ->1583] in v; [Nil]
(Axs. [1583])[Nil]
[1583]

M1

1

ORI R R

The calculation is extremely detailed but each step is trivial. A more tractable way to
reason about H programs is to appeal to a set of laws formulated at the object level,
such as those we develop in §6.5. Such laws can be proved correct by translation into the
metalanguage, and then used for object level reasoning.

The other point to make about this calculation is that it holds for any computational
monad, not just the one in Definition 6.7. An important reason for parameterising the
semantics is so that program calculations that do not depend on the detail of a particular
computational monad can be proved once and for all.

Denotational implies operational equivalence

We prove a soundness theorem: that denotational implies operational equivalence. Com-
pleteness or full abstraction—whether operational implies denotational equivalence—is left
as an open problem.

Proposition 6.28
(1) If (Tt c~c') then (T c=c').
(2) For all programs e, €', if e ~ ¢’ then e = €'.
(3) If (Tt e ~¢') then (['+e =¢').
Proof. Part (1). We have [I'] I Val|c| ~ Val|c'|, and therefore by the monadic injectivity

requirement, we have [I'] I |c| ~ |¢/|. By analysis of the type of ¢ and ¢’ there are three
cases to consider:
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Case c =/,c'=/. We have [['] F |¢] ~ [¢'], therefore £ = ¢' as required.
Case ¢ = (\zu7->e),c’ = (\zu7->¢’). We have [['] - (Az.[e]) =~ (Az.[e']) and there-
fore [T'], z:T[7] - [e] ~ [¢'] by canonical freeness in M, as required.

Case c=(Kej...ep),c/ =(K'e]...el). Suppose c and ¢’ are of type y in environment
I'. We have

[[F]] + Intro[[uﬂ(inRa,nk(K,,u)(([[el]]’ AR [[em]]>)) = Intro[[uﬂ(inRank(K’,u)(q[e,l]]’ AR [[GZ]D))

Therefore we have K = K' and m = n and for each 4, [I'] - [e;] =~ [e}] by canonical
freeness in M, as required.

For part (2) we prove that the ground restriction, S, of denotational equivalence is an
applicative bisimulation:

§ E {(e,) ] el =[]}
Since S is symmetric we need only prove that it is an applicative simulation. Suppose
then that e | c. By the correspondence theorem we have [e] || [c]. Since [e] ~ [e'] there
is a V such that [e'] | V and [¢] =~ V by operational adequacy for M. By correspondence
there is a canonical ¢’ such that e’ || ¢’ and V' = [¢/]. We have that [c] ~ [¢'], and hence
that ¢ ~ c¢’. Hence by (1) we have ¢ = ¢’, which is to say ¢ S ¢’ as required.

Part (3). We are to show for any I'-closure, -[P/z], that e[P/z] = &'[P/z]. But from [I']
[e] ~ [¢'] and Spec we have [e][[Bl/z] ~ [¢][[Bl/z]. By substitution lemma we have
[e[P/x]] = [€'[P/z]]. Then by part (2) we are done. ]

6.5 A theory of H programming

We state a collection of programming laws in Table 6.8. In his seminal study of program-
ming languages [138], Strachey begins his discussion of expressions and evaluation with the
definition that the “characteristic feature of an expression is that it has a value.” What
we have called canonical expressions correspond to what Strachey calls values. Expressions
in H are more expressive than Strachey’s in that the former include recursive expressions
and hence non-termination. Nonetheless what we have named Strachey’s property in Ta-
ble 6.8 conveys the essence of Strachey’s view: that every A program either equals {2 or
some canonical program.

We show in this section that all these laws hold for both operational and denotational
equivalence, except the principle of bisimulation-up-to-=, which has only been proved for
operational equivalence. We conjecture without proof that it holds also for denotational
equivalence. We begin with operational equivalence.

Proposition 6.29 All the laws from Table 6.8 hold for operational equivalence:
(1) Strachey’s property;

2

3

4

5

congruence;
canonical freeness;

(2)
(3)
(4) beta, strictness and eta laws;
(5)

co-induction.
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Proof. The proof is similar to that of Proposition 5.1. [ |

We prove the same results, apart from the co-induction principle, for denotational equiv-
alence.

Proposition 6.30 All the laws from Table 6.8 hold for denotational equivalence (with
~ in place of =):

1) Strachey’s property;

(

(2) congruence;

(3) canonical freeness;

(4) beta, strictness and eta laws.

Proof. (1) By definition of evaluation, any program e either diverges or evaluates to some
canonical program c. Then by operational adequacy, in the first case e ~ (2, and in the
second, e ~ c.

(2) Given (I' e = €') we are to show (I' - e ~ €’). Proceed by an analysis of which rule
in Table 6.7 derived (I' - e = e'). In each case from the rule’s antecedents, we can use the
denotational semantics rules in Table 6.6 to prove ([I'] F [e] ~ [e']) as required.

(3) Canonical freeness for denotational equivalence was proved as Proposition 6.28(1).

(4) Each law takes the form I' - ey, ~ er. By definition we are to show, for all [I']-closures,
-[f//;f:], that [e L]][f//;f:] ~ [er] [i/a”c] Terms are identified up to alpha-conversion so we may
assume that any bound variable in [er] or [er] is distinct from variables in the list Z. For
each beta law we can check by inspection that [ey] [f//;f:]—ﬁ[[e R [f//;f:] For each eta law we
can check the same property, but with appeal also to the laws of canonical programs in
Table 6.2. For each strictness law ep = Q we can check that [er][L/z]ft. Therefore for any
one of the strictness laws the required equation follows from operational adequacy of M.
|

As a simple example of co-induction, here is a proof of an equivalence (of two streams)
used by Paulson to illustrate Scott induction [105]. Since the two streams are unbounded,
structural induction would fail on this example.

Proposition 6.31 For any f::0 -> 0 and x::0,
iterate f (f x) = map f (iterate f x).
(Definitions of iterate and map are shown in Table 6.3.)
Proof. Consider relation S defined as follows.
S = {(iterate f (f x),map f (iterate f x)) | f::0 -> 0,x::0}

We shall prove that the union § U = is a bisimulation-up-to-=, and hence that S C =.
Suppose then that e and e’ are arbitrary programs such that eSe’. Set

iterate f (f (f x))
map f (iterate f (f x))

€0
€
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Strachey’s Property
Any program e either equals Q or some canonical term c.

Congruence
If(TFe=¢) then (C'Fe=2¢).

Canonical Freeness

If(Tkc=c') then (['Fc=¢).
Beta Laws
LH(ol) =080
It (ifT thene; elsees) = e
IF (ifF thene; elsees) = ey
ILF ((\z:io->e;) ex) = eg[®2/z]
T'F ((\z::o->e)"c) = e[%x]
I'F (case!(K;er---ep)of (K1 ->ef) | --- | (Kp->el)) =(e}e1---ep)
I+ rec(z.e) = e[rec(z. e)/z]

Strictness Laws

T+ LEQ) =0
T+ RE(Q) = O
Eta Laws
Il (if c theneelsee) =e
L'k (\z:o->cz)=c if x ¢ fu(c)
[k (casefcof - | (K1 ... T apity(k;,u) ~>€) | --+) =e if nox; € fu(e)

Co-induction
A bisimulation-up-to-=is a ground relation, S, such that whenever eSe’,
either e = €' = (), or there are canonical programs c, c’ such that e = c,
e =candcSc.

Any bisimulation-up-to-= is a subset of ground equivalence.

Table 6.8: Laws of equivalence in H
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and we can calculate as follows.
e = iterate f (f x)

= fx:¢
e’ = map f (iterate f x)

= map f (x:iterate f (f x))

= fx: e6
Since (f x) = (f x) and epSe{, we have (f x : e) Su= (f x: e))). Since e and e’ were
arbitrary we have established that S U= is a bisimulation-up-to-=. Hence § C = and the
proposition follows. [ |

6.6 Derived laws of programming

In this section we derive further laws of program equivalence. Their derivations depend
only on the laws in Table 6.8 (not including co-induction) so they hold for both opera-
tional and denotational equivalence. It is reassuring that these familiar results, functional
extensionality and structural induction, can be derived simply from the theory of H.

Functional extensionality

Two canonical functions are equal if whenever they are applied to the same argument they
yield the same answer.

Proposition 6.32 If (I',z::0 - cx =c'z) then (T'Fc=c":: (0 ->7)).

Proof. We may assume that the canonical terms ¢ and ¢’ take the forms (\z ->e) and
(\z->e'). We have (I',z::0 F (\z->e)z = (\z->¢')z). Therefore by the beta law for
functions we have (I',z::0 F e = €’). Then by precongruence (I' - ¢c = ¢’). ]

This principle does not extend to non-canonical functions. Counterexample: let programs
f and g of type o => 7 be Q and (\xz -> Q) respectively. Then (z::oc-fz =gx) yet £ #¢g
since £{) whereas gl}.

Structural induction for sum-of-product types

We can derive a familiar structural induction principle for a class of sum-of-product types.

Definition 6.33 A sum-of-products type is an algebraic datatype p such that p =
(data X =dc;|--- ldcy) and each clause dc; takes the form (K oy - -- 0,,) where each o;
is either the variable X or is closed.

For each such type u, define a program sizet:
size”* 1 p->Int

. def .
size# = rec(size.\z-> case z of cci|--- |ccy)
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where for each i, ifdc; = (K o1 - - - 0y,) we define cc; to be:

def
cc; = (Kxy- Ty =>1+ty+---+1ty,)

def | size(z;) ifoj =X
where each t; = { 0 otherwise

Define Finite" to be the following set of pu-programs:
Finiter < {e | e is a p-program and 3In € N. size’ e = n}
Finally, say that a u-program e is finite iff e € Finite".
Proposition 6.34 Suppose p is a sum-of-product type (data X = dcy|---ldcy). If ¢

is a predicate on finite u-programs, that is, ¢ C Finite!, then the following induction
principle is valid:

for each clause dc; = (K o1+ 0y,), Yei €¢1....Vey, € Y. (Key---ey) €@

def | ¢ ifo; =X
where each set ;= { {e | eioj} otherwise

Finite" C ¢

Proof. Suppose that the rule hypothesis holds. By mathematical induction on n we prove
for all p-programs e that if size(e) = n then e € ¢. This amounts to a proof that
Finite* C ¢ as required.

Suppose then that size(e) = n for some e. By Strachey’s property we have that either
e = () or e equals a canonical program. But size({2) = by the strictness law for case-
expressions, so e must be canonical. So there must be a clause (K o} ---0p,) such that
e=(Kei - -ep). From size(Ke;---e,) =n we have:

size(ej) if O'j =X

(1+t1+---+ty) =n where for each j, t; = { 0 otherwise °

We can show that each e; € ;. Either 0; = X or not. If o; = X, from the equation above
we have that size(ej) = m for some m < n. So by IH we have e; € ¢ = ¢;. Otherwise,
we know that e;::0; since e = (K ey ---ep,), and hence e; € 1);.

Since each e; € 1; we can conclude that e € ¢ from the rule’s hypothesis. Hence we have
that every program e:u of any size is contained in ¢. So Finite! C ¢ and we have verified
the induction principle. [ |

The list type is a sum-of-products type in the sense of Definition 6.33. Given a closed type
a of list elements, the general definition of size given there specialises to the following:

sizel®] 1 [a] ->Int
. [a] def .
size = rec(size.\z -> case z of
Nil->1
Consxxs->1 + 0 + size(xs))

The set Finite (™1 consists of those [al-programs xs such that (sizexs) = n, for some
n. We call such a list finite. Lists [1,2,3] or [] are finite; lists ©, [Q], (1 : Q),
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rec(xs.1 : xs) (which are all distinct, since Cons is lazy) are not finite, in this sense.
Proposition 6.34 yields the following structural induction principle for finite lists,

Nil € ¢ Vx::a.Vxs € ¢. (Cons xxs) € ¢
Finite] C ¢

where ¢ C Finite [a] is predicate on lists.

6.7 HX, an extension of H with exceptions

We develop our theory of functional programming by considering what happens when
we add an exception mechanism to H. Languages such as Standard ML and Modula-3
have an exception mechanism, which is typically used by programmers to express error
conditions. We use exceptions in Chapter 7 to model the demand for function arguments
during evaluation. In HX, a computation of type o can either return a value of type o,
diverge, or raise an exception. For the sake of simplicity, we consider a language with just
one exception, the canonical term bang. Raising an exception is represented by a program
evaluating to bang, which is present at every type. For the sake of brevity, we say the
program has banged. Program bang bangs. In general, if a program needs to evaluate
several subterms before terminating, and evaluation of any one of the subterms bangs,
then the whole program bangs. The only exemptions from this rule are programs of the
form (e; 77 eg). If evaluation of e; returns an answer or diverges, then evaluation of the
whole program does so too. But if evaluation of e; bangs, then the whole program behaves
the same as eo. The operator, 77, called biased choice, is a new primitive in HX; it is a
version without parameters of exception handling mechanisms found in Standard ML and
Modula-3.

Definition 6.35
e The abstract syntax of HX is based on the same syntactic categories as ‘H, defined by
the H rules from Table 6.1 augmented by the two new syntactic rules from Table 6.9.
e Define the predicate Mute(c) on canonical terms, to hold iff for no type 7 does
c = bang’.
e The type assignment relation, (I' - e :: 7), is inductively defined by the H rules from
Table 6.2, together with the new type assignment rules from Table 6.9.

e The reduction and evaluation relations for HX are the binary relations on HX pro-
grams, — and |} respectively, defined inductively by the reduction and evaluation
rules respectively, from Tables 6.5 and 6.9. The rule for call-by-value reduction in
Table 6.5 is to apply only when Mute(c), and the rule for call-by-value evaluation
only when Mute(cs).

e Make the following definitions of parameters T', Val and Let:
To ¥ (c+1),
Val(N) Lift(Inl(V))
(Letv < M in N) Seq(z,u. Case (u,v. N,w. Lift (Inr(x))))

def

def
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't bang” :: 0

Syntax
= bang (exception)
= (e1 77 e2) (biased choice)
Type Assignment

I'kFe o I'Fey:o

'k (e1 ?7e) i0

Reduction Semantics

el—)e'l

(bang” 77 e) — e

(e1 77 e2) — (&} 77 e2)

LE(bang”) — bang”
RE(bang”) — bang”

e |} bang?

gt LE(e) =T

(c??7e)—>c if Mute(c)

if @+ LE[bang?] :: 7
if @ - RE[bang?] :: 7

Evaluation Semantics

e ¢

es || bang” DHe e
LE(e) || bang” (e1Des) | bang”
e1 J (\z->e) e, || bang” e ey T
(e1"ez2) | bang”
e1lc Mute (c) ey | bang” e |l c
(e1 77e2) c (e1 77 e2) ¢
Denotational Semantics
bang : To
at : To—To—To
bang def Lift(Inr(x))
alt & Az. Ay. Seq (z,u. Case (u,v. Val (v),w.y))
[bang?] det bangl“l
[er 77 e2] X alt[er][es]

Table 6.9: HX, an extension of H with exceptions
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Given these parameters, together with the polymorphic M constants bang and alt
defined in Table 6.9, inductively define the denotational semantics of HX according
to the rules in Tables 6.6 and 6.9; denotational rule [c] = Val|c| from Table 6.6 is to
apply only when Mute(c).

Proposition 6.36

(1) The type assignment laws of Proposition 6.2 remain valid for HX, except for the
statements about canonical terms in Table 6.2.

(2) In HX, we have the following properties of canonical terms:

a) If c::Bool then either ¢ = bang®°°! or (3b € {tt,ff}.c = b).

g
b) If c::Int then either ¢ = bang™® or (In € N.c = n).
g

(¢) If c::(o => ) then either ¢ = bang(®™>7) or (Je.c = (\z->e)).

(d) If c::p then either ¢ = bangt or (3K, e1,...,ep.c = (Kep - - ep)).
(3) The operational semantics laws of Proposition 6.5 remain valid for HX .

(4) The denotational semantics laws of Proposition 6.8 remain valid for HX .

Proof. Part (1) follows by easy rule inductions, similar to Proposition 6.2. Part (2)
follows by inspection of the type assignment rules. Proof of part (3) is similar to that for
Proposition 6.5. (4) follows by simple inductions as before. [

As in H, we can prove a close correspondence between evaluation of an HX program and
its denotation.

Proposition 6.37

(1) For any To-program M, either M1y, or M || bang or M |} Val(N) for some o-program
N.

(2) The operational behaviour of the denotational constants obeys the following rules:
Moy Moy
(Letv <= M in N)f (alt M N){

M | Val(L) M | Val(L)
(Letv < M in N)—=tTN[Lp] (alt M N)—* Val (L)

M | bang M | bang
(Letv <= M in N)—Tbang (Letv <= M in N)=»TN
(3) Ifell c then [e] | [c].
(4) If[e] 4V then there is ¢ such that V = [c] and e |} c.
(5) el ciff [e] | [c].

Proof. Parts (1) and (2) follow by calculating from the definitions of Val, Let, bang and
alt.
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Part (3) follows by induction on the depth of inference of e |} ¢ as before. Part (4) follows
by induction on the depth of inference of [e] || V. We show one case to illustrate the proof.
Suppose that e is (e;®e2) and that [e] | V, where & € {4, —, x}. We have:

Letv; < [e1] in Letvy < [es] in Seq(vy|+]ve,z. Val (z)) | V

Since each [e;] is a program of type T'Num, by parts (1) and (3)) either [e;]f, (Im;. [ei] I
Val(|m;])), or [e;] |} bang. Since [e] converges to V' by appeal to part (2) we have only
three cases to consider:

(a) [e1] |} bang and [e] | bang =V.
(b) [e1] U Val(|m1]), [e2] |} bang and [e] | bang = V.

(c) lei] 4 Val([m1])), [e2] 4 Val(|mo])
and [e] =T Seq(|m1][®]|mz2],z. Val (z)) | V.

In each case we exhibit ¢ such that e | ¢ and [c] = V.
(a) Take c to be bang. By IH, we have e; |} bang and then (e;®e,) |} bang.
(b) Take c to be bang. By IH, we have e; | m; and ey |} bang, so then (e;@e>) | bang.

(c) Take c to be m; @ my. By IH, we have e; | mn; and e |} my, so e | m; @ my. But
Seq(|m1]|®][m2],z. Val (z)) | [m1 @ ma] so V = [m1 @ my] as required.

Finally, part (5) is a corollary of parts (3) and (4). ]

We now rework the theory of operational equivalence. We conjecture that denotational
equivalence could be reworked similarly, but leave this as future work.

Definition 6.38 We adopt all the definitions to do with confined relations and applica-
tive similarity and bisimilarity from §6.2 and §6.3 for HX, with the following amendment.
In ‘HX, given a confined relation R the confined relation R is defined by the rules in the
first half of Table 6.7, together with the additional rules:
It ejRe;
I I bang R bang Tk (ey 77 ¢}) R (e 77 &))

Proposition 6.39

(1) All the properties of confined and ground relations proved in §6.2 remain true.

(2) Applicative bisimilarity is an operationally adequate precongruence.

Proof. By reworking §6.2 and §6.3. We omit the details. |

As before we take operational equivalence to be applicative bisimilarity. We finish this
section on HX by reworking the laws of programming introduced in §6.5:

Proposition 6.40 The laws of H programming in Table 6.8 hold for HX given the
following modifications:

e The beta law for call-by-value application has a new side-condition that Mute(c).
e There are new beta laws for biased choice:
't (bang??7e)=e ['k(c??e)=c if Mute(c)
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e FEach eta law has a new side-condition that Mute(c).
e There is a new eta law for biased choice:
't (e ?? bang) = e
e There are additional strictness laws:
'F(Q277e)=0Q
I' - LE(bang) = bang
I' - RE(bang) = bang

Proof. By reworking the proof of Proposition 6.29. |

We leave a study of denotational equivalence for HX as future work. The following result,
stated without proof, would be useful.

Proposition 6.41 The structure (T, Val, Let) introduced in Definition 6.35 is a compu-
tational monad.

This implies for instance that the example calculation shown earlier for H is valid for HX
too.
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Chapter 7

Four mechanisms for teletype 1/0

In this chapter we consider four widely-implemented mechanisms for I/O in functional
languages: side-effecting I/O, continuation-passing 1/0, synchronised-stream I/O and
Landin-stream I/O. In the context of interaction with a teletype, we sketch the semantics
of side-effecting I/O and give detailed semantics for the other three mechanisms. These
semantics are based on the theory of H and HX developed in the previous chapter. Tele-
type 1/0O is a very limited model of I/O in which the computer interacts with a keyboard
and a character based printer. By concentrating on a simple I/O model the contrasts
between the four I/O mechanisms can be clearly seen.

We do not describe related work on using functional languages with more complex I/O
models in any detail. For the record, the interested reader is referred to papers on the
following topics: asynchronous interrupts [74], polling the keyboard [87, 147], real time
behaviour [29, 50], interaction with a file system [51, 64, 142], concurrency [11, 23, 57, 82,
126], controlling a window system [19, 33], writing an operating system shell in a functional
language [35, 73, 84, 131] and even the whole operating system [3, 53, 69, 136, 144, 145].
Surveys by Hudak and Sundaresh [60], Jones and Sinclair [67] and Perry [108] cover much
of this previous work.

In §7.1 we sketch how the denotational semantics of H can be extended to accommodate
side-effecting I/O and discuss why side-effecting I/O is unsuitable for lazy languages.

We base the semantics of the remaining three I/O mechanisms on the language HX defined
in Chapter 6. Continuation-passing and synchronised-stream I/O can be defined in terms
of H, but for Landin-stream I/O we need the exception mechanism in HX. We use
exceptions to represent demand for a value in the input stream.

We use a style of operational semantics for the remaining three mechanisms that was first
used by Holmstrom in his semantics of PFL [57]. Holmstrom used a continuation-passing
style to embed CCS-like operations for communication and concurrency in a functional
language. Starting with an evaluation relation for the host language, he defined the
meaning of the embedded operations in the style of a labelled transition system, as used
in CCS [94]. A labelled transition system is a way to formalise the idea that an agent
(such as a functional program engaged in I/O) can perform an action (such as input or
output of a character) and then become a successor agent. This style of semantics is

99
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attractive for at least three reasons. First, it can model a wide variety of nondeterministic
and concurrent computation: witness the CCS school of concurrency theory. Second, the
evaluation relation for the host language is unmodified; any property of the host language
without I/O will still hold after the I/O mechanism has been added. Third, the method
complements an operational language definition such as that of Standard ML [98]. In §7.2
we define notions of labelled transition system and bisimilarity on programs of HX.

We go further than Holmstrém by developing an equational theory of functional I/O based
on labelled transitions. We adopt bisimilarity from CCS as equivalence on programs
engaged in I/O. Bisimilarity is an equivalence on agents induced by their operational
behaviour: two agents are bisimilar iff whenever one can perform an action, the other can
too such that their two successors are bisimilar.

Bisimilarity should not be confused with applicative bisimilarity. Each is defined as the
greatest fixpoint of a certain functional, but they relate different kinds of behaviour. Ap-
plicative bisimilarity (as developed for M in Chapter 4 and for H and HX in Chapter 6)
relates the evaluation behaviour of two programs. Bisimilarity (as defined in this chapter)
relates the observable communication behaviour of two programs. Bisimilarity was intro-
duced in Milner’s theory of CCS, whereas applicative bisimilarity comes from Abramsky’s
theory of lazy A-calculus (which itself followed CCS in part).

Both Landin-stream and synchronised-stream I/O are based on stream transformers, func-
tions of type [inp] -> [out], where inp and out are types of input and output values re-
spectively. §7.3 defines some general operations on stream transformers. §7.4 gives labelled
transition system semantics for Landin-stream 1/0, and explains why HX rather than H
is needed. §7.5 and §7.6 give labelled transition system semantics for synchronised-stream
and continuation-passing I/O respectively. The main result of the chapter is proved in
§7.7: that there are bisimilarity preserving translations between the three mechanisms for
teletype I/O other than side-effecting I/0O. In this sense we have proved that the three are
of equal expressiveness. The mappings between Landin-stream and continuation-passing
I/O are original, whilst those between synchronised-stream and continuation-passing I/0O
were discovered during the design of Haskell [59, 60], but have not hitherto been verified
formally. §7.8 concludes the chapter with a discussion of the practical use of the three
mechanisms suitable for lazy languages.

7.1 Side-effecting I/0

The original functional language, LISP 1.5 [83], had a side-effecting I/O mechanism.
Side-effecting I/O, which is by far the most widely-used mechanism for functional I/0,
persists in LISP and is found in other eager languages such as Scheme and Standard ML.

To accommodate side-effecting I/O in H we add two new non-canonical operations to the
syntax of expressions,

e u= read (read a character)
| write(e) (write a character)
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with typing rules and informal intended meanings as follows.
I'Fe: Int
I'Fwrite(e) :: ()

I' - read :: Int

e read means
“input a character n from the keyboard and return n.”

e writen means
“output character n to the printer and return unit, ().”

For example, here is a program to read two characters and output their sum.

main :: ()
main = write (read + read)

(Pardon the cavalier identification of Int and Char from §6.1.)

The denotational semantics of # can be extended to accommodate side-effecting 1/0.
Apart from diverging, there are three things a computation can do: return an answer, ask
for a number as input, or output a number. Accordingly a computation of H type o can be
modelled as a term of M type T[o], with the following definition of 7', and corresponding
definitions of Val(M), [read] and [write(e)].

def
To =

Val(M)
[read]
[write(e)]

(pX.0+ (Num — X )+ (Num x X)), (X € ftv(o))
Lift(Intro(Iny(M)))

Lift(Intro(Ina(Av:Num. Val (v))))

Letv < [e] in Lift(Intro(Ing(v, [)])))

def
def
def

This construction is based on Moggi’s notes [101, Exercise 4.1.18.1] but the basic idea
goes back at least as far as Plotkin’s Pisa notes [118, Example 4 in Chapter 5]. This is
just a sketch of the semantics; we omit the definition of Let. An analogous object level
construction is detailed in Chapter 8. (Were M to be used in a detailed study of side-
effecting I/0O it would need to be extended to include mutually recursive M types, such

as [[o1].)

We do not pursue this construction here because the primary focus of this dissertation
is the study of I/O for lazy languages, and, as is well-known, side-effecting I/O does not
combine well with lazy languages. There are three reasons why the use of side-effecting
I/0O in a lazy language is problematic. First, to use side-effecting I/O in a lazy language, a
programmer must be concerned with evaluation order, which because of laziness is harder
to predict than in an eager language. Side-effecting I/O compels programmers to think
about something that otherwise they can usually leave to the implementation.

The other two reasons depend on the observation that Strachey’s property no longer holds.
Recall Strachey’s property from Chapter 6: that every program either equals € or some
canonical program. Strachey’s property holds for H and HX, but not for H extended
with side-effecting operators. Programs read and write(n) neither diverge nor equal any
canonical program.

The second reason, then, that side-effecting I/O does not combine well with lazy languages
is that adding side-effects makes a functional language harder to reason about. Proofs of
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programs are harder to construct, because there are more cases to consider than covered
by Strachey’s property. This applies to eager languages as well. With side-effecting 1/0,
one would expect that every program either diverges or converges to a canonical program,
or does some I/O to become another program. How to formulate precisely and verify this
expectation is an open question.

The third reason concerns efficiency. Strachey’s property is important if languages with
call-by-name semantics for function application are to be implemented efficiently. Such
languages are only practical if call-by-need semantics coincides with call-by-name. If
so, call-by-name applications can be implemented by call-by-need as in graph reduction
[109, 143] for instance. Recall the difference between the two semantics for an application
(\z ->e)e’. In both regimes the function body e is evaluated. Under call-by-name seman-
tics, each time need arises for the value of z, argument e’ is evaluated. Under call-by-need
semantics, the first time need arises for the value of z, argument €’ is evaluated, but its
value is retained, and re-used if subsequently the value of z is needed.

We give an informal proof that if evaluation is deterministic and operational equivalence
satisfies operational adequacy and Strachey’s property, then call-by-name semantics co-
incides with call-by-need. Consider an application (\z ->e)e’. If the value of e does not
depend on z then clearly both regimes are equivalent since the argument e’ is never evalu-
ated. Otherwise suppose that the value of x is demanded one or more times. By Strachey’s
property, the argument e’ either equals €2 or some canonical form, so by operational ade-
quacy, e’ either diverges, or converges to a unique canonical form c. If ¢’ diverges then so
does the evaluation of e under either regime. Otherwise e’ deterministically converges to
¢ so it makes no difference whether the second and subsequent uses of the argument use
a retained copy of ¢ or evaluate e’ again.

If evaluation of argument e’ causes side-effects, then call-by-need may not be equivalent to
call-by-name, and hence an important implementation technique is invalid. Witness the
examples (\z >z + z)read or (\z ->z + z)(write(’A’);205), where we define (e;e’) to
mean ((\y->e’)"e), with y ¢ fv(e’). Under call-by-name, execution of the two examples
involves two inputs and two outputs respectively; under call-by-need, execution of the
programs involves just one input and one output respectively.

In summary, side-effecting I/O and lazy languages do not combine well because of the dif-
ficulty of predicting the order of side-effects, of constructing proofs of program properties,
and because call-by-need semantics ceases to be a correct implementation technique. This
explains why in practice side-effecting I/O is only used with call-by-value languages such
as LISP or ML.

The absence of Strachey’s property by no means rules out proofs of program properties,
but we leave further investigation of H with side-effecting 1/O as future work. We conjec-
ture that the beta, eta, strictness, precongruence and canonical freeness laws of Table 6.8
remain valid. The only work to present a theory of I/O in a call-by-value language is the
algebra for FL programs developed by Williams and Wimmers [9, 151]; FL uses what is es-
sentially side-effecting I/0O. One might dispense with call-by-name semantics and develop
an equational theory for call-by-need semantics, and hence accommodate side-effecting
I/0O. Such a theory would have to make a distinction between the first and subsequent us-
ages of bound variables, which on the face of it is much more complicated than the theory
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of call-by-name and call-by-value applications developed in Chapter 6. Previous work on
the semantics of call-by-need in deterministic functional languages has focused on prov-
ing that an operational semantics using call-by-need correctly implements a denotational
semantics specifying call-by-name [80, 122].

In his unpublished dissertation, Redelmeier [124] sketched an I/O scheme that used side-
effecting operators together with data dependencies to ensure a predictable order of side-
effects. His idea was that each side-effecting operator took an additional “state” parameter,
and returned a new state. He argued that if each state value has a unique successor, then
there is a predictable thread of side-effects. His scheme was unsatisfactory because he
did not suggest how to guarantee single-threading. Hudak and Sundaresh [60] describe
a variant, known as systems I/O. Peyton Jones and Wadler [110] have implemented
the I/O mechanism in the Glasgow Haskell compiler using side-effecting operators with
an efficient translation to C. Their work is a clear advance on Redelmeier’s. They have
ingeniously used an abstract data type based on a monad [149, 150] to guarantee single-
threading. Their scheme appears to be a promising technique for efficient implementation
of I/0 in lazy languages.

7.2 Labelled transition systems and bisimilarity

We adopt labelled transition systems and bisimilarity from the theory of CCS [93, 94] to
give semantics for Landin-stream, continuation-passing and synchronised stream I/O.

In each mechanism for functional I/O there is a single object language type whose programs
can be executed to interact with the teletype. We call this type the execution type.
A program is executable iff it is of this type. For instance, executable programs using
Landin-stream I/O are of the stream transformer type [Char] -> [Char]. We formalise
the execution of programs as a labelled transition system.

Definition 7.1  The set of actions, ranged over by «, is produced by the following
grammar:

(input character n € N)

a =N
| m (output character n € N)
A labelled transition system is a family of binary relations indexed by actions, {—=},

such that if p — q then p and q are HX programs of an execution type.
We use HX rather than H for reasons explained in §7.4. The intuitive meaning of transition
p — q is that program p can input the character n from the keyboard to become program

q. Similarly, the intuitive meaning of transition p — q is that program p can output the
character n to the printer to become program q. If p — q for some « and q we say that
p has a transition.

We define bisimilarity and prove the standard results.

Definition 7.2 Define function (-) to be the function over binary relations on HX pro-
grams such that p(S)q iff

(1) whenever p - p’ there is q' with q — q' and p'Sq;
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(2) whenever q —— q' there is p' with p — p’ and p'Sq'.
A bisimulation is a binary relation on agents, S, such that S C (S). Bisimilarity, ~,

is the union of all bisimulations.

Proposition 7.3

(1) Function (-) is monotone.
2
3
4
)
6
7

The identity relation is a bisimulation.

If each S; is a bisimulation, then so is §155.

If S is a bisimulation, then so is S~ .

Bisimilarity is the greatest fixpoint of (-) and is the greatest bisimulation.

p ~ q iff there is a bisimulation § such that pSq.

(2)
(3)
(4)
(5)
(6)
(7)

Bisimilarity is an equivalence relation.

Proof. Parts (1)—(4) follow easily from the definition. The remaining parts then follow
from Proposition 1.1. ]

7.3 Stream transformers

Many mechanisms for functional I/O or for concurrency [72] have been based on stream
transformers. A stream is a list type whose cons operation is lazy, such as [o] in H.
Stream transformers in H have the general type:

type ST inp out = [inp] -> [out]

The idea is simple: a stream transformer maps a stream of values of type inp into a
stream of values of type out. This mapping represents an interactive computing device
that consumes values of type inp and produces values of type out. Intuition: if the device
has been offered the sequence of values iny, ..., in, for consumption, applying the stream
transformer to the stream (in; : ... : in, : Q) yields a stream containing the sequence
of values the device can produce. The list cons operation, :, has to have lazy semantics
so that the partial list (inj : ... : in, : 2) does not simply equal €2, which explains why
stream-based I/O is not typically used with languages like ML or Scheme where cons is
eager. Implementations of stream-based I/0 [3, 68] typically represent the undefined value
at the end of a partial list as a memory cell that can be instantiated to hold the next input
character and to point to a fresh undefined value. Such a technique is intuitively correct,
but we leave open the question of how to verify formally that it correctly implements
the semantics to be given here. None of the work on verification of functional language
implementation has considered I/O [47, 80, 132].

Stream transformers for stream-based I/O have typically been written using explicit con-
struction of the output list and explicit examination of the input list [53, 69]. Such a
programming style can be hard to read. We can avoid explicit mention of input and
output lists by using the following combinators to construct stream transformers.

getST :: (inp -> ST inp out) -> ST inp out
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putST :: out -> ST inp out -> ST inp out
nilST :: ST inp out

getST k xs = case xs of (x:xs’) -> k x xs’
putST x £ xs = x : f xs
nilST xs = []

Thompson [141] and Cupitt [27] suggest other combinators for I/O which are related to
the monadic style discussed in Chapter 8.

A programmer would use the combinators above to construct stream transformers; to
give semantics to stream-based I/O we use combinators giveST, nextST and skipST. The
intention is that giveST feeds an input value to a stream transformer, nextST tests whether
a stream transformer can produce an output value without any further input, and skipST
consumes an output value from a stream transformer.

data Maybe a = Nothing | Just a

giveST :: inp -> ST inp out -> ST inp out
nextST :: (ST inp out) -> Maybe out
skipST :: ST inp out -> ST inp out
giveST ¢ £ xs = f (c:xs)
nextST £ = case f () of

- Nothing

(x:x8) -> Just x
skipST f xs = tail(f xs)

The Haskell committee discovered the technique of using a mock argument 2 to test
whether a stream transformer is ready to produce output. Of course, if the next output
from a stream transformer £ depends on the next value in its input stream, nextST f will
loop.

The following proposition relates the six combinators introduced in this section.
Proposition 7.4 For all programs u::inp, v::out, k::inp -> ST inp out
and £::ST inp out:

(1) giveSTu (getSTk) =ku

(2) nextST(putSTv £f) |} Just v

(3) nextST(nilST) | Nothing

(4) skipST(putST v f) = £

Proof. Straightforward calculations. ]
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7.4 Landin-stream I/O

Landin [76] suggested that streams “would be used to model input/output if ALGOL 60
included such.” The simplest kind of stream transformer used for I/O is one that maps a
stream of input characters to a stream of output characters. We call such a mechanism
Landin-stream I/0O. Executable programs are stream transformers of type LS:

type LS = ST Char Char

A second kind of stream-based I/O, synchronised-stream /0, is discussed in §7.5. We use
the combinators of §7.3 to specify an intended meaning for Landin-streams.

e getST k means
“input a character n from the keyboard and then execute k n.”

e putST n f means
“output character n to the printer and then execute £.”

e nilST means
“terminate immediately.”

We wish to give a semantics for each I/O mechanism in terms of the operational semantics
of H. Given a function f::LS we are to compute whether £ can output a character with
no further input, or whether f needs an input character before producing more output, or
whether f can terminate. More precisely, we need a function ready of the following type

data RWD out =R | W out | D
ready :: ST inp out —-> RWD out

and satisfying the equations:

ready(putSTnf) = Wn
ready(getSTk) = R
ready(nilST) = D

We show that in H there is no such program. Consider programs el and e2 of type LS:

el
e2

getST (\x -> putST 205 nilST)
putST 205 nilST

It is not hard to see that for any xs the following equations hold:

{ [205] if dx,xs’.xs | x:xs’

1 .
oL xs Q otherwise

e2 xs = [205]

and hence that el C e2 and e2 £ el by Strachey’s property. To see why there can be
no function ready that obeys the equations shown above, we assume there is and derive
a contradiction. We have ready(el) = R and ready(e2) = (W 205), and R [Z W 205. But
el C e2 so by precongruence for C (Proposition 6.23) we have ready(el) C ready(e2).
Contradiction.'

! John Hughes showed me this argument in 1988.
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Intuitively, the problem is that in H there is no way to tell whether an expression depends
on the value of one of its subexpressions, such as an element of the input stream. We can
remedy this by adding an exception mechanism to H as we did in the previous chapter.
We find that the above argument does not hold in HX. In HX we have that el and e2
are incomparable, because el(bang) = bang, e2(bang) = [205], and bang and [205] are
incomparable.

Roughly speaking, to tell whether an expression depends on the value of one of its subex-
pressions, replace the subexpression with bang and use the handler operator 77 to see if
the whole expression bangs. We can define ready in HX as follows

ready f =
(case (f bang) of
1 >D
(x:_) => W x)
?? R

and from the theory of HX from the previous chapter it follows that the conditions above on
ready are satisfied. Intuitively speaking, the exception bang in HX provides a computable
test of whether a function needs the value of its argument.

The semantics of Landin-streams can be given for LS-programs in HX as the labelled
transition system defined by the following two rules:

ready f | R readyfyWv  vin

f 5 giveSTn £ £ 5 skipST £

The following lemma shows that this formal semantics correctly reflects the informal in-
tended meanings given for Landin-stream programs—apart from termination, which we
have not formalised.

Lemma 7.5

(1) ready(getSTk) | R
(2) ready(putSTvk)|Wv
(3) getSTk—==kn
(4) putST v p—=p ifvin
Proof. Parts (1) and (2) follow from the definitions of ready, getST and putST. For parts

(3) and (4), we can calculate the following transitions:

getSTk — giveST n (getST k)
putSTvp —= skipST (putST v p)

These, together with Proposition 7.4 establish the required results. [ |
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7.5 Synchronised-stream I/0

In the synchronised-stream mechanism for functional I/0, the stream transformer pro-
duces a stream of requests and consumes a stream of acknowledgements. The requests and
acknowledgements are in one-to-one correspondence: the computing device specified by
a stream transformer alternates between producing an output request and consuming an
input acknowledgement. It is the programmer’s burden to ensure that the value of each re-
quest does not depend on the corresponding acknowledgement. Synchronised streams were
first reported as the underlying implementation technique for Karlsson’s Nebula operating
system [74]. They were independently discovered by Stoye [136], whose terminology we
adopt, and O’Donnell [104]. They are the underlying mechanism of the Kent Applicative
Operating System (KAOS) [27, 28, 144, 145] and of I/O in Haskell [59].

Here is the type SS of executable programs in the setting of teletype I/O, together with
intended meanings of some example programs:

type SS = ST Ack Req
data Req = Get | Put Char
data Ack = Got Char | Did

e putST Get (getST k) means
“input a character n from the keyboard and then execute k (Got n).”

e putST (Put n) (getST k) means
“output character n to the printer and then execute k Did.”

e nilST means “terminate immediately.”
A wide range of imperative activity can be expressed using this mechanism, as illustrated

by the Haskell I/O mechanism. We define an auxiliary function for use in examining the
acknowledgement obtained from a Get request:

outGot :: Ack -> Char
outGot (Got x) = x

The semantics of synchronised-streams can be given for SS-programs in A or in HX as the
labelled transition system defined by the following two rules:

nextST £ |} Just r r || Get nextST £ || Just r r{Putv vin

f — giveST(Got n)(skipST f) £ 5 giveST Did (skipST £)

Unlike Landin-streams, there is no need for the problematic ready operation because of the
synchronisation between input and output. Just as for Landin-streams, we state a lemma
to show that this formal semantics correctly reflects the informal intended meanings given
for synchronised-stream programs—apart from termination.

Lemma 7.6 Suppose k::Char —> SS and h::SS are programs, define programs £ and g to
be:

g putST Get (getST (\ack->k (outGot ack)))

g def putST (Put v) (getST (\ack->h))
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Then we have:

(1) nextST f || Just Get
(2) nextST g || Just(Put v)
(3) £=kn

(4) gizh ifvn.

Proof. Parts (1) and (2) follow from the definitions of nextST, putST and getST. For parts
(3) and (4), we can calculate the following transitions and equations using Proposition 7.4:

f % giveST(Got n)(skipST f)
giveST(Got n)(getST (\ack ->k (outGot ack)))
k (outGot (Got n))
kn
g — giveST Did (skipST g)
= giveST Did (getST (\ack->h))
h

st

7.6 Continuation-passing I/0

In continuation-passing I/0, the executable type is an algebraic type with a constructor
corresponding to each kind of expressible imperative activity. In the case of teletype I/O
we have:

INPUT (Char -> CPS)

data CPS =
| OUTPUT Char CPS
I

Holmstrom’s PFL [57] was the first functional language to take the continuation-passing
mechanism as primitive. In earlier work, Karlsson programmed continuation-passing op-
erations on top of a synchronised-stream mechanism [74]. A similar datatype was used by
Plotkin in the Pisa notes [118] as semantics for side-effecting I/0O, as discussed in §7.1. The
mechanism is called continuation-passing because of the similarity between the argument
to INPUT and continuations as used in denotational semantics [134].

The intended meaning of CPS-programs is easily given.

e INPUT k means
“input a character n from the keyboard and then execute (kn).”

e OUTPUT n p means
“output character n to the printer and then execute p.”

e DONE means
“terminate immediately.”
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Landin-stream I/0

ready f R ready f yWv vin
£ giveSTn £ £ 5 skipST £
Synchronised-stream I/0
nextST f |} Just r r |} Get nextST f |} Just r r{}Putv vin
£ 2 giveST(Got n)(skipST f) £ 2 giveST Did (skipST f)

Continuation-passing I/0
p U INPUT k p U OUTPUT v q vin

p—kn p—5q

Table 7.1: Three mechanisms for functional I/O

These intended meanings are reflected in the following two rules, which define a labelled
transition system for CPS-programs in either H or HX.

pl INPUTk  pUOUTPUTvq vin

p—kn p 5 q

7.7 Maps between three of the mechanisms

We gave detailed semantics for each of the mechanisms apart from side-effecting I/O. There
are two main results in this section. First, we show that if two executable programs are
operationally equivalent, then they are bisimilar. The force of this result is that the theory
of operational equivalence from Chapter 6 can be used to prove properties of the execution
behaviour of executable programs. Second, we show that each of the three mechanisms
has equivalent expressive power in the following sense. If p is an executable program with
respect to one mechanism, then for each other mechanism, there is a function £ such that
f(p) is an executable program with respect to the other mechanism, and p and £(p) are
bisimilar.

We work in ‘HX so that all three mechanisms are supported in the same language; as
discussed in §7.4 the semantics of Landin-streams based on the ready function cannot be
programming in H.

Definition 7.7 The teletype transition system is a family of binary relations on HX
programs indexed by actions, {~*+}, and is defined by the rules in Table 7.1.

Lemma 7.8 Ifp:r and p —= q then q::7. Type 7 is one of LS, SS or CPS, depending
on whether transition p — q was derived from one of the Landin-stream, synchronised-
stream or continuation-passing rules, respectively, in Table 7.1.

Proof. By inspection. |

Given its simple sequential nature, one would expect the semantics of teletype I/O to be
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determinate. The following result makes this precise.

Proposition 7.9 For any program p, p — p’ and p — p" implies p' = p".
Proof. By inspection of each of the inference rules. [ |

Given this determinacy, bisimilarity can alternatively be characterised in terms of traces.

If s =a,...,q, is a finite sequence of actions, say that s is a trace of program p iff there
are programs p; with p —= p; —2 --- =% p,,. Two programs are trace equivalent iff

they have the same set of traces.

In a nondeterministic calculus like CCS, trace equivalence does not in general imply bisim-
ilarity. Given the determinacy result above, however, it is not hard to show that the two
equivalences coincide. We omit the proof, but see Milner’s book for a more general result
[94, Chapter 9].

Operational equivalence (applicative bisimilarity) implies bisimilarity.

Proposition 7.10 Ifp and q are programs of the same type, then p = q implies p ~ q.

Proof. Recall that we take = on terms of HX to be applicative bisimilarity as defined in
Chapter 6. It suffices to show that ground applicative bisimilarity on HX is a bisimulation.
Suppose that p = q for 7-programs p and q. We proceed by a case analysis of 7. If 7
is not one of the three types CPS, SS or LS then p and g have no transitions, so p ~ q
trivially. Otherwise there are three cases to consider. In each case we establish condition
(1) of the definition of bisimulation, that whenever p - p’ there is q' such that q — g’
and p’ = q'. Condition (2) follows by a symmetric argument.

Case 7 = CPS.
If p — p’ then p |} INPUT k and p’ = k n. Then q' |} INPUT k' with k = k’ from
applicative bisimilarity. So q — k' n = p'.
If p — p’ then p |} OUTPUT v p’ and v |} n. Then ¢’ |} OUTPUT v/ ¢', with v = v/ and
p'=4q. So v/ || n and we have g — q' = p'.

Case 7 =SS.
If p - p’ then nextST p |} Just r, r || Get and p’ = giveST(Got n)(skipST p).
Since p = q we have nextST q | Just r’ with r = r’, so r’ || Get. We have q —
giveST(Got n)(skipST q), and the latter equals p’ since operational equivalence is a
congruence.
If p — p’ then nextST p | Just r, r | Put v, v n and p’ = giveST Did (skipST p).
Again since p = q we have nextST q |l Just r’, withr =1/, so r' || Put v/ with v =+v'
so v/ || n. Therefore ¢ — giveST Did (skipST q), which equals p'.

The case for 7 = LS follows by a similar argument and is omitted. |
On the other hand, bisimilarity does not imply operational equivalence of ‘H programs.

Proposition 7.11 There are program pairs, p and q, in each of the types CPS, LS and
SS such that p ~ q but not p = q.

Proof. Witness program pair OUTPUT {2 Done and {2 in type CPS, and pair putST {2 nilST
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and 2 in each of the types SS and LS. [ |

Intuitively the proof depends on operational equivalence distinguishing more “junk”
programs than bisimilarity. Given a richer I/O model there would be more signifi-
cant distinctions. Suppose we extended the CPS algebraic type with a new constructor
Par::CPS —> CPS -> CPS, with intended meaning that Parpq is to be the parallel execution
of programs p and g, as in PFL. Then if p # q, programs Par pq and Par qp would be op-
erationally inequivalent (because Par is the constructor of an algebraic type) but bisimilar
(because as in CCS both lead to the parallel execution of p and q).

Before proving the second main result of this section, we import the proof technique of
bisimulation-up-to-~ from CCS [94].

Definition 7.12 A binary relation on programs S is a bisimulation-up-to-~ iff pSq
implies

(1) whenever p — p' there is ' with q — q' and p'~S~q';
(2) whenever q — q' there is p' with p — p’ and p'~S~q'.

Proposition 7.13 If S is a bisimulation-up-to-~ then § C ~.

Proof. We follow the proof on page 93 of Milner’s book [94].

We prove that ~S~ is a bisimulation, from which it follows by reflexivity of ~ that S C ~.
(~S~ is the relational composition of ~, § and ~.) Suppose that p~S~q, that is, for
some p; and q; we have p ~ p1Sq; ~ q. Suppose that p —— p'; we are to exhibit g’ such
that ¢ — q' and p'~S~q'. We make a sequence of deductions: there is p} such that
p1 — p) with p’ ~ p!; there is g} such that q; —— g} and p}~S~q}; and there is q’ such
that ¢ — q' and q} ~ ¢'. Altogether we have p’ ~ pj~S~q} ~ ¢/, hence p'~S~q' by
transitivity of ~. This shows that ~S~ is a bisimulation. [

Suppose there are programs p and q such that we wish to prove p ~ q. Proposition 7.3(6)
says that one proof would be to find a bisimulation containing the pair (p,q). On the
other hand, Proposition 7.13 says that another proof is to find a bisimulation-up-to-~ that
contains the pair. It is often simpler to do the latter. The same idea is used extensively
in the theory of CCS [94] and 7-calculus [96].

We show in Table 7.2 functions ss2cps and cps2ss to map between the types SS and
CPS, and functions 1s2cps and cps2ls to map between the types LS and CPS. Functions
ss2cps and cps2ss are similar to translations discovered by the Haskell committee.

The following is the main theorem of the chapter: that the three I/O mechanisms of
Table 7.1 are isomorphic in a certain sense.

Theorem 7.14

(1) For any SS-program £, f ~ ss2cps f.
(2) For any CPS-program p, p ~ cps2ss p.
(3) For any LS-program £, f ~ 1s2cps f.
(4)

4) For any CPS-program p, p ~ cps2ls p.



7.7. MAPS BETWEEN THREE OF THE MECHANISMS 113

-- Translations between SS and CPS.

ss2cps :: SS -> CPS
cps2ss :: CPS -> S8

ss2cps f =
case nextST f of
Nothing -> DONE
Just r -> case r of
Get -> INPUT (\v -> ss2cps (giveST (Got v) (skipST £)))
Put v -> OUTPUT v (ss2cps (giveST Did (skipST £)))

cps2ss p =
case p of
INPUT k -> putST Get (getST (\ack -> cps2ss (k (outGot ack))))
OUTPUT v q -> putST (Put v) (getST (\ack -> cps2ss q))
DONE -> nilST

outGot :: Ack -> Char
outGot (Got v) = v

-- Translations between LS and CPS.

1s2cps :: LS -> CPS
cps2ls :: CPS -> LS

1s2cps f =
case ready f of
R —> INPUT (\v -> ls2cps (giveST v f))
Wv-> OUTPUT v (1s2cps (skipST £))
D -> DONE
cps2ls p =

case p of
INPUT k -> getST (\v -> cps2ls (k v))
OUTPUT v q -> putST v (cps2ls q)
DONE -> nilST

Table 7.2: Translations in HX between three styles of I/O
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Proof. (1) We prove that S, given by
s {(f,ss2cps f) | f is an SS-program}

is a bisimulation, which is to say that S C (S). Let £ be any SS-program and we have
that ss2cps £::CPS. Hence the synchronised-stream rules apply to £ and the continuation-
passing rules to ss2cps £f. We are to show that (£f,ss2cps f) € (S). We proceed by
analysis of the evaluation behaviour of nextST £. There are five cases to consider.
(i) nextST £1{} or nextST £ |} bang

(ii) nextST f |} Nothing

(iii) nextST £ |} Just r and either r{} or r |} bang

(iv) nextST f || Just r and r |} Get

(v) nextST £ | Justr and r | Put v

Here are the possible transitions from programs f and ss2cps f.

(i-iii) There are no transitions from either ss2cps f or f.

(iv) The only transitions of f are of the form
f - giveST (Got n) (skipST f) for any n.
We have ss2cps f || INPUT(\c -> ss2cps(giveST (Got ¢) (skipST f))).
So the only transitions of ss2cps £ are of the form
ss2cps f — ss2cps(giveST (Got n) (skipST £)) for any n.

(v) There is no transition from f unless v || n, when f SN giveST Did (skipST f).
We have ss2cps f |} OUTPUT v (ss2cps(giveST Did (skipST f))).
So there is no transition from ss2cps f unless v |} n,

when ss2cps £ — ss2cps(giveST Did (skipST f)).
In each case the conditions for (f,ss2cps £) € (S) are satisfied.

(2) It suffices to show that S, given by

s« {(p,cps2ss p) | p is a CPS-program}

is a bisimulation-up-to-~. Suppose that pair (p,cps2ss p) is in S. We have p::CPS and
cps2ss p::SS, so the continuation-passing rules apply to p and the synchronised-stream
rules to cps2ss p. We are to show that whenever p —— p’ then cps2ss p — ¢’ and
p'~S~q’, and vice versa. We proceed by analysis of the evaluation behaviour of p. There
are five cases to consider.

(i) pft
(i) p | bang
(iii) p | DONE
(iv) p | INPUT k
(v) p OUTPUT v q

Here are the possible transitions from programs p and (cps2ss p).

(i-iii) Neither program has any transitions.
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(iv) The only transitions of p are of the form p —= k n for any n.
We have cps2ss p — " putST Get (getST(\ack->cps2ss(k (outGot ack)))). So
using Lemma 7.6(1,3), the only transitions of cps2ss p are of the form
cps2ss p——=cps2ss(k n) for any n.
(v) The only transitions of p are p — q when v |} n.
We have cps2ss p — putST (Put v) (getST(\ack -> cps2ss q)).
So using Lemma 7.6(2,4) the only transition from cps2ss p is cps2ss p——=cps2ss q.

In each case the conditions for bisimulation-up-to-~ are satisfied, since = C ~.

(3) We prove that S, given by
s« {(f,1s2cps £) | £ is an LS-program}

is a bisimulation, that is, S C (S). Suppose that pair (f,1s2cps f) in in S. We have f::LS
and 1s2cps f::CPS, so the Landin-stream rules apply to £ and the continuation-passing
rules to 1s2cps £. We are to show that (f,1s2cps f) € (S). We proceed by analysis of
the evaluation behaviour of ready f£. There are four cases to consider.

(i) ready ff
(ii) ready £ D
(iii) ready f R
(iv) ready £ | Wv
A fifth possibility, that ready f || bang, is impossible given the form of ready. Here are
the possible transitions from programs f and ls2cps f.
(i,ii) No transitions are possible from either f or 1s2cps f.

(iii) The only transitions of £ are of the form f —— giveST n f for any n.
We have 1s2cps f || INPUT(\c ->1s2cps(giveST ¢ £)).
So the only transitions of 1s2cps £ are of the form
1s2cps f — 1s2cps(giveST n f) for any n.

(iv) There is no transition from f unless v || n, when f 5 skipST f.
We have 1s2cps f |} OUTPUT v (1s2cps(skipST f)).
So there is no transition from 1s2cps £ unless v |} n,

when 1s2cps f SN 1s2cps(skipST £).

In each case the conditions for (f,1s2cps £) € (S) are satisfied.
(4) It suffices to show that S, given by

s {(p,cps21s p) | p is a CPS-program}
is a bisimulation-up-to-~. Suppose that pair (p,cps2ls p) is in S. We have p::CPS and
cps2ls p::LS, so the continuation-passing rules apply to p and the Landin-stream rules to
cps2ls p. We are to show that whenever p —— p’ then cps2ls p — ¢’ and p'~S~q/,
and vice versa. We proceed by analysis of the evaluation behaviour of p. There are five
cases to consider.

(i) pft
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(i) p | bang

(iii) p | DONE

(iv) p | INPUT k
(v) pUWRITEv q

Here are the possible transitions from programs p and cps21ls p.

(i-iii) Neither of the programs has any transitions.

(iv) The only transitions of p are of the form p —= k n for any n.
We have cps21ls p =1 getST(\c ->cps21s(k c)).
So using Lemma 7.5(1,3) the only transitions of cps2ls p are of the form
cps2ls p——+=cps21s(k n) for any n.

(v) The only transition of p is If p N qifv{n
We have cps2ls p — putST v (cps2ls q).
So using Lemma 7.5(2,4) the only transition of cps2ls p has the form

cps2ls p—=cps2ls q if v n.

In each case the conditions for bisimulation-up-to-~ are satisfied. [ |

7.8 Discussion

The main contribution of this chapter is to the semantics of functional I/O. We sketched
a semantics of side-effecting I/O but gave three objections to its use with lazy languages.
We considered three mechanisms suitable for lazy languages, and gave an operational
semantics for each. We showed how the notion of bisimilarity from CCS is a suitable
equivalence on programs engaged in I/O. We gave translations between the three styles,
some of which are well known, but gave the first formal proofs that the translations are
correct.

Our definition of bisimilarity is very simple, but for two reasons one might wish to develop
it further. First, although each of the three I/O mechanisms has a notion of program
termination we have not modelled termination in the labelled transition system. Hence a
program that immediately terminates is bisimilar to one that diverges. Second, we have
assumed that teletype input is observable. Consider two Landin-stream programs f and
g:
f xs=Q
g xs = case xs of
o ->Q
(_:xs) -> g xs

Given an input stream, g unravels it forever whereas f loops immediately. We have £ —H g
but £ #HX g and £ £ g (because g forever inputs characters whereas £ diverges). One
might argue that they have indistinguishable behaviour because neither ever produces
output. On the other hand, it seems reasonable to distinguish them on the ground that

teletype input is observable to the operating system, if not always to the end user. These
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points bring out the simplicity of our model, but then it is meant to be simple so as to
emphasise the differences between the I/O mechanisms.

We conclude the chapter with some remarks about the practical use of the three mech-
anisms for I/O in lazy languages. As they stand, the three mechanisms are rather too
low-level for large-scale programming. As we discussed in Chapter 1, various sets of com-
binators have been put forward as high-level programming models [28, 141, 154]. We will
investigate a set of combinators in the monadic style in Chapter 8.

Landin-stream I/O is good for teletype I/O but does not scale to a practical I/O scheme
(such as Haskell I/0). Several papers have shown how to construct elegant parsers that
act on a lazy input stream of characters [36, 63, 148]. It is not clear that such parsing
techniques can be based so simply on synchronised-stream or continuation-passing 1/0.
Landin-stream programs can be written in either Haskell [59] or Hope+C [108]. This is
because the I/O mechanisms of both provide operations to obtain a lazy input stream,
and hence Landin-stream I/O can be simulated.

A gulf separates the source-level semantics of the stream-based I/O mechanisms given
here from their imperative implementation [3, 68]. The gulf is particularly wide between
the semantics and implementation of lazy input streams. The only other semantics of
stream-based I/O is Thompson’s trace-based work, which is domain-theoretic and also
distant from practical implementations. In contrast, the operational semantics we gave
for continuation-passing I/O corresponds fairly closely to an interpretive implementation
[108]. It is an open question how to relate abstract specifications of I/O to efficient
implementations using side-effects [110].

The principal merit of synchronised-stream I/O over continuation-passing I/O is that the
former can efficiently simulate the latter via a function such as cps2ss. Simulation of
the former by the latter using a function such as ss2cps is inevitably inefficient [60].
Synchronised-stream programs suffer from problems relating to synchronisation between
input and output streams that do not arise with continuation-passing [108]. High-level
combinators such as for monadic I/O can be implemented on top of either mechanism
[28, 43]. If all user programs are to use such combinators there seems to be no reason to
choose synchronised-stream I/O as the underlying mechanism rather than continuation-
passing 1/0.
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Chapter 8

Monadic 1/0

The three I/O mechanisms of Chapter 7 suitable for lazy languages express I/O at a low
level. This chapter explains how to program I/O using higher-level combinators in a style
which we call here monadic I/O. The combinators are higher-level in two senses: the
intended meaning of an executable program is a computation that performs I/O and then
returns a value, rather then just performing I/O as in Chapter 7; the combinators of
monadic I/O can be implemented using the lower-level operations given in Chapter 7.

This chapter discusses monadic I/O in the context of a specific application of functional
programming. Over the last decade the Medical Research Council (MRC) at the Western
General Hospital in Edinburgh has built a prototype machine to assist the analysis of
cervical smears [62]. The prototype was implemented using dedicated hardware, C and
assembly-code. A team has started work on re-implementing the machine using a commer-
cial workstation coupled with software partly written in a lazy functional language [121].
The aim is to compare the gains of using a functional language (such as reliability, ease of
programming and the potential for proofs of program properties) with the losses (such as
computational speed). The system captures digitised images from a microscope that sights
a movable stage holding a microscope slide. The intention is that the system will be able
to locate automatically the objects on the slide that are most likely to be pre-cancerous
cells, and then display these to a cytologist for diagnosis. If successful, the computerised
system will allow a cytologist to process slides faster than by simply using a microscope.
The MRC team have been prototyping the software for their system using a mixture of
C and a lazy functional language; the prototype uses Gofer and the final implementation
will use Haskell. Basic image processing will be done by a server running mature C code,
while the top-level main program will be new software written in the functional language.

This chapter addresses two questions. How can the I/O requirements of the MRC computer
be programmed in a lazy functional language? How can properties of programs engaged
in I/O be proved? In the context of a simplified model of the MRC apparatus, we suggest
how the MRC computer could be programmed in a monadic style. We consider a simple
I/O transformation suggested by Ian Poole of the MRC and prove it correct. We show
how the monadic style applies to teletype I/O, because the simplified I/O model for the
MRC computer includes teletype 1/0.

§8.1 is a tutorial on the monadic style of functional I/O. It defines a simplified model of

119
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MRC I/0, and poses a verification problem. §8.2 and §8.3 define monadic types in H to
model teletype I/O and the MRC I/O model respectively; the latter type is defined in
terms of the former. Finally, in §8.4 we verify the motivating example.

All the programs given in this chapter are written in Haskell notation. They are to be
understood as H (not HX) programs as discussed in §6.1. All the programs have been
type-checked and executed in Mark Jones’ Gofer system. Program equivalence, written
=, is operational equivalence as defined in Chapter 6.

8.1 Programming I/O in a monadic style

In the monadic style of functional I/O there is a unary type constructor I0 such that a
program (closed term) of type I0 a is intended to mean

“a computation, which may perform I/O, and may return an answer of type

a.”

Let a computation be a program of type I0 a, for some a. To program teletype I/O
(as discussed in Chapter 7) in a monadic style, one might use the following operations for
constructing computations.

> input :: IO Char

> output :: Char -> I0 O

> return :: a -> I0 a

> (>>=) ::I0a->(a->I0b) ->I0D

Here is the intended meaning of computations constructed from these operations.

e input means “input a character v from the keyboard and return v.”
e output v means “output character v to the printer and return ().”
e return v means “immediately return v.”

e p >>=f means “execute computation p, call the answer x and then execute compu-
tation f x.”

An example: reading a line from the keyboard

Let us consider the problem of writing a program to read from the keyboard a string (that
is, a list of characters) terminated by the newline character, >\n’. We wish to derive a
function, gettingLine, with the following properties.

> gettingline :: String -> I0 String

e gettinglLine vs means “having already read the string vs, continue reading char-
acters until a newline appears.”

We can define gettingLine in terms of the basic computation constructors.

> gettinglLine vs =
> input >>= \v ->
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> if v == ’\n’ then return vs else gettinglLine (v:vs)

We can read off an interpretation of this definition from the intended meaning of the basic
constructors: computation gettingLine vs means “input a character, call it v; then if v
is a newline, return the accumulated string vs, or else add v to the accumulated string
and repeat.” Here then is a solution to the problem:

> getLine :: IO String
> getLine = gettingline [] >>= (return . reverse)

Function reverse::[a]l -> [a] is the list reversal function from the Haskell prelude. The
string returned by gettingLine [] needs to be reversed because the characters are accu-
mulated in reverse order to avoid repeated list concatenations.

Derived operations

Sometimes two computations are to be composed in sequence, but the answer from the
first is to be discarded. This pattern can be captured by the combinator >>,

> >>) :: I0a->I0b ->1I00D
> P >> q = p >>= const

where const is the Haskell version of the K combinator, shown in Table 6.3 Commonly
the first argument to >> is a task, a program of type I0 (). A task is a computation that
returns no informative answer upon termination. The simplest task is skip, given by:

> skip = return ()
Sequential composition of a list of tasks is achieved by the sequence combinator.

> sequence :: [I0 (O] -> I0 O
> sequence = foldr (>>) skip

The Haskell list combinator foldr is also shown in Table 6.3. It is not hard to verify the
following equations.

sequence [] = skip
sequence (p:ps) = p >> (sequence ps)

Here is a combinator that lifts a curried function £ of two arguments to one that given
two computations runs them in sequence to obtain two answers x and y, and then returns
the answer f x y.

> 1lift2 :: (@a->b->¢) > (I0a->I00b->1I0c)
> 1lift2 f p q =p >= \x -> q >= \y -> return (f x y)

We can use 1ift2 to write a generalisation of sequence that runs a list of computations
in sequence and then returns the list of their answers as its own answer.

> accumulate :: [I0 a] -> I0 [a]
> accumulate = foldr (1ift2 (:)) (return [])
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More examples: printing a line and prompting

To illustrate how sequence can be used, here is a program to output a string of characters
followed by newline to the printer.

> putline :: String -> I0 ()
> putline vs = sequence [output v | v <- vs] >> output ’\n’

(This is an example of a Haskell list comprehension, which can be translated into H as
discussed in §6.1.) In general we call functions such as putLine that have some type
a; =>---=>a, ->I100b for m > 1, parametric computations.

Finally, here is a parametric computation to print a prompt and then read a line of input.

> askFor :: String -> I0 String
> askFor xs = putlLine xs >> getLine

Adding exceptions to the programming model

Experience of programming I/O in imperative languages suggests that an exception han-
dling mechanism is a good way to represent and process unexpected events such as errors.
For instance, the implementors of DEC SRC’s Taos operating system argue that repre-
senting operating system errors by exceptions is better than returning an error code, as
in AT&T’s Unix for instance, because it is impossible for an exception to be ignored [85].

Exceptions can be incorporated into the monadic programming model by choosing a type
Exn of exceptions, and extending the intended meaning of a program of type I0 a to be

“a computation, which may perform I/O actions, and may return an answer
of type a, or may fail with an exception value of type Exn.”

For the purpose of this chapter we take Exn to be String, but in general it can be any
type. There are two new primitive ways of constructing computations.

> raise :: Exn -> I0 a
> try :: I0 a-> (Exn -> I0 a) -> I0 a

e raise exn means “immediately raise the exception exn.”

e try p £ means “execute computation p; if an answer v is returned, then return v
and ignore f; otherwise, if p raises an exception exn, execute f exn.”

The intended meanings of the other primitive computation constructors are unchanged,
except for sequential composition.

e p >>=f means “execute computation p; if an exception exn is raised, then immedi-
ately raise exn and ignore f; otherwise, if an answer x is returned, proceed to execute
computation f x.”

The exception mechanism in HX was obtained by extending the syntax and semantics of
‘H. Here, instead, we obtain an exception mechanism by object level programming, with
no extension of H.
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Biased choice is a derived form of exception handling where the exception value is
ignored:

e p 7 g means “execute computation p; if an answer x is returned, then return x and
ignore q; otherwise, if p raises an exception, execute q.”

> &9 :: I0 a ->I0a->10 a
> p?7q = try p (const q)

An example using exceptions

Here is a parametric computation that if given a numeral—a list of digits—returns the
corresponding number. Otherwise it raises the exception "parseInt".

> parselnt :: String -> IO Int

> parselnt cs =

> accumulate (map toDigit cs) >>=

> (return . foldr (*x) O . reverse)

> where

> (%) :: Int -> Int -> Int

> toDigit :: Char -> I0 Int

> u ** t =t *x 10 +u

> toDigit v =

> if isDigit v then return (ord v - ord ’0’)
> else raise "parselnt"

This function can be used to construct a computation that returns the number found by
reading a line from the keyboard and treating it as a numeral, and repeating if necessary
until a legitimate numeral has been typed:

getInt :: IO Int
getInt =
getLine >>= \vs -> parselnt vs 7
(putLine "Oops! That wasn’t a number." >> getInt)

V V V VvV

A Simplified MRC Computer

We suggest a simplified version of a programming model suitable for the Edinburgh MRC
team. We wish to program a computer equipped with a teletype interface but also an
external microscope assembly consisting of a microscope, an image capture device and
a movable stage containing a microscope slide. Suppose there is a type Image whose
values represent digitised images obtained from the external assembly. Define a type of
two-dimensional coordinates to represent positions on the slide:

> type Coord = (Int,Int)

We assume that the stage can be moved to a certain range of coordinates, and also to a
distinguished parked position for insertion and removal of the slide.
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The functional program is to run on the main computer, but we assume there is an in-
dependent I/O controller responsible for stage motion. We propose to use the teletype
programming model, with exceptions, extended with the following computation construc-
tors:

> moveStage :: Coord -> I0 ()
>  capture :: I0 Image
> parkStage :: I0 ()

e moveStage co means “instruct the I/O controller to move the stage to coordinate
position co, and immediately return ().”

e capture means “wait for the I/O controller to signal that the stage is stationary,

capture an image im and return answer im; but if the stage is parked, raise the

exception "capture".”

e parkStage means “instruct the I/O controller to park the stage and immediately
return ().”

This model motivated the development of this chapter. The MRC team use an I/O model
based on this simplified model, but considerably extended.

Here is a verification problem suggested by lan Poole of the MRC. We begin with a
parametric computation called jobA. Its parameters are a list of coordinates, cos, and
an image analysis function, f of type Image -> Char, where for any image im, character
f im represents some human-readable result computed about im. The purpose of jobA is
to capture images from each of the coordinates in cos, apply the analysis function to each
of the images, and output the results.

jobA :: (Image -> Char) -> [Coord] -> IO ()

analyse :: (Image -> Char) -> I0 ()

jobA f cos = sequence [moveStage co >> analyse f | co <- cosl]
analyse f capture >>= \im -> output (f im)

vV V V V

Although the main computer together with the I/O controller permit a limited amount of
concurrency, one sees that the program above does not admit any concurrent activity. In
processing each coordinate, the main computer tells the I/O controller to move the stage,
but then immediately tries to capture an image and so undergoes a period of idle waiting.
Similarly, the I/O controller remains idle while the main computer is processing the image
captured at each coordinate.

Clearly the program would run faster if immediately after capturing an image at one
coordinate, the I/O controller could move the stage to the next coordinate during the
same time as the main computer processes the current image. Program jobB is intended
to do this.

> jobB f [] = skip

> jobB f (co:cos)= moveStage co >> jobC f cos

> jobC f cos = sequence [each f co | co <- cos] >> analyse f

> each f co = capture >>= \im -> moveStage co >> output (f im)
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The problem is to verify that parametric computations jobA and jobB are equivalent. The
remaining sections of the chapter develop a theory of the simplified MRC programming
model, by modelling its semantics within . We conclude in §8.4 by proving that jobA
and jobB give rise to equal computations.

History

The first serious use of the monadic style was in the Kent Applicative Operating System
(KAOS), 14,000 lines of Miranda written by John Cupitt [27, 28]. KAOS has a type
constructor interact, a type sysErr, and the following operations (in Haskell notation).

return :: a -> interact a

comp :: (a -> interact b) -> interact a -> interact b
raise :: sysErr -> interact a

catch :: (sysErr -> interact a) -> interact a -> interact a

Cupitt’s interact and sysErr correspond to I0 and Exn respectively, and his four oper-
ations correspond to return, >>=, raise and try respectively. Cupitt based his combina-
tors on a more complex set introduced by Thompson [141] for programming teletype 1/0O.
Cupitt’s combinators were programmed on top of a primitive synchronised-stream mecha-
nism. He found that these combinators hid many low-level details in his implementation.

Independently of Cupitt, the author proposed an extension of Holmstrém’s PFL [57] called
PFL+ [43], which was based on a continuation-passing mechanism, and proposed the use
of a type constructor and operations corresponding to I0, return and >>= (called Beh,
Ret and > respectively). These high-level operations were defined in terms of the low-
level continuation-passing mechanism. Unlike Cupitt’s scheme, PFL+ was never fully
implemented. This dissertation grew out of the effort to make sense of the intuitive ideas
developed in PFL+.

This style of I/O has come to be called monadic because the structure (I0,return,>>=)
can be modelled categorically as a strong monad. As discussed in Chapter 6, Moggi [100]
advocated use of such structures to parameterise denotational descriptions of program-
ming languages. Inspired by Moggi, Wadler [149, 150] has advocated use of monads in the
functional language itself (rather than the denotational metalanguage) to express imper-
ative activity, such as teletype I/O or interaction with a mutable store. The operations
return and >>= used here correspond to Wadler’s operations unit and bind respectively
[150]. A monadic approach to I/O is being developed in the Glasgow Haskell compiler
[49, 110].

Although many lines of code in this style have been written, and it has been realised
that the combinators should obey the monadic laws, there has been no previous work
on reasoning about programs engaged in monadic I/O. The remainder of this chapter
develops a theory of monadic I/0.
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> data TT a = Read (Char -> TT a)
> | Write Char (TT a)
| ReturnTT a

> thenTT :: TT a -=> (a -> TT b) -> TT b

p ‘thenTT¢ f =
case p of
Read g -> Read (\v -> g v ‘thenTT‘ f)
Write v . q -> Write v (q ‘thenTT‘ f)
ReturnTT x -> f x

V V V VvV V

Table 8.1: A weak monad for teletype I/O

8.2 A weak monad for teletype I/O

Our theory of the MRC programming model is based on modelling the semantics of compu-
tations as functional programs within 7. This model admits proofs of program properties,
but it is not being proposed as the basis of an efficient implementation! Peyton Jones and
Wadler [110] discuss implementation techniques for monadic I/0.

We begin by defining what we mean by a ‘monad’ in the context of H.

Definition 8.1 For any structure (M, returnM, thenM) where M is a type constructor and
programs returnM and thenM have types

returnM :: 0 ->Mo
thenM :: Mo > (0 >M7)->M7T

define three properties as follows.

(M.beta) returnMx ‘thenM‘ f =f x (for all suitably typed £ and x)

(M.assoc) (p ‘thenM‘ f) ‘thenM‘ g=p ‘thenM‘ \x->(f x) ‘thenM‘ g
(for all suitably typed p, £ and g)

(M.eta) p ‘thenM‘ returnM =p (for all suitably typed p)

A weak monad is such a structure M satisfying (M.beta) and (M.assoc); a monad is a
weak monad M satisfying (M.eta).

Perhaps surprisingly, the weak monad laws suffice for the purposes of this chapter. In
fact, the full eta law fails for the two weak monads we consider. We begin with a (weak)
monad, TT, given in Table 8.1, which models teletype I/O. It is a version of the constructor
T proposed in §7.1 to model side-effecting I/O. Roughly speaking, any program of type
TT a consists of a string of Reads and Writes terminated by a ReturnTT.

Lemma 8.2 Structure (TT, ReturnTT, thenTT) is a weak monad.

Proof. (TT.beta) follows immediately by definition of ‘thenTT¢. For (TT.assoc) it suffices
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to show that relation § is a bisimulation-up-to-=, where S is defined as follows.

So ' {((p ‘thenTT* £) ‘thenTT‘ g p ‘thenTT® (\x ->(f x) ‘thenTT" g))
| p:TT a,f:a ->TT b, g:b->TT ¢}

def o
S £ So U {(Cl, C2) | c1So C2} U (E)
To show that S is a bisimulation-up-to-=, it suffices to consider any pair (e1,e2) in Sy
and show that either e; = es = €2, or that there are canonical programs c; and cy such
that e; = ¢; for each i, and that ¢; S co. Accordingly, let e; = (p ‘thenTT‘ f) ‘thenTT‘ g

and eg =p ‘thenTT‘ (\x->f x ‘thenTT‘ g). By Strachey’s property, one of the following
cases holds:

(1) p=9
(2) p=returnTTx
(3) p=VWritevgqor
(4) p=Readh.
In each case we can establish the required conditions.
(1) e1 =Q =ey.

(2) e; = (ReturnTT x ‘thenTT‘ f) ‘thenTT‘ g = f x ‘thenTT‘ g.
e, = ReturnTT x ‘thenTT‘ (\x->f x ‘thenTT‘ g) = f x ‘thenTT" g.
So e; = ey. By Strachey’s property, either ey = eo = Q (and we are done) or there
is a canonical program c with e; = e3 = ¢. In the latter case we have c=c so ¢ Sc
as required.

(3) In this case, we have:
e; = ((Write v q) ‘thenTT‘ f) ‘thenTT‘ g
= (Write v (q ‘thenTT‘ f)) ‘thenTT‘g
= Writev ((q ‘thenTT‘ f) ‘thenTT‘ g
ey = (Write v q) ‘thenTT‘ (\x->f x ‘thenTT" g)
= Writev (q ‘thenTT‘ (\x->f x ‘thenTT¢ g))
Define programs e} and ¢; to be:

el = (q ‘thenTT‘ f) ‘thenTT‘g

e, = q ‘thenTT* (\v->(f v) ‘thenTT‘ g)
c; = Writeve)
co = Writeve)

We have e; = c;, and since v = v and €| Spef, we have c; S ¢y as required.

(4) In this final case case, when p = Read h, either h equals  or some canonical function
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\v->e3. If h = Q we have:

e; = (Read 2 ‘thenTT‘ f) ‘thenTT‘ g
= (Read(\v->Q v ‘thenTT‘ f)) ‘thenTT‘ g
= Read(\v->() ‘thenTT‘g
= Read(\v->( ‘thenTT* g)
= Read(\v->Q)
ey = (Read Q) ‘thenTT‘ (\v->(f v) ‘thenTT‘ g)
= Read(\v->Q v ‘thenTT‘ (\v->(f v) ‘thenTT g))
= Read(\v->Q)
Since e; = ey = Read(\v->) and Q = Q we are done. Otherwise, h = \v->e3 and
we have:
e; = (Read (\v->e3) ‘“thenTT‘ f) ‘thenTT‘ g
(Read(\v->e3 ‘thenTT¢ f)) ‘thenTT‘ g
= Read(\v->(e3 ‘thenTT‘ f) ‘thenTT‘ g)
ey = Read(\v->e3) ‘thenTT‘ (\v->(f v) ‘thenTT‘ g)
Read(\v->e3 ‘thenTT* (\v->(f v) ‘thenTT‘ g))

Define programs ¢} and ¢; to be:

c) = \v->(e3 ‘thenTT‘ f) ‘thenTT‘g

ch = \v->e3 ‘thenTT‘ (\v->(f v) ‘thenTT‘ g)
c1 = Reade]

cy = Read e},

We have c) S’B ch so ¢ Sch. But then e; = ¢; for each 7 and ¢ S ¢y 50 the proof for
Read is complete. [ |

The (TT.eta) law is invalid. Here is a counterexample.

Read ) ‘thenTT‘ ReturnTT = Read(\v->Q v ‘thenTT‘ ReturnTT)
= Read(\v->)
# Read ()

If we had a theory of H which satisfied 2 = \v =>Q (the intention of the Haskell designers)
we could in fact establish (TT.eta). For the purposes of this chapter the lack of (TT.eta) is
unimportant; all we need are the weak monad laws, (TT.beta) and (TT.assoc).

8.3 A weak monad for the MRC computer

The MRC programming model has three components: teletype 1/0, interaction with the
external microscope assembly, and exception handling. We model the state of the external
microscope assembly as a pair, consisting of the current position (either parked or at a
particular coordinate) and a function representing the image that could be captured from
any of the coordinate positions.

> type State
> data Maybe a

(Maybe Coord, Coord -> Image)
Nothing | Just a
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>  either it (a->c) > (b -> ¢) -> (Either a b -> ¢)
> either f g ab = case ab of
> Left a -> f a
> Right b -> g b
> get :: I0 State
> put :: State -> I0 O
> get = \sO -> ReturnTT (Left s0O, sO0)
> put sl = \sO -> ReturnTT (Left (), s1)
> return x = \s0 -> ReturnTT (Left x, s0)
> raise x = \sO -> ReturnTT (Right x, sO0)
> po>=f = \s0 -> p sO ‘thenTT‘ uncurry (either f raise)
> trypf = \s0 -> p sO ‘thenTT‘ uncurry (either return f)
> output v = \s0 -> Write v (ReturnTT (Left (), s0))
>  input = \s0 -> Read (\v -> ReturnTT (Left v, s0))
>  parkStage = get >>= \s -> put (Nothing, snd s)
> moveStage co = get >>= \s -> put (Just co, snd s)
> capture = get >>= \s -> case fst s of
> Just co -> return ((snd s) co)
> Nothing -> raise '"capture"
Table 8.2: Deriving the MRC programming model

Modelling image capture from the loaded slide by a fixed function is extremely crude, as it
ignores the effects of random camera noise, sloppy stage mechanics and the settings of the
focus, lamp, objective lens and filter. It is a kind of ‘idealised microscope model” whose
principle virtue is simplicity. We use the type of strings to model exceptions.

> type Exn = String

Intuitively we expect a computation of type I0 a to act on some initial state by performing
some teletype I/O before returning an answer, either a value of type a or an exception of
type Exn. We formalise this expectation in the following definition of I0.

> type I0 a = PrimI0 (Either a Exn)
> type PrimI0 a = State -> TT (a, State)
> data Either a b = Left a | Right b

Recall that programs of type TT a can be thought of as a string of I/O operations ending
with a result of type a. Therefore a program p::I0 a is a function that given an initial
state s returns p s::TT (Either a Exn, State), which consists of a string of I/O operations
ending with a result of type (Either a Exn, State). Such a result consists of a final state
paired with either a normal result of type a or an exception of type Exn. This definition of
I0 allows us to model the semantics of computations within #, and hence use our theory
of H to reason about programs. In practice we would almost certainly want to implement
the I0 type more efficiently.
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We show in Table 8.2 how to program the various monadic operations, given our definition
of the I0 type. These programs should be understood as formal specifications of the
programming model’s semantics, rather than as realistic implementations. There are three
auxiliary operations either, get and put. Functions uncurry, fst and snd are given in
Table 6.3.

We can verify the laws (I0.beta) and (I0.assoc) as follows.
Lemma 8.3 Structure (I0 ,return, (>>=)) is a weak monad.

Proof. The proofs are by routine equational reasoning. (I0.beta) follows from the follow-
ing calculations.

(return v >>=f)s = returnv s ‘thenTT‘ uncurry(either f raise)
returnTT(Left v,s) ‘thenTT‘ uncurry(either f raise)
either f raise (Left v) s

=fvs

To establish (I0.assoc) first note the following facts.

either f gv >>=h = either (\x->fx >>=h) (\x->gx >=h)v
raisev>>=f = raisev
e; ‘thenTT (\x->ey x) = e; ‘thenTT‘ ey

The third of these, a specialised functional eta law, can be established by a simple co-
induction. We can begin the proof of (I0.assoc) as follows, for any suitably typed programs
p, f, g and s.

((p>>=f)>>=g)s = (ps ‘thenTT‘ uncurry(either f raise))
‘thenTT‘ uncurry(either g raise)
= ps ‘thenTT‘ (\y ->uncurry(either f raise) y
‘thenTT‘ uncurry(either g raise))

Now set e to be a subexpression of the right-hand side,
e = uncurry(either f raise) y ‘thenTT‘ uncurry(either g raise).

From the facts noted earlier we can calculate as follows.

e = either f raise (fst y) (snd y) ‘thenTT‘ uncurry(either g raise)
= (either f raise (fst y) >>=g)(snd y)

either (\x—>f x >>=g) (\x ->raise x >>=g) (fst y) (snd y)

either (\x->f x >>=g) raise (fst y) (snd y)

= uncurry(either (\x->f x >>=g) raise) y

Hence via the specialised functional eta law noted above we have

((p>>=1f)>>=g)s = ps ‘thenTT* (\y->e)
= ps ‘thenTT‘ uncurry(either (\x->f x >>=g) raise)
= (p>>=(N\x->fx>=g))s

as required for (I0.assoc). ]
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> analyse :: (Image -> Char) -> I0 O

> jobA f cos = sequence [moveStage co >> analyse f | co <- cos]

> analyse f = capture >>= \im -> output (f im)

> jobB f [] = skip

> jobB f (co:cos) = moveStage co >> jobC f cos

> jobC f cos = sequence [each f co | co <- cos] >> analyse f

> each f co = capture >>= \im -> moveStage co >> output (f im)
Table 8.3: The motivating example

Here is a counterexample to (I0.eta). Let p be const(ReturnTT ). We have for any state
S’

(p >>=return) s = ReturnTT  ‘thenTT‘ uncurry(either return raise)
= uncurry(either return raise) {2
= either return raise () ()
= Q
but p s = ReturnTT 2 which does not equal € in H (nor in Haskell) because all datatype
constructors are lazy.

From (I0.beta) and (I0.assoc) we can verify the following facts about >> and skip.
Lemma 8.4
(1) (p>>q)>>r=p>(g>r)
(2) skip>>p=p
It would help subsequent calculations if we had the right cancellation law
p>>skip=p

(which would make (>>, skip) a monoid) but this fails because of the same counterexample
as (I0.eta). Furthermore, q = return Q is another counterexample; we have q >> skip =
skip = return () # return . The problem is that () # Q in H and in Haskell.
Undesirable undefined elements cause the failure of all these eta and right cancellation
laws. (TT.eta) fails in H because \x ->{2 # 2, and (I0.eta) fails in both H and Haskell
because ReturnTT 2 # Q. However, for the purpose of proving our motivating example
all we need is a specific right cancellation law, Lemma 8.5(1).

8.4 Proof of the motivating example

We conclude this chapter by verifying the example set in §8.1 on page 124. We begin with
a lemma, each part of which can easily proved by equational calculations from what we
have already proved about the I0 type.

Lemma 8.5

(1) output v >> skip = output v
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(2) (capture >>=f)(Just co,g) = £(g co)(Just co, g)

(3) (moveStage co >> p)(mb, g) = p(Just co,g)

(4) (output v >> p)(mb, g) = Write v (p(mb, g))

(5) (analyse f >> p)(Just co,g) = Write (£f(g co)) (p(Just co,g))

(6) (each f co’ >> p)(Just co,g) = Write (£f(g co)) (p(Just co', g))
We need a lemma to relate jobA and the auxiliary function jobC.

Lemma 8.6 For any finite cos::[Coord], co::Coord, f::Image ->Char, g::Coord->Image
and mb::Maybe Coord,

jobA £ (co: cos) (mb,g) = jobC f cos (Just co,g).

Proof. By appeal to the structural induction principle, Proposition 6.34, as specialised to
lists in §6.6, we may prove the lemma by induction on the structure of finite list cos. We
have:

lhs = (moveStage co >> analyse f >> jobA f cos)(mb, g)
= (analyse f >> jobA f cos)(Just co,g)
= Write (f(g co)) (jobA f cos (Just co,g))

Now we consider the two possible forms of cos: (i) cos = [] and (ii) cos = co’ : cos’. In
case (i) it is not hard to check that both sides equal
Write (£f(g co)) (skip (Just co,g)).
In case (ii) we may calculate as follows.
rhs = (each f co’ >> jobC £ cos’)(Just co, g)
= Write (£(g co)) (jobC £ cos’ (Just co’,g))
= Write (f(g co)) (jobA £ (co’ : cos’) (Just co,g)) (IH)
= lhs
In both cases, then, we have the desired equivalence. [ |

The lemma would fail if we were to remove the constraint that cos be finite. Consider
cos = (), which is not finite (in the sense of §6.6). Program jobA f (co : Q) (mb,g) =
Write (f(g co)) © but jobC £ €2 (Just co,g) = .

Finally, we can verify our motivating example.
Proposition 8.7 For any finite list cos, function £, and initial state (mb, g),
jobA £ cos (mb, g) = jobB £ cos (mb, g).

Proof. If cos is finite, then either cos = [] or cos = co : cos’. In the first case,

lhs = skip (mb,g) = rhs. In the second case, we have rhs = (moveStage co >>
jobC £ cos’)(mb,g) = jobC f cos’ (Just co,g) = jobA f (co : cos’)(mb,g), by the
previous lemma, and hence lhs = rhs. [ |
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Conclusion

9.1 Summary

We have shown how a theory of functional programming can be developed from structural
operational semantics and applicative bisimulation. We might reckon this a CCS-view of
A-calculus. We developed parallel theories of a metalanguage for denotational semantics,
M, and a small functional language, H, essentially a fragment of Haskell. Co-induction, in
the form of bisimulation-up-to-equivalence, was found to be useful in circumstances where
domain-theoretic Scott induction might have been needed.

We identified four basic mechanisms for teletype I/O. We gave a labelled transition se-
mantics for three of these mechanisms and defined a notion of bisimilarity. We proved
that the three mechanisms are of equivalent expressive power in the theoretical sense that
there are bisimulation-preserving translations between the three. Actual implementation
of these translations would not necessarily be efficient, however.

We advocated a monadic style of functional I/O in the context of an application of func-
tional programming to medical electronics at the Edinburgh Medical Research Council
(MRC). Motivated by a verification example suggested by the MRC, we developed a
theory of monadic I/O as an extension of our theory of functional programming. By mod-
elling the semantics of the MRC programming model within H, we were able to verify the
example via functional programming techniques.

Ever since McCarthy referred to the I/O operations in LISP 1.5 as “pseudo-functions”
functional I/O has been viewed with suspicion. The work of this dissertation is important
because it is the first to show how a theory of functional programming can be smoothly
extended to admit both an operational semantics for functional I/O and verification of
programs engaged in I/0.

To finish off the dissertation, for each chapter we sketch possible future work, and offer
some further appraisal.

133
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9.2 A calculus of recursive types

It is a pity that the convergence theorem for M, Theorem 3.11, must depend ultimately
on Mendler’s theorem [88] which this dissertation takes on trust. It would be interesting
to investigate whether the M convergence theorem could be based on Wraith’s encoding
of recursive types in the Girard-Reynolds calculus itself [153]. Another direction to pursue
would be to see whether Mendler’s original strong normalisation proof could be extended
to cope with the new constants. The author has recently obtained a result analogous to
Theorem 3.11 for a variant of M via a form of Tait’s method (upon which Mendler’s proof
for pvA2 was based).

9.3 A metalanguage for semantics

M is based on Plotkin’s domain-theoretic metalanguage for semantics [120], in which
each type represents a particular domain construction. Missing from both M and Plotkin’s
metalanguage is a type of nondeterministic computations corresponding to a powerdomain
construction. Howe’s original paper [58] showed that applicative bisimulation can be
applied to a nondeterministic calculus. It may be worthwhile to investigate how to extend
M with a type representing nondeterministic computations.

9.4 Operational precongruence

Chapter 4 studied how the context lemma and Howe’s method can be used to prove that
an operationally-defined equivalence relation is a precongruence. We expect that Howe’s
method will be extremely useful for constructing operational theories of programming
languages. The context lemma was simple and ingenious in the setting of combinatory
logic [91], but much care appears to be needed to generalise it to a more complex A-calculus,
such as M.

9.5 Theory of the metalanguage

We developed an equational theory for M, and proved results about certain types needed
for the denotational semantics of H. Although not itself domain-theoretic, the theory
of M can be compared to axiomatisations of domain theory or functional programming,
such as Edinburgh LCF [46], Cambridge LCF [105] and Thompson’s logic for Miranda
[140]. There are two major differences. First, only M types of the form o, contain a
divergent term ). Hence the presentation of the theory in Table 5.1 is simpler than in
LCF or Thompson’s logic. Second, there is no principle of Scott induction for M. Smith
has shown how to derive such a principle in an operational setting [133]. On the other
hand, we have found in this dissertation that co-induction is sufficient to prove theorems
such as Lemma 8.2 that in LCF would probably have required Scott induction.
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infix 1 >>= >>
abstype ’a Job = JOB of unit -> ’a
with

fun exec (JOB f)

£ 0

fun unit x JOB(fn _ => x)

fun (JOB f) >>=q = JOB(fn _ => exec (q (£ ())))

fun getStr n = JOB(fn _ => input(std_in,n))

fun putStr s = JOB(fn _ => output(std_out,s))
end;

fun p >> q = p >>= (fn u => q);
fun gettingline s =
getStr 1 >>= (fn ¢ =>

if ¢ = "\n" then unit s else gettinglLine (s"c));
val getlLine = gettinglLine "";
val main =
putStr "First name: " >> getLine >>= (fn first =>
putStr "Second name: " >> getLine >>= (fn second =>
putStr ("Hello ""“first~™" "“second”~"\n")));

Table 9.1: A monadic style of I/O for Standard ML

9.6 An operational theory of functional programming

The most original aspect of the theory of functional programming in Chapter 6 is that
it is entirely grounded in operational semantics. Note that the theory of operational
equivalence in H does not depend in any way on Mendler’s normalisation theorem [88],
although the theory of denotational equivalence does.

It is interesting to compare the operational and denotational theories of H. The denota-
tional semantics is good for comparing different object languages (e.g., H, HX, and H with
side-effecting I/0), while the operational semantics allows a simple derivation of program
equivalence.

A useful future project would be to extend H to include eager algebraic type constructors
and a more realistic exception mechanism. Such an extension would contain a non-trivial
fragment of core Standard ML.

9.7 Four mechanisms for teletype I/0

The main question left open in this chapter is how to integrate an operational semantics of
side-effecting I/O into a theory of functional programming. Several authors have suggested
operational semantics for ML extended with side-effecting operators for concurrency [11,
126]; however, there has been little work on equational theories for functional languages
extended with concurrency.
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9.8 Monadic I/O

This chapter showed how to construct a crude model of the MRC computer within A, and
use functional programming techniques to verify a simple property. Before this sort of
methodology is to be of any practical use, there needs to be a good deal more mechanised
support for proofs of programs, and experience of specifying more realistic systems.

One can view monadic I/O as a controlled form of side-effecting I/O; the monad of side-
effects has moved from the denotational semantics into the type system of the object
language.

This dissertation has not discussed practical implementation, though of course the oper-
ational semantics rules give some clues. There is ongoing work at Glasgow on efficient
implementation of monadic I/O [110]. Verification of an I/O mechanism is a problem not
previously examined in work on verified functional implementations [47, 80, 132].

The monadic style is not confined to lazy languages. Table 9.1 shows how monadic I/O can
be implemented in core Standard ML on top of side-effecting I/O. In naive experiments,
this style of monadic I/O was about six times slower than side-effecting I/O. It should
be possible to improve this performance if the Job type were taken as primitive (which is
more or less what is proposed in the Glasgow Haskell compiler [110]). If side-effects are
allowed only in the implementation of the Job type, reasoning about monadic programs
in ML should not be much harder than reasoning about monadic programs in Haskell.
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