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Abstract—Artificial lighting is a pervasive element in our daily
lives. Researchers from different communities are investigating
challenges and opportunities related to artificial lighting but from
different angles: energy disaggregation, to monitor the status
of light bulbs in buildings; and communication, to transmit
information wirelessly. We argue that there is an unexplored
synergy between these two communities. When a light bulb
modulates its intensity for communication, it also affects the
current it draws. This current signature is unique and could
be used by energy disaggregation methods to identify the lights’
status. These signatures however will be exposed to interference
(collisions of signatures) and distortions due to power line effects.
To overcome these problems, we build upon coding schemes to
assign interference-resilient signatures, and we develop custom
hardware to ameliorate distortions introduced by power lines. We
validate our framework in a proof-of-concept testbed, perform
simulations to test scalability, and use energy traces from real
homes to evaluate the impact of other electric loads.

I. INTRODUCTION

Lighting accounts for 17-38% of total electricity consump-
tion in buildings [1]. A significant part of this could be reduced
by providing real-time information on individual light energy
consumption to occupants and building managers. Our work
is motivated by the potential synergy between two areas that
investigate challenges related to artificial lighting, but that
hitherto has not been explored much.

Area 1: Visible Light Communication (VLC). A new lighting
infrastructure providing services beyond illumination. Due to
their high energy efficiency, LED lights are rapidly replacing
traditional light bulbs. By 2030, 86% of all lighting installa-
tions are expected to be LEDs [2]. And thanks to advances
in VLC, LED lights can now modulate their intensities to
transmit data. These advances are creating a new range of
exciting applications. For example, Philips has transformed
the lighting infrastructure of a French supermarket to provide
localization services to its customers [3]. Thus, in the future
we may be replacing the LED lights in our buildings with
VLC lights that act as beacons to provide localization. If this
occurs, we could leverage VLC to monitor in real time the
status of individual lights (i.e. to check if they are on or off ).

Area 2: Energy Disaggregation. The difficulty of monitoring
light bulbs. Energy disaggregation aims at taking the entire
energy signal of a building, and separate it into appliance
specific data [4], [5]. Many appliances, such as fridges and
HVAC systems, have unique energy profiles (signatures) that
can be identified from the aggregated energy measured at the
smart meter. But lights are difficult to monitor. Buildings can

have tens or thousands of lights with the same energy profile.
Some recent studies explore various types of infrastructures
to achieve that monitoring goal: light sensors [6], power
line communication [7] and lighting control systems [8]. We
propose a new alternative: to combine energy disaggregation
methods with the up-and-coming VLC infrastructure.

Our approach. We assume that a building has VLC lights
sending periodic beacons (IDs) for applications such as indoor
localization. These VLC lights do not have any type of
backchannel (e.g. no radio module or power line communi-
cation). When these lights modulate their light intensity, they
also ‘modulate’ the current drawn to power themselves. These
unique current patterns could be decoded at the smart meter.
But the correct identification of these signatures would need
to overcome two problems: (i) interference, many lights are
on at the same time, and thus, their signatures will collide;
(ii) distortions, the signatures will get distorted due to non-
linear elements present in power lines. In light of these
challenges, we present iLED, a framework to monitor the
status of individual lights in real time using a single energy
meter. iLED aims to provide valuable insights to occupants
and building managers on electricity cost at individual light
level, energy optimization, occupancy estimation and other
applications. Our specific contributions are three-fold:
1) Analytical framework (Secs. IV and V). To tackle the
problem of interference, we build upon coding theory to
provide lights with a special ID that is resilient to collisions.
2) Platforms (Sec. VI). To tackle the problem of distortion, we
develop custom VLC lights to overcome the non-linear effects
caused by power lines (for energy disaggregation).
3) Evaluation (Sec. VII). We validate our approach with a small
scale testbed to showcase the ability of iLED to overcome
interference and distortion problems. To test scalability, we
perform simulations. To analyze the effect of other electric
loads, besides lighting, we use traces from real homes.

II. RELATED WORK

The general area of energy disaggregation is vast [4]. We
focus only on the most relevant work aimed at disaggregating
the energy consumed by lighting.

Leveraging electromagnetic signatures to identify the use
of lighting. Recent studies propose using high-frequency en-
ergy meters (> 1MHz sampling) to monitor electromagnetic
interference (EMI) as a mean to identify unique signatures in
appliances [9], [11]. Gulati et. al [11] can identify the presence



of LEDs powered by switch mode power suppies (SMPS), and
ElectricSense [9] can detect the presence of different types of
CFL lamps based on their consumption power. These studies
can identify if lights are on. But they can not identify which
specific light is on because it is difficult to distinguish EMI
signatures when multiple instances of the same appliance are
active (e.g., lights).

Adding or exploiting existing infrastructure to monitor
individual lights. There are other types of infrastructures
that are suitable to provide individual light monitoring. If a
building already has these types of infrastructure, our method
would not be required. Below we describe these approaches.

Radio Channels & Building Control Networks (BCN). Some
lights have BLE or WiFi radios to control them [10]. By
default, such lights can use their radios to report their status
in real time. Some buildings have actuators to record lighting
events. When a light switch is turned on, it pings an actuator
that forwards the event to a central controller. An actuator can
be connected to a single light or many lights in a room. In [8],
the authors correlate these switching events with information
from a smart meter to provide fine-grained decomposition of
lighting usage. The decomposition can be per light or room,
depending on how many lights are connected to each actuator.

Power over Ethernet (PoE). Nowadays Ethernet cables can
provide sufficient energy to power some LEDs [12]. Thus,
PoE can enable by default per-light monitoring because every
LED light has a network address. PoE however has some
limitations. First, it is an inefficient way of transferring power.
The voltages are very low, between 30 and 60 V. These low
voltages imply big currents, which lead to energy wastage
on the transfer line (Ethernet cable). Second, PoE can only
support low-power loads, 13 W for CAT3 and 25 W for CAT5,
which limit the types of LEDs that can be used.

Power line communication (PLC). With PLC, appliances
use adaptors to transfer data over the power line. A few
research efforts have explored the use of PLC to collect
data from appliances [7], [13], [14]. In [13], PLC is studied
as the communication backbone for smarthomes. The study
found that the performance of PLC can degrade rapidly due
to high power motors and external interference (power lines
are big antennas). Murthy et. al [14] looked deeper into the
reasons behind PLC’s performance degradation, and found that
it is also affected by the distance between appliances and
the number of simultaneous transmissions. Batra et. al [7]
extended the above pieces of work by exploiting performance
degradation itself as a signature. The same appliance (e.g.
lights) located at different distances cause distinct reductions
in bandwidth. Based on this pattern, the authors identify which
appliance is on, but only if one of them is active.

Our work has some resemblance with PLC, but there is an
important difference. PLC is a brittle technology, the power
line carries two types of ‘signals’: changes in current due to
energy consumption, and low voltage pulses to transfer data.
PLC’s low voltage pulses are easily distorted by interference.
iLED, on the other hand, carries only one type of signal:
changes in current. Since power meters are designed by default
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Fig. 1: iLED framework.

to measure accurately current flows, iLED is less affected by
interference in the power line.

Modulating light intensity and current simultaneously.
VLC is only concerned with modulating light intensity [15],
[16], not with modulating the current drawn. We create custom
hardware to achieve both modulation goals simultaneously.

III. SYSTEM DESIGN

The aim of this work is to develop a framework to monitor
the use of lights in buildings with a single energy meter.
We focus on legacy buildings, that is, buildings that do not
have any extra infrastructure beyond the basic power lines
(AC or DC). Due to standard requirements, many buildings
have separate power lines for lighting. For scenarios with a
single power line for all loads, we present some analysis in
Sec. VII-D. We assume that a smart meter is connected to
the lighting power line and that the building has VLC-lights
broadcasting periodically their unique IDs (the VLC lights
are standalone devices with no backchannel). Our system is
depicted in Fig. 1 and has three main components:

VLC lights. We use commercial LED lights with additional
custom build parts to modulate their light intensity and current
consumption. A simple On-Off Keying (OOK) scheme is used
for modulation, where 0/1 symbols are sent by turning the
LED off/on at high frequencies. Our modulation does not
create any flickering effects.

Energy meter. The energy meter measures the current
consumed by all light fixtures in a building. Due to the high
modulation frequency of our VLC lights, we need a high-
frequency, high-sensitivity energy meter. Some commercial
meters do not provide this capability, others do but are
expensive [17]. We develop our own energy meter (albeit
intrusive) by embedding a resistor in the power line.

Lighting monitoring system. This component identifies
the status of individual lights from the aggregated energy
consumption. Our framework requires no training phase. This
component only requires a database with the IDs of lights in
the building. With this information, active IDs are decoded
continuously from the aggregated signal.

IV. CODES FOR ILED

To obtain IDs that are resilient to interference we build upon
the field of coding theory. Our first task is to identify a code
that abides by four key requirements in our application:



Scalability. Given L bits, we can obtain 2L unique IDs. But
only a very small subset of those 2L IDs have resilience to
interference. Each light will need an ID from that small subset.
Thus, buildings with many lights may need increasingly longer
IDs. But if the IDs get too long, we may not be able to transmit
them in a timely manner.

Balance. In radio communication, it is not so important the
pattern of 0’s and 1’s present in a code. But for VLC it is. If
there are too many 0’s in a row, flickering effects will occur.
We require codes with a balanced sequence of symbols.

Synchronicity. Lighting switching events in buildings can
occur in a synchronous manner, for example a switch turning
on many lights in a room, or in an asynchronous manner, lights
being turned on/off independently in different rooms. We need
codes that perform well under both circumstances.

Resilience. Considering X1 as the ID of LED1 (available
from a database) and Y as the aggregated signal measured
by the smart meter (which may or may not contain X1). The
lighting monitoring component will correlate these two signals
to identify if the ID is present (i.e. to check if the light is on).
The correlation of two signals is defined as,

R(τ)xy =

L−1∑
i=0

x1(i)× y(i+ τ) with τ = 0, 1, 2, . . . , L (1)

where, τ is the lag of one signal relative to the other, and
L is the length of the code. Assuming that a total of k IDs
are present in Y , including X1; the above sum can be de-
composed into two sums, one evaluating the auto-correlation
of X1 =

∑
x1(i) × x1(i + τ), and the other evaluating the

cross-correlation between X1 and the other IDs present in Y :∑
x1(i)× xj(i+ τ) + . . .+

∑
x1(i)× xk(i+ τ). Ideally, we

would like codes that give an auto-correlation of L for τ = 0
and zero for τ 6= 0, and a cross-correlation of zero for all
values of τ . Such correlations would generate a single spike
when a code is present and zero the rest of the time.

Next we describe succinctly different types of codes and
highlight their pros and cons w.r.t. our scenario.

A. Orthogonal code sequences [21]

Pros: scalability and resilience. Orthogonal codes scale
well. For a sequence of length L, we get L − 1 codes.
Orthogonal codes also have excellent resilience. When a code
is present in the aggregated signal, the auto-correlation is L.
If the code is not present the cross-correlations are zero.

Cons: synchronicity and balance. Orthogonal codes only
work in synchronous scenarios. In asynchronous scenarios,
the auto-correlation can be low and the cross-correlations are
no longer zero [18]. Furthermore, in orthogonal codes, the
number of consecutive zeros and ones increase as the code
length increase, which would lead to flickering effects.

B. Pseudorandom Noise code sequences

Pros: synchronicity and balance. PN codes can work in
synchronous and asynchronous scenarios. Furthermore, they
have great balancing properties [19], which guarantees no
flickering effects. Any PN sequence of length L contains an

TABLE I: Comparison of PN and Gold codes.

PN codes Gold codes
L # of Cross- m # of Cross- m

codes corr. codes corr.
31 6 11 1 33 9 1
63 6 23 1 65 17 1

127 18 41 1 129 17 3
511 48 113 2 513 33 7
1023 60 383 1 1025 65 7
2047 176 287 3 2049 65 15

almost perfect balance of ones and zeros: (L + 1)/2 ones
and (L − 1)/2 zeros, and these symbols alternate in a rather
homogeneous manner.

Cons: resilience and scalability. PN codes have an average
resilience. The auto-correlation is good (L when τ = 0 and −1
when τ 6= 0), but the cross correlations are greater than zero.
If multiple lights are on, their cross-correlations could add up
to values similar to the auto-correlation, which would lead to
false positives. PN codes also scale poorly. The maximum
number of codes in sequence of length L grows slowly, as it
depends on the prime factors present in L.

C. Gold code sequences [20]

Pros: synchronicity, balance and scalability. Gold codes
maintain the good properties of PN codes (balancing and
(a)synchronous operation), and add scalability. The scalability
of Gold codes is even better than that of orthogonal codes.

Cons: resilience. The resilience of Gold codes is lower than
orthogonal codes, but higher than PN codes. If the pair of PN
sequences are ‘well chosen’, the auto-correlation is given by,

R(τ) =

{
L if τ = 0

{−t(n), −1, t(n)− 2} if τ 6= 0
(2)

t(n) =

{
1 + 2

n+1
2 for odd n

1 + 2
n+2
2 for even n

(3)

where, n is the number of LFSR registers, and the cross
correlation can only take one of three possible values [20],

Rxy(τ) = {−t(n),−1, t(n)− 2} (4)

Table. I shows the code length (L), number of codes (C),
peak cross-correlations and maximum concurrent transmitters
(m) for PN and Gold codes. We can see that for the same code
length, the number of Gold codes generated is much higher
and the peak cross-correlations are lower. Thus we use Gold
codes as the mechanism to generate the IDs for iLED.

V. INDOOR LIGHTING MONITORING

We now describe the two main challenges we need to
overcome to use Gold codes for iLED.

A. Minimizing number of concurrent LED transmitters

In a building, numerous LEDs will be on at any given time,
and thus, they will be transmitting their codes simultaneously.
Since the cross-correlations of Gold codes are not zero, these
correlation values could add up (or substract) leading to false
positives and false negatives (as explained later). To ensure that
the LEDs’ IDs can be decoded successfully at the smart meter,
we first derive the maximum number of codes m that can be



transmitted simultaneously. Then we propose a probabilistic
approach to guarantee with probability p that no more than m
LEDs transmit their code at any given time.

1) Maximum number of concurrent transmitters: When a
Gold code is present in the aggregated energy signal, the auto-
correlation value is equal to the length of the code L and
for all other codes the cross-correlation value is bounded by
t(n), which can be positive or negative (c.f. Eq. 4). Let T
be the threshold used to determine if the correlation value
is high enough to deem that a light is on. Due to the non-
zero cross-correlations we can have false positives or false
negatives. If a code is not present, but the cross-correlations
with other codes are positive, the correlation values may add
up to values greater than T (false positive). If, on the other
hand, a code is present but the cross-correlations are negative,
the final correlation may fall below T (false negative). To avoid
these problems, we need to guarantee that:

R = L−m× t(n) > T (avoid false negative)

R = m× t(n) < T (avoid false positive)

By equalizing the above equations, we can compute (i) the
maximum number of concurrent transmitters (m) for a reliable
decoding process, and (ii) the threshold value (T ),

m =
L

2× t(n)
and T =

L

2
(5)

Now let us give an example to determine the parameters m
and T for a building with less than 1026 lights. Considering
a 10-register LFSR, the code length is 1023 (2n − 1), the
maximum number of codes (lights) is 1025 (2n + 1), the
maximum cross-correlation t(n) = 65, and thus, the maximum
number of concurrent transmitters is 7.

2) Probabilistic approach: The maximum number of LEDs
m that can transmit their IDs concurrently (c.f. Eq. 5) can be
low compared to the number of LEDs active in a building. In
our prior example, a building with 1025 lights could have at
most 7 active lights at any given time. To ease this constraint,
we propose a probabilistic approach. Every LED divides its
local time into slots of length L/f , where L is the code length
and f is the modulating frequency. For a code length of 1025
and a modulation frequency of 10 kHz, these time slots will
be approximately of 0.1 seconds. At each time slot, the LED
sends its ID with probability p.

Considering that we have C valid codes, but only m can be
active simultaneously, we can model the probability of having
m or less active transmissions as a binomial distribution,

CDF: PR(X ≤ m) =
m∑
i=0

(C
i

)
× pi × (1− p)C−i (6)

where X is the random variable representing the number of
LEDs transmitting their IDs at any given time. The probability
PR(X ≤ m) needs to be high to avoid interference. To
determine the probability p, a user could set PR(X ≤ m)
= 1 − ε, where ε denotes the likelihood of having more than
m concurrent transmissions. The trade-off for selecting ε is
between time and accuracy. A small ε increases the likelihood
of correctly decoding (monitoring) IDs, but it also increases

the time required to hear from all LED lights. A large ε has the
opposite trade off. Once a user defines ε, and obtains p, we can
calculate the expected polling time. That is, how frequently we
can monitor the LEDs. This expected polling time is given by
E[t] = L

f ×
1
p . In Sec. VII-C, we will see that iLED is capable

of accurately monitoring hundreds of lights every few minutes.

B. Correlation with (0,1) symbols

Coding schemes have been developed mainly to suit the
needs of radio communication, where bits can be mapped to
±1 symbols. But in our system the aggregated signal only
takes 0/1 values. We thus have a mismatch: the codes stored
in the lighting monitoring component (database) contain ±1
symbols, but the aggregated signal measured at the smart
meter is generated by 0/1 codes. To overcome this problem,
we perform a transformation. First, we will obtain correlation
values for codes using ±1 symbols (as in the case of radio
communication). Then, we obtain correlation values for our
system. Finally, we show that the former correlation (which is
what we want), is a function of the latter.

Correlation between a ±1 signal and ±1 symbols. Let x =
s(t) be the received aggregated signal composed by m distinct
codes with symbols (+1,-1), ci(t) be the code sequences and
y= c0(t) be the code we want to identify in the received signal.
The correlation in (1) can be rewritten at τ = 0 as,

R(0)sc0 =

L−1∑
t=0

s(t)× c0(t) , where s(t) =

m∑
i=1

ci(t)

R(0)sc0 =

L−1∑
t=0

{
c0(t)×

m∑
i=1

ci(t)

}
(7)

The final correlation is the sum of all cross-correlations plus
the auto-correlation of c0(t), if c0(t) is in s(t).

Mapping function. To derive correlation values for ±1
symbols as a function of correlation values with 0/1 symbols,
a mapping function needs to be defined [19]. Let r denote +1
or −1 and b denote 0 or 1, b can be written as b = 1−r

2 .
Correlation between a 0/1 signal and ±1 symbols. Let x1

= s1(t) be the received signal at the smart meter, which is
composed of m distinct codes formed with 0/1 symbols. Let
us denote each one of this binary codes as cbi (t). Let us also
denote y= c0(t) as the code we are looking for, but this code
is stored at the database with ±1 symbols. The correlation of
these two signals can be written as,

ˆR(0)s1c0 =

L−1∑
t=0

s1(t)× c0(t) and s1(t) =

m∑
i=1

cbi (t)

ˆR(0)s1c0 =

L−1∑
t=0

{
c0(t)×

m∑
i=1

cbi (t)

}
Substituting cbi (t) with the mapping b = 1−r

2 , we can rewrite
R(̂0)s1c0 as,

ˆR(0)s1c0 =

L−1∑
t=0

{
c0(t)×

m∑
i=1

1− ci(t)
2

}
(8)

ˆR(0)s1c0 =
m

2
×

L−1∑
t=0

c0(t)−
1

2
×

L−1∑
t=0

{
c0(t)×

m∑
i=1

ci(t)

}
(9)
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Fig. 2: iLED DC testbed.

Transformation. The second term in the above equation
represents the correlation coefficient described in (7) and can
be rewritten as,

ˆR(0) =
m

2
×

L−1∑
t=0

c0(t)−
1

2
×R(0) (10)

R = m×
L−1∑
t=0

c0(t)− 2× R̂ (11)

where, m is the number of distinct transmitters and the
term

∑L−1
t=0 co(t) represents the sum of the code sequence.

For balanced Gold codes, the number of ones equals the
number of zeros plus one as described in (IV-B), hence∑L−1

t=0 co(t) = −1. Finally we obtain:

R = −m− 2× R̂ (12)

Upon calculating the correlation R̂ at the smart meter, we
transform it to R, and only then, we compare the correlation
with the threshold T to determine if an LED is active or not.

VI. ILED TESTBED

For iLED to work in practice, we need square waves to
allow proper superposition of signals when multiple LEDs are
modulating. The codes, however, can get distorted due to non-
linear elements in DC and AC power lines. In this section we
describe our custom hardware to tackle the distortion problem.

A. DC testbed

Our DC setup includes VLC Lights and an energy meter.
VLC Light consists of standard LED lights with modula-

tors. The modulator switches on and off the LED based on
the code that is assigned to the light fixture. LEDs are usually
powered by connecting a current limiting resistor in series
with the voltage source. However, depending on the load,
the supplied voltage may fluctuate, which would also cause
fluctuations in the current drawn. This causes distortions in
the generated signal. To eliminate this distortion, we build a
current source which delivers a constant current independent
of the load. Thus, the resultant current drawn has two distinct
values (0 for the LED off state and some constant current for
the LED on state). A signal from a microcontroller is used to
toggle the current source for modulating the LED.

Energy meter: We developed a low cost energy meter
by connecting a resistor in series between the DC power
supply and the LEDs. The voltage drop over the resistor is
linearly proportional to the current that flows through it and
is measured directly using a microcontroller’s ADC channel.

(a) LED-1 (b) LED-1 OFF (c) LED-1 ON

(e) LED-2 ON(d) LED-2 (f) LED-2 Modulating
Fig. 3: Commercial LEDs, their current signatures along with
the custom built VLC light.

DC testbed: Fig. 2 shows the DC testbed. The setup
includes six LEDs, the current sources to power them and
a microcontroller. The energy meter measures the aggregated
current consumption of the LEDs and decodes the received
signal to determine the presence of an LED signature.

B. AC testbed infrastructure

Unlike the DC setting, in AC settings the supplied voltage
is a sinusoidal wave. Hence the design of the VLC light and
energy meter is not trivial. We first discuss the problems with
modulating light and current simultaneously in commercial
light bulbs. Then, we describe our custom hardware design to
overcome these problems.

Problems modulating standard LEDs. Commercial LEDs
are powered in several ways for efficiency, (i) by using an
external switching mode power supply (SMPS) to convert AC
to DC, or (ii) by directly connecting to AC with a built-in
rectifier circuit. These two approaches introduce distortions.
The SMPS approach (Fig. 3(a-c)) leads to highly distorted
waveforms, which cannot be decoded. Fig. 3(b-c) show the
current signatures when the LED is off and on. The second
approach has a smoother waveform but has its own set of limi-
tations, c.f. Fig. 3(d-f). First, the time available for modulation
is limited, c.f. Fig. 3(e). These type of LEDs work in a duty
cycle manner. Regions A and C are the only times the LED is
actually operational, which means that the time available for
modulation is only 8 ms in a 20 ms period (40% of modulation
time). Hence the time taken for an LED to transmit its code
would be longer as compared to a DC setting. Second, and
more important, the amplitude changes. We cannot obtain
the necessary square waves to create superimposing codes.
To showcase this point, we modified the internal circuitry
of a commercial LED to toggle it by adding two transistors.
Fig. 3(f) shows the result of the modulation. We can see the
modulation leads to triangular waves with different amplitudes.

Custom LED modulator. Due to the distortions caused
by the two commercial LEDs analyzed above, we decided to
design a custom hardware that includes a triggering circuit to
indicate when to modulate the LED, a current source to pro-
vide constant current when the LED state is on, and a voltage
source to power the triggering circuit without distorting the
signals during the modulation periods.
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Fig. 4: iLED AC testbed.

The triggering circuit is used to determine when the AC
voltage crosses a certain voltage threshold to power an LED
and start/stop modulating. In our setup, the trigger setpoint
voltage is set to 100 V as shown in Fig. 4(a). It can be seen that
the LED’s on time is roughly 16 ms i.e., 16

20 = 0.8, resulting
in 80% of the time for modulation.

A current source is used to power the LED such that
the current drawn is constant. Fig. 4(b) shows the current
signature when an LED is modulating at 500 Hz. It can be
seen that, in regions A1 and A2 the current drawn is zero,
indicating the LED off state with a ‘0’ symbol encoding. In
regions B1 and B2 the LED is on and we can observe a
‘1’ symbol encoding. The current source guarantees that the
current drawn by the LED (when it is on) is a constant value.
A voltage source is used to power the triggering circuit and
the current source.

Energy meter: A high-frequency, high-sensitivity energy
meter is needed to detect small current changes. But in this
case we need to cope with two additional problems: the voltage
can be positive or negative, and we need to detect exactly the
periods where modulation occurs without the help of global
clocks or external signals. We use a series resistor as current
sampler. To overcome the polarity of AC voltage over the
resistor (positive and negative values), the output voltage is
lifted with an offset before reading it. A triggering circuit is
used to identify the modulation regions. The energy meter
and lights are all in synch because the sinusoidal voltage in
power lines is the same for the entire electrical network and
acts as a global clock. Note that high-end commercial energy
meters could be used too [17], but they could cost between
300-1000$.

AC testbed: Our AC setup includes 3 VLC lights with
commercial LEDs rated at 15 watts. Each LED has its own
modulator and microcontroller. The microcontrollers are pro-
grammed to generate gold codes of certain length. The energy
meter is connected in series to measure the current and decode

the information from the aggregated signal. Fig. 4(c) shows
our testbed setup with VLC lights and energy meter.

VII. EVALUATION

In this section, we describe our experimental evaluation
and show the efficacy of iLED w.r.t. accuracy, real-time
monitoring, scalability, and the presence of other electric loads.

Working of iLED. Consider a legacy building as described
in Sec. III, with VLC lights programmed with unique Gold
codes of length L. We do not know the physical locations of
the lights, but all the Gold codes are stored in a database,
which can be accessed by the energy meter. When a VLC
light is turned on it starts transmitting the unique code and
the energy meter measures the aggregated signal that contains
signatures from multiple lights. The energy meter then com-
putes the correlation values between the measured aggregated
signal and each code in the database using the framework
presented in Sec. V-B to determine which lights are on/off.
We utilize the following metrics to quantify the performance:
F-measure as a comprehensive metric of accuracy combining
the precision and recall, which includes the effects of false
positives (fp) and false negatives (fn),
F = 2 P ·R

P+R , where P = tp
tp+fp

and R = tp
tp+fn

.
Latency as the time taken to identify the status of lights.

A. Numerical results

In Sec. V-A1 we derived bounds for the maximum number
of concurrent transmitters, and proposed a probabilistic frame-
work to maintain the number of active ID transmissions below
that bound (Sec. V-A2). We will now shed some light about
what this theoretical framework means in terms of monitoring
LED lights. Table II captures the theoretical performance of
our system. A constant modulating frequency of 10kHz is
used by all VLC lights.

Consider a building that has 500 LED fixtures and the
facility manager would like them to send their codes con-
tinuously and simultaneously. To avoid interference problems
at the smart meter, we will need to assign each LED a code
length of more than two million bits (fifth row on the left
side of Table II:Without Prob. Approach). This code length
would take almost 3.5 minutes to transmit at 10kHz. This is
a good polling time, every 3.5 minutes the facility manager can
monitor the status of all 500 lights, but an unreasonable time
to get just a beacon for many VLC applications. To overcome
this problem, we use our probabilistic approach. Now consider
the right side of Table II. If a facility manager is willing
to tolerate a very small error ε = 0.001, the code length is
reduced significantly (from more than two million bits to 511
bits). The manager would need to wait only 13.24 seconds (on
average) to poll lights.

B. Testbed evaluation
1) DC testbed: Our DC testbed includes six LEDs as shown

in Fig. 2. Each LED generates a unique code when its on. A
seventh code is also stored in the database to represent an LED
in an off state.
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Fig. 5: (a) Correlation values for L=511 in DC testbed (b) Correlation values for L=127 in DC testbed (c) Aggregated current
consumption in AC testbed (d) Processed current in AC testbed.

TABLE II: Concurrent transmitters (m), code length (L) and
latency without and with the probabilistic approach.

Without Prob. Approach With Prob. approach
m L Latency m L Latency Latency

(s) (ε=0.001) (ε=0.1)
7 511 0.0511 9 7 6.31 0.06
31 8191 0.8191 33 31 2.22 0.19
63 32767 3.2767 65 63 8.91 0.77
127 131071 13.107 129 127 3.79 0.93
511 2097151 209.72 513 511 13.24 5.62
1023 8388607 838.86 1025 1023 53.10 22.50
2047 33554431 3355.4 2049 2047 65.36 37.64

Case without interference: Code length 511, modulation
frequency 1kHz. When there are six concurrent VLC lights,
a code length of 511 or higher is required to ensure no
interference occurs (see Table. I). To determine if an LED
is on, the energy meter computes the correlation between the
LED’s ID and the aggregated signal measured at the power
meter. If a code is present, the correlation will have peaks
of length L. If the code is not present, the correlation will
always be lower than the threshold T = L/2. Fig. 5(a) shows
the correlation values when a code is present and not present
(seventh code) in the received aggregated signal. We can see
that when the code is present, correlation values have peaks
around 511 (blue peaks). When the code is not present the
correlation values are always below the threshold (T=511/2).

Case with interference: Code length 127, modulation fre-
quency 1kHz. To demonstrate the importance of selecting the
right code length given m maximum concurrent transmitters,
let’s take a code length that is less than 511, say 127, for
each of the six LEDs. From our analysis, we can see that
only three concurrent transmitters should be present so that no
interference occurs for this code length (see Table I). However,
if all six VLC lights transmit their code simultaneously there
will be interference and the accuracy of identifying lights will
be reduced. Fig. 5(b) shows the correlation values when a
code is present (blue line) and not present (black line) in
the received signal. The correlation values for the code that
is present have clear peaks crossing the threshold. However,
the correlation values of a code that is not present also have
instances which cross the threshold (peaks crossing the red
line), leading to false positives. This is due to the high number
of concurrent transmitters for the chosen code length.

2) AC testbed: Our AC testbed includes three LEDs each
rated at 15 watts, c.f. Fig. 4(c). We use four gold codes, one

for each of the three LEDs and one to represent an LED in the
off state. From our analysis, a code of length 127 or higher
would avoid interference. A constant modulating frequency
of 10kHz is used by all VLC lights. Fig. 5(c) shows the
aggregated signal and the corresponding trigger output. To
extract the modulated signal, we first filter the aggregated
signal when the trigger output is low, and then, normalize the
raw ADC values. Fig. 5(d) shows the normalized ADC values
and the corresponding current drawn by the three LEDs.

Fig. 6(a) shows the correlation values when a code is present
and not present in the aggregated signal. When a code is
present, the correlation values have peaks around the code
length (127). Since the codes present in the received signal
were accurately identified all the time, the F-measure is 1
with no false positives. In both testbeds, AC and DC, the
experiments were conducted more than ten times and each
run was around five to ten minutes long.

C. Scalability analysis
To validate the applicability of iLED in buildings with

thousands of lights we perform a scalability analysis using
simulations. We test the scalability of our approach by employ-
ing the probabilistic method described in Sec. V-A2, which
dictates that all VLC lights only transmit their codes with a
probability p. Let us consider a building with 129 LEDs, which
would require Gold codes of length L = 2n − 1 = 127.

Analyzing the trade-off between ε, accuracy and polling
time. Fig. 6b shows the accuracy of identifying an LED,
when 129 LEDs are transmitting their code sequences of
length 127 with ε = 0.1. The x-axis indicates the time in
seconds, the left y-axis indicates the number of concurrent
transmitters at each time slot, and the right y-axis indicates
the percentage of unique LED IDs that have been successfully
transmitted. The dotted line indicates the maximum number of
concurrent transmitters such that no interference takes place
(for L = 127, m should be 3 c.f. Table I). Fig. 6b also shows
the corresponding F-measure. When the number of concurrent
transmitters are below or equal to the line, there exists minimal
interference and it does not affect the accuracy (F-measure is
equal to one, no false positives/negatives). However when the
number of concurrent transmitters is higher than m, depending
upon the cross-correlation with other codes, the interference
may be high enough to affect the accuracy. In some instances
there are no false positives as the cross-correlation between the
codes is not high enough to interfere (see time period 0.1 s with
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Fig. 6: Scalability analysis.
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Fig. 7: Disaggregating LED data from combined data.

4 transmitters). In other instances however the interference is
high and the F-measure drops (see time period 0.3-0.4 s). Note
that the percentage of transmitters that successfully transmit
its code at least once increases linearly over time, since in
each slot all transmitters have an equal probability of being
chosen. In our evaluation, the total time required to identify
all 129 LEDs is around 1 second.

Fig. 6c shows the evaluation result when ε = 0.001. It can
be seen that over time, the number of concurrent transmitters is
always below the maximum number of concurrent transmitters
(m=3). Hence the F-measure in this setup is always equal to
1. However, the time required to successfully identify all the
LEDs is around 4 seconds. Extensive scalability analysis of
iLED has been performed for different building settings with
thousands of lights. For example, a building with 2049 LEDs
transmit their IDs under 38 seconds when ε = 0.1.

D. Impact of other loads
Until now, we have discussed iLED’s performance only

in scenarios where lights are present. While some buildings
have separate power lines for lighting, households and legacy
buildings usually have a single power line. In this section, we
use a data-driven approach to describe the impact of other
electric loads and show that iLED is still resilient enough
to monitor the status of lights. iLED requires high frequency
smart meters, which are expensive to deploy. Taking advantage
of the fact that current traces can be combined, because power
(P) is a linear function of current (I); we use high frequency
measurements of several households from open datasets and
merge them with the LED traces obtained from our testbed.
This combined signal includes both appliances and LED data.

At the core of our method lies the concept of Fast Fourier
Transforms (FFT). Fig. 7 shows the overview of our approach.
For our explanation we define the following type of traces: (1)
LED data, which is the current trace obtained in our testbed

for three lights, (2) Appliance data, which is the aggregated
current trace of appliances obtained from the public databases;
and (3) Combined data, which merges LED and Appliance
data into a single trace.

1) Combining Appliance and LED data: There are very few
energy datasets that have high frequency smart meter data. We
use two datasets viz., REDD(http://redd.csail.mit.edu) and UK-
DALE(https://www.doc.ic.ac.uk/\∼dk3810/data/), which pro-
vide high frequency samples for the total energy consumption
of a household, 15kHz and 16kHz respectively. To combine
the appliance data from open datasets with our LED data, we
ensure two things (i) phase alignment: align the x-axis of both
signals with respect to the zero crossing points of voltage; and
(ii) polarity alignment: align the y-axis of signals to follow
the positive and negative parts of voltage oscillation. We use
the data from House 3 of the REDD dataset, which includes
energy consumption from diverse set of appliances such as
Lighting (6 fixtures), Fridge, Electric furnace, Microwave,
Sockets and CE appliances. Fig. 8(a) shows the aligned
appliance and LED data.

2) Filtering Appliance and LED data: In order to discern
the LED data from combined data, we use Fourier transforms.
Our method has two main components: determine active
frequency and filtering.

Determine active frequencies. The goal of this step is to
identify the most active frequencies in the appliance data, so
we can later filter them out. First, we perform a FFT over
the appliance data, as shown in Fig 8(b). Any frequency
component with an intensity higher than δ is recorded in an
array. The selection and impact of δ in iLED’s performance
is clarified later.

Filtering. The goal of this step is to obtain the LED data
from the combined data. First, we perform a FFT over the com-
bined data. Then we filter out all the frequencies determined
previously by the δ parameter. This step will remove some
information from the LED data, because some frequencies of
the LED and appliance data overlap, but not much information
is lost. Finally we apply an inverse FFT (IFFT) to reconstruct
the LED data in the time domain, as shown in Fig. 8(c).

3) Monitoring and decoding accuracy: From, this step
onwards we follow the general iLED framework. The LED
data in the time domain is processed using the triggering
signals, as shown in Figs.8(c-d). This step has two important
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results: the decoding process and the correlation process.
Decoding: We compare the filtered LED signal with the

ground truth LED signal in Fig.8(d). We can see that there
are some bit errors in the code. To evaluate the impact of
δ, we compute bit error rates (BER) across various intensity
thresholds, as shown in Fig. 8(e). We can observe that in
general BER values are low. Thus, there is a wide range over
which the values of δ would lead to a good performance.

Correlation: While the BER is low, the key question to
answer is: can we accurately identify the status of the LED in
spite of these errors? To this end, we compute the correlation
values of the filtered LED data, and for comparison, we also
compute the correlations with the ground truth LED data.
Fig. 8(f) shows both correlation results. In general, when
a code is present in the signal, we can still obtain peaks
showing (correctly) that the LED was on (even with a few
bit errors). The reason for this resilience is that the correlation
outcomes are not affected greatly with a few bit errors because
correlations are sums over all bits in a code. Thus the proposed
iLED framework can accurately identify LEDs when other
loads are present.We evaluated our approach across other
households data in the REDD dataset (i.e., House 5) and other
datasets such as UK-DALE. The results show similar trends.

VIII. CONCLUSIONS

The key contribution of our work is the proposition of a new
tool to monitor the status of lights via energy disaggregation.
At the core of that contribution is the idea of enabling lights
to modulate interference-resilient IDs in the current domain.
Our proposal provides a unique perspective compared to what
is available in the state-of-art, because we do not rely on
the ‘default’ signatures that light bulbs create, but rather
shape them without affecting the main purpose of illumination.
iLED is a novel concept, but there is plenty of room for
improvement. The next step is to test iLED in a real setting at
a larger scale, including the effects of various electric loads.
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