
Actor-Oriented Database Systems
Philip A. Bernstein

Microsoft Corporation
One Microsoft Way, Redmond, WA, 98052, U.S.A.

philbe@microsoft.com

Abstract—We present the vision of an actor-oriented database.

Its goal is to integrate database abstractions into an actor-oriented
programming language for interactive, stateful, scalable,
distributed applications that use cloud storage.

I. INTRODUCTION
Many of today’s interactive, stateful, server applications are

processor-intensive and must be scalable and elastic. Hence,
they are usually implemented using middle-tier servers backed
by cloud storage, rather than using stored procedures in a
database system. This has two benefits. First, the mid-tier can
offload the storage back-end by caching data that is frequently
accessed. This enables the system to scale elastically by adding
or removing inexpensive middle-tier servers. Since mid-tier
servers can access all of cloud storage, this elastic scaling does
not need data migration. Second, it enables the system to scale
computation and memory by adding inexpensive mid-tier
servers, independently of adding I/O. This is beneficial to mid-
tier applications that render images, compute over large graphs,
process high-volume message streams, or perform other
computation-intensive activities.

Mid-tier applications are often object-oriented, because they
involve interactions with large numbers of objects in the real
world. Examples include multi-player games, social network-
ing, mobile computing, telemetry, and Internet of Things.

Since real-world objects are independent of each other, the
software objects that model them do not share state and com-
municate via asynchronous messages. Such objects are called
actors. Therefore, the actor programming model is popular for
implementing these types of applications. There are dozens of
programming frameworks for building actor applications, such
as Akka [1], Erlang [2], Orbit [9], and Orleans[10].

In these types of applications, each actor typically has state
that describes the real-world objects it models and that survives
across multiple calls to the object. This data is not always stored
persistently, for example, because it is device state that changes
frequently or because it models a real-time session that
disappears when its participants disconnect. Even if the actor’s
state is stored persistently, its freshest state may be in main
memory, which is only periodically written to persistent storage.

In summary, actor applications manage large numbers of
long-lived stateful objects distributed across many servers.
Thus, they are effectively database applications, even though
they are rarely thought of that way. However, actor program-
ming frameworks offer few, if any database abstractions, such
as indexing, transactions, streams, replication, geo-distribution,
and queries. This is an opportunity for the database field.

For the past four years, we have been working with
developers and users of Orleans, an open-source .NET

programming framework for scalable, distributed actor-based
applications [4][6]. Orleans application developers have asked
for database abstractions, to improve programmer productivity
and application robustness. We have therefore been adding
them to Orleans and summarize here what we have learned.

We use the term actor-oriented database (AODB) to
describe an actor framework that incorporates database
abstractions. It has three properties that distinguish it from other
types of database systems: it scales out elastically to a large
number of servers, it is agnostic to the storage system which it
treats as a plug-in, and it is compatible with the actor
framework’s programming model [6].

II. RELATED WORK
There have been many previous approaches to incorporating

database functionality into object-oriented systems: object-ori-
ented databases (OODBs), persistent programming languages,
distributed object systems, and object-relational mappers
(ORMs). Like an AODB, they all strive to avoid an impedance
mismatch between the database interface and programming
language. However, except for ORMs, they all were developed
with a customized server-attached storage system. By contrast,
an AODB must work with a broad range of cloud storage
systems. They differ from AODBs in a variety of other ways:
most OODBs were built for computer-aided design, some
persistent programming languages offer persistence-by-reacha-
bility, and most ORMs target SQL for their storage. As far as
we know, none of them focus on scalable interactive services.

Other related technologies are enterprise software platforms
(e.g., Java EE), mid-tier cache managers (e.g., memcached),
and graph databases. There is much to learn and borrow from
all these technologies. But the details and combination of
features needed by AODBs is different from all of them

III. COMPONENTS

A. Identity and Location Transparency
To invoke a method on an actor, the actor needs an identity.

Ideally, the identity is location-transparent, which simplifies
load-balancing and fault tolerance. It might be long-lived, much
like the primary key of a database table. Or it might be transient
and a new one minted whenever an actor is activated.

B. Transactions
In an AODB, a transaction spans multiple actors that in

general run on different servers and independently write their
state to cloud storage. Therefore, for atomicity and durability,
two-phase commit is required. If a write to cloud storage takes
20ms (a typical number), then the maximum throughput on a

13

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00010

write-hot actor is 25 transactions/second. We have developed a
protocol that uses early lock release to enable batching, which
can increase throughput by an order of magnitude [8]. Although
today’s cloud storage systems do not offer logging as a service,
if they did, as in [3], then other optimizations might be possible.

C. Replication and Geo-distribution
There are two natural programming models for replicated

actors: primary-copy and multi-master. In primary-copy, each
distinct actor has at most one running instance. If the
application is geo-distributed, this single-instancing must be
guaranteed world-wide. If an actor has replicas running as
warm or hot standbys, then after an actor fails, a leader-election
algorithm chooses another actor as primary. Or the actor might
be made highly available by using replicated storage to manage
its state, a capability widely supported by cloud storage services.
The latter is our current solution in Orleans.

In a multi-master setting, many updatable copies of an actor
may be running. This is mainly useful for geo-distribution, with
copies running in different datacenters. The system should offer
a well-defined programming model for actor-state synchroniza-
tion. In our solution [5], the actor state is eventually linearizable,
by which we mean that updates are eventually applied to all
copies in the same order and actor state is always a prefix of the
linearized sequence. An application can also read the latest
linearizable state it knows about, with all of the application’s
subsequent updates applied. This state might never exist in the
linearizable sequence but is nevertheless useful to some apps.

In both the multi-master and primary-copy setting, geo-
distributed transactions could be supported, which is a subject
of our current research.

D. Indexing
In addition to accessing actors based on their identity, it is

often useful to access them based on other member variables
[7]. For example, for a Player class in an on-line game, it may
be useful to find all players at a given skill level, e.g., to pair
them up in a game. This may be required whether or not the
actors are stored persistently and, if they are stored persistently,
whether or not the underlying storage system supports indexing.
Developers have also asked to index only the actors that are
currently executing, e.g., to notify all players at a given game-
location of a nearby battle.

E. Streams
In addition to performing actor-to-actor message communi-

cation, applications often include reactive computations that
respond to events streams. The computations might be standing
queries or imperative code. The streams can be delivered over
a variety of underlying messaging and queueing technologies,
so the stream source’s transport should be a plug-in. In addition
to wrapping a transport in a common API, the plug-in could
have logic to aggregate events or filter events within a stream,
to merge or fork a stream, or to do other custom processing.

Ideally, streams should be fault-tolerant. If an actor that is
processing a stream fails, it should be able to recover and
continue processing at the point it left off, to ensure at-least-
once, at-most-once, or exactly-once execution, as desired.

Orleans offers an extensible pub-sub system [11]. It is a push
model, where an actor registers a callback method with a stream
source, after which it receives a call for every relevant event.
The stream source’s transport is a plug-in and can pre-process
events to aggregate or filter them. The actor that processes
events could be a complex event processing engine, such as
Trill [12], or custom application code.

F. Queries
By treating actors as a special kind of object, an object-

oriented query language can be applied to an actor system. If
an actor database is cast as a graph, where actors are nodes and
references from one actor to another are edges, then queries
could be path-oriented, such as regular expressions or SPARQL.

Since storage is a plug-in, the query optimization problem is
similar to that of object-to-relational mapping systems. How-
ever, there are several differences. Some actors may have
fresher state in memory than in storage. Some actors are not
mapped to storage, yet they still need to be queryable.
Moreover, like indexing, query processing sometimes should
be applied only to running actors.

Often, actors are dynamically assigned to servers with no
fixed affinity. This complicates query processing since the data
relevant to a query could be on every server. It also complicates
materialized view maintenance, since a view may need to
receive updates to actors running on every server.

IV. CONCLUSION
We have made many tradeoffs in selecting database features

for Orleans. There is much room to explore other alternatives.

REFERENCES
[1] Akka documentation, http://akka.io/docs/
[2] Armstrong, J., “Erlang,” CACM 53, 9 (2010), pp. 68–75.
[3] Balakrishnan, M., D. Malkhi, J.D. Davis, V. Prabhakaran, M.

Wei, T. Wobber: CORFU: A distributed shared log. ACM
Trans. Comput. Syst. 31(4): 10:1-10:24 (2013)

[4] Bernstein, P.A., S. Bykov, A. Geller, G. Kliot, J. Thelin
Orleans: Distributed Virtual Actors for Programmability and
Scalability, MSR-TR-2014-14, http://research.microsoft.com.

[5] Bernstein, P.A., S. Burckhardt, S. Bykov, N. Crooks, J.M.
Faleiro, G. Kliot, A. Kumbhare, M.R. Rahman, V. Shah, A.
Szekeres, J. Thelin: Geo-distribution of actor-based services.
PACMPL 1(OOPSLA): 107:1-107:26 (2017)

[6] Bernstein, P.A., S. Bykov: Developing Cloud Services Using
the Orleans Virtual Actor Model. IEEE Internet Computing
20(5): 71-75 (2016)

[7] Bernstein, P.A., M. Dashti, T. Kiefer, D. Maier: Indexing in an
Actor-Oriented Database. CIDR 2017

[8] Eldeeb, T. and P.A. Bernstein, “Transactions for Distributed
Actors,” MSR-TR-2016-1001, http://research.microsoft.com/.

[9] Orbit, https://github.com/orbit
[10] Orleans, http://dotnet.github.io/orleans
[11] Orleans streams, http://dotnet.github.io/orleans/Documentation/

Orleans-Streams/index.htm
[12] Trill, https://www.microsoft.com/en-us/research/project/trill

14

