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Abstract—We present the vision of an actor-oriented database. 

Its goal is to integrate database abstractions into an actor-oriented 
programming language for interactive, stateful, scalable, 
distributed applications that use cloud storage. 

I. INTRODUCTION 
Many of today’s interactive, stateful, server applications are 

processor-intensive and must be scalable and elastic. Hence, 
they are usually implemented using middle-tier servers backed 
by cloud storage, rather than using stored procedures in a 
database system. This has two benefits. First, the mid-tier can 
offload the storage back-end by caching data that is frequently 
accessed. This enables the system to scale elastically by adding 
or removing inexpensive middle-tier servers. Since mid-tier 
servers can access all of cloud storage, this elastic scaling does 
not need data migration. Second, it enables the system to scale 
computation and memory by adding inexpensive mid-tier 
servers, independently of adding I/O. This is beneficial to mid-
tier applications that render images, compute over large graphs, 
process high-volume message streams, or perform other 
computation-intensive activities. 

Mid-tier applications are often object-oriented, because they 
involve interactions with large numbers of objects in the real 
world. Examples include multi-player games, social network-
ing, mobile computing, telemetry, and Internet of Things.  

Since real-world objects are independent of each other, the 
software objects that model them do not share state and com-
municate via asynchronous messages. Such objects are called 
actors. Therefore, the actor programming model is popular for 
implementing these types of applications. There are dozens of 
programming frameworks for building actor applications, such 
as Akka [1], Erlang [2], Orbit [9], and Orleans[10].  

In these types of applications, each actor typically has state 
that describes the real-world objects it models and that survives 
across multiple calls to the object. This data is not always stored 
persistently, for example, because it is device state that changes 
frequently or because it models a real-time session that 
disappears when its participants disconnect. Even if the actor’s 
state is stored persistently, its freshest state may be in main 
memory, which is only periodically written to persistent storage. 

In summary, actor applications manage large numbers of 
long-lived stateful objects distributed across many servers. 
Thus, they are effectively database applications, even though 
they are rarely thought of that way. However, actor program-
ming frameworks offer few, if any database abstractions, such 
as indexing, transactions, streams, replication, geo-distribution, 
and queries. This is an opportunity for the database field. 

For the past four years, we have been working with 
developers and users of Orleans, an open-source .NET 

programming framework for scalable, distributed actor-based 
applications [4][6]. Orleans application developers have asked 
for database abstractions, to improve programmer productivity 
and application robustness. We have therefore been adding 
them to Orleans and summarize here what we have learned.  

We use the term actor-oriented database (AODB) to 
describe an actor framework that incorporates database 
abstractions. It has three properties that distinguish it from other 
types of database systems: it scales out elastically to a large 
number of servers, it is agnostic to the storage system which it 
treats as a plug-in, and it is compatible with the actor 
framework’s programming model [6]. 

II. RELATED WORK 
There have been many previous approaches to incorporating 

database functionality into object-oriented systems: object-ori-
ented databases (OODBs), persistent programming languages, 
distributed object systems, and object-relational mappers 
(ORMs). Like an AODB, they all strive to avoid an impedance 
mismatch between the database interface and programming 
language. However, except for ORMs, they all were developed 
with a customized server-attached storage system. By contrast, 
an AODB must work with a broad range of cloud storage 
systems. They differ from AODBs in a variety of other ways: 
most OODBs were built for computer-aided design, some 
persistent programming languages offer persistence-by-reacha-
bility, and most ORMs target SQL for their storage. As far as 
we know, none of them focus on scalable interactive services.  

Other related technologies are enterprise software platforms 
(e.g., Java EE), mid-tier cache managers (e.g., memcached), 
and graph databases. There is much to learn and borrow from 
all these technologies. But the details and combination of 
features needed by AODBs is different from all of them 

III. COMPONENTS 

A. Identity and Location Transparency 
To invoke a method on an actor, the actor needs an identity. 

Ideally, the identity is location-transparent, which simplifies 
load-balancing and fault tolerance. It might be long-lived, much 
like the primary key of a database table. Or it might be transient 
and a new one minted whenever an actor is activated. 

B. Transactions 
In an AODB, a transaction spans multiple actors that in 

general run on different servers and independently write their 
state to cloud storage. Therefore, for atomicity and durability, 
two-phase commit is required. If a write to cloud storage takes 
20ms (a typical number), then the maximum throughput on a 
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write-hot actor is 25 transactions/second. We have developed a 
protocol that uses early lock release to enable batching, which 
can increase throughput by an order of magnitude [8]. Although 
today’s cloud storage systems do not offer logging as a service, 
if they did, as in [3], then other optimizations might be possible. 

C. Replication and Geo-distribution 
There are two natural programming models for replicated 

actors: primary-copy and multi-master. In primary-copy, each 
distinct actor has at most one running instance. If the 
application is geo-distributed, this single-instancing must be 
guaranteed world-wide. If an actor has replicas running as 
warm or hot standbys, then after an actor fails, a leader-election 
algorithm chooses another actor as primary. Or the actor might 
be made highly available by using replicated storage to manage 
its state, a capability widely supported by cloud storage services. 
The latter is our current solution in Orleans. 

In a multi-master setting, many updatable copies of an actor 
may be running. This is mainly useful for geo-distribution, with 
copies running in different datacenters. The system should offer 
a well-defined programming model for actor-state synchroniza-
tion. In our solution [5], the actor state is eventually linearizable, 
by which we mean that updates are eventually applied to all 
copies in the same order and actor state is always a prefix of the 
linearized sequence. An application can also read the latest 
linearizable state it knows about, with all of the application’s 
subsequent updates applied. This state might never exist in the 
linearizable sequence but is nevertheless useful to some apps. 

In both the multi-master and primary-copy setting, geo-
distributed transactions could be supported, which is a subject 
of our current research. 

D. Indexing 
In addition to accessing actors based on their identity, it is 

often useful to access them based on other member variables 
[7]. For example, for a Player class in an on-line game, it may 
be useful to find all players at a given skill level, e.g., to pair 
them up in a game. This may be required whether or not the 
actors are stored persistently and, if they are stored persistently, 
whether or not the underlying storage system supports indexing. 
Developers have also asked to index only the actors that are 
currently executing, e.g., to notify all players at a given game-
location of a nearby battle.  

E. Streams 
In addition to performing actor-to-actor message communi-

cation, applications often include reactive computations that 
respond to events streams. The computations might be standing 
queries or imperative code. The streams can be delivered over 
a variety of underlying messaging and queueing technologies, 
so the stream source’s transport should be a plug-in. In addition 
to wrapping a transport in a common API, the plug-in could 
have logic to aggregate events or filter events within a stream, 
to merge or fork a stream, or to do other custom processing.  

Ideally, streams should be fault-tolerant. If an actor that is 
processing a stream fails, it should be able to recover and 
continue processing at the point it left off, to ensure at-least-
once, at-most-once, or exactly-once execution, as desired. 

Orleans offers an extensible pub-sub system [11]. It is a push 
model, where an actor registers a callback method with a stream 
source, after which it receives a call for every relevant event. 
The stream source’s transport is a plug-in and can pre-process 
events to aggregate or filter them. The actor that processes 
events could be a complex event processing engine, such as 
Trill [12], or custom application code.   

F. Queries 
By treating actors as a special kind of object, an object-

oriented query language can be applied to an actor system. If 
an actor database is cast as a graph, where actors are nodes and 
references from one actor to another are edges, then queries 
could be path-oriented, such as regular expressions or SPARQL.  

Since storage is a plug-in, the query optimization problem is 
similar to that of object-to-relational mapping systems. How-
ever, there are several differences. Some actors may have 
fresher state in memory than in storage. Some actors are not 
mapped to storage, yet they still need to be queryable. 
Moreover, like indexing, query processing sometimes should 
be applied only to running actors.  

Often, actors are dynamically assigned to servers with no 
fixed affinity. This complicates query processing since the data 
relevant to a query could be on every server. It also complicates 
materialized view maintenance, since a view may need to 
receive updates to actors running on every server. 

IV. CONCLUSION 
We have made many tradeoffs in selecting database features 

for Orleans. There is much room to explore other alternatives. 

REFERENCES 
[1] Akka documentation, http://akka.io/docs/ 
[2] Armstrong, J., “Erlang,” CACM 53, 9 (2010), pp. 68–75. 
[3] Balakrishnan, M., D. Malkhi, J.D. Davis, V. Prabhakaran, M. 

Wei, T. Wobber: CORFU: A distributed shared log. ACM 
Trans. Comput. Syst. 31(4): 10:1-10:24 (2013) 

[4] Bernstein, P.A., S. Bykov, A. Geller, G. Kliot, J. Thelin 
Orleans: Distributed Virtual Actors for Programmability and 
Scalability, MSR-TR-2014-14, http://research.microsoft.com. 

[5] Bernstein, P.A., S. Burckhardt, S. Bykov, N. Crooks, J.M. 
Faleiro, G. Kliot, A. Kumbhare, M.R. Rahman, V. Shah, A. 
Szekeres, J. Thelin: Geo-distribution of actor-based services. 
PACMPL 1(OOPSLA): 107:1-107:26 (2017) 

[6] Bernstein, P.A., S. Bykov: Developing Cloud Services Using 
the Orleans Virtual Actor Model. IEEE Internet Computing 
20(5): 71-75 (2016) 

[7] Bernstein, P.A., M. Dashti, T. Kiefer, D. Maier: Indexing in an 
Actor-Oriented Database. CIDR 2017 

[8] Eldeeb, T. and P.A. Bernstein, “Transactions for Distributed 
Actors,” MSR-TR-2016-1001, http://research.microsoft.com/. 

[9] Orbit, https://github.com/orbit 
[10] Orleans, http://dotnet.github.io/orleans 
[11] Orleans streams, http://dotnet.github.io/orleans/Documentation/ 

Orleans-Streams/index.htm 
[12] Trill, https://www.microsoft.com/en-us/research/project/trill

14


