
Interactive Demonstration of Probabilistic Predicates
Yao Lu1,2, Srikanth Kandula2, Surajit Chaudhuri2

1UW, 2Microsoft

ABSTRACT
We will demonstrate a prototype query processing engine that uses
probabilistic predicates (PPs) to speed up machine learning infer-
ence jobs. In current analytic engines, machine learning functions
are modeled as user-defined functions (UDFs) which are both time
and resource intensive. These UDFs prevent predicate pushdown;
predicates that use the outputs of these UDFs cannot be pushed
to before the UDFs. Hence, considerable time and resources are
wasted in applying the UDFs on inputs that will be rejected by
the subsequent predicate. We uses PPs that are lightweight clas-
sifiers applied directly on the raw input and filter data blobs that
disagree with the query predicate. By reducing the input to be pro-
cessed by the UDFs, PPs substantially improve query processing.
We will show that PPs are broadly applicable by constructing PPs
for many inference tasks including image recognition, document
classification and video analyses. We will also demonstrate query
optimization methods that extend PPs to complex query predicates
and support different accuracy requirements.
ACM Reference Format:
Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, Surajit Chaudhuri. 2018.
Interactive Demonstration of Probabilistic Predicates. In SIGMOD’18 Demo:
2018 International Conference on Management of Data, June 10–15, 2018,
Houston, TX, USA. https://doi.org/10.1145/3183713.3183751

1 INTRODUCTION
Relational data engines are increasingly being used to analyze data
blobs such as unstructured text, images and videos [4, 5, 12, 17].
Such queries begin by applying user-defined functions to extract
relational columns from blobs. Consider the following example
which finds red or blue SUVs from city-wide surveillance video:

SELECT cameraID, frameID,

C1(F1(vehicleBox)) AS vehType,

C2(F2(vehicleBox)) AS vehColor

FROM (PROCESS inputVideo

PRODUCE cameraID, frameNum, vehicleBox

USING VehDetector)

WHERE vehType = "SUV" ∧ (vehColor=" red"|"blue");

Here, VehDetector extracts one or more bounding boxes that con-
tain a vehicle from each video frame, F1 and F2 extract relevant
features from each bounding box and finally C1,C2 are classifiers
that identify the vehicle type and color using these features. The
query plan is shown in Figure 1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18 Demo, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3183751

How to execute suchmachine learning queries efficiently? Clearly,
traditional query optimization techniques such as predicate push-
down are not useful here because they will not push predicates be-
low the user-defined functions (UDFs), which generate the columns
used by the predicate. In the above example, vehType and vehColor
are available only after VehDetector, the feature extractors and
classifiers have been executed. Although the predicate has limited
selectivity (perhaps 1-in-100 images have red or blue SUVs), every
video frame has to be processed by all of the UDFs.

Input→ VehDetector→ F1, F2 → C1, C2 → σSUV ∧ (σred ∨ σ blue)

→ Result

Figure 1: Query plans to retrieve red or blue SUVs from traffic surveillance videos.
Materializing the vehType and vehColor columns (underlined) accounts for almost all of
the query cost, leaving little room for traditional optimization.

Input→ PPSUV, PPred, PPblue → VehDetector→ F1, F2 → C1, C2

→ σSUV ∧ (σred ∨ σblue) → Result

Figure 2: We construct and apply probabilistic predicates (PPs, dash-underlined) to
filter data blobs that do not verify the predicates.

In our prior work [13], we proposed the notion of probabilistic
predicates (PPs), which are binary classifiers that apply on the un-
structured input and reduce the query cost by avoiding processing
data blobs that will not pass the query predicate. Figure 2 shows a
query plan with PPs; if the query predicate has a small selectivity
and the PP is able to discard half of the frames that do not have the
target objects, the query may speed up by 2×.

This demonstration will showcase our query processing engine
to accelerate machine learning inference jobs by using probabilistic
predicates. Our demo will use a variety of queries on images, docu-
ments and videos to show that PPs are applicable for a broad set
of machine learning inference tasks. Users will be able to interact
with our system in various ways including submitting new queries
and comparing performance with and without PPs. Performance
boosts of as much as 10× can be observed in this interaction.

Since query predicates can be diverse, trivially constructing a
PP for each query predicate is unlikely to scale. Hence, we only
constructs PPs for simple predicates and assembles, at query com-
pilation time, an appropriate combination of available PPs that has
the lowest cost, is within the accuracy target and is a necessary
condition for (i.e., semantically implies) the original query predic-
ate. We will demonstrate this functionality which can be embedded
into a standard cost-based query optimizer; users will be able to
see the various available plan choices, pick accuracy targets and
examine job results.

2 THE DEMO SYSTEM
Demo system. The prototype used in our prior work [13] ran on
a production cluster and extended a proprietary query processing

https://doi.org/10.1145/3183713.3183751
https://doi.org/10.1145/3183713.3183751

SIGMOD’18 Demo, June 10–15, 2018, Houston, TX, USA Yao Lu1,2, Srikanth Kandula2, Surajit Chaudhuri2

Figure 3: Comparing the unmodified query processing system on the top
with the proposed system on the bottom. Key changes are in the training and
use of probabilistic predicates (PPs). See [13] for details.

Figure 4: An example query in our system.

platform [5]. To facilitate an interactive and small-scale demonstra-
tion, we will use a new prototype that extends Timely Dataflow [3].
The system supports queries written in Rust [2] and benefits from
a variety of features including support for iterative and streaming
queries. Our demo will run interactively on laptop-class hardware
(with GPU support).

Figure 4 shows an example query used in our system which
extracts semantic labels for image inputs. The feature extractors
and classifiers are implemented as UDFs. Table 1 lists several UDFs
that we have implemented in our system. In addition, we have
also implemented a light-weight C-based deep learning inference
engine, based on which we have trained deep neural networks for
image labeling and object detection [15].

In our demonstration, we use the above system as a baseline. We
will use several example queries and datasets (discussed later in §3).
The query plan for Figure 4 is shown in Figure 5. Without PPs, the
machine learning UDFs are executed as-is and the performance can
be sub-optimal.

Queries with and without PPs. As shown in Figure 3(a), the
baseline query processing system employs a query plan that may
be built using a cascades-style cost based query optimizer. Fig-
ure 3(b) illustrates construction of PPs which can be either offline
or online. While online construction of PPs is supported in our
system as well, we will use offline constructed PPs in the demo
due to interactive/latency constraints; we refer the readers to [13]

Module Name Description
Feature Extraction - RGB Histogram Extract RGB histogram feature.
Feature Extraction - HOG Extract Histogram of Gradient feature.
Feature Extraction - Raw Pixels Extract raw pixel feature.
Feature Extraction - PyramidHSVHist Extract Pyramid HSV histogram feature.
Classifier/regressor - Linear SVM Apply linear SVM on feature vector.
Classifier/regressor - Random Forest Apply Random forest on feature vector.
Keypoint Extraction - SIFT Extract SIFT keypoints in given image region.
Tracker - KLT Tracking keypoints using KLT tracker.
Tracker - CamShift Tracking objects using CamShift tracker.
Segmentation - MOG Mixture of Gaussian background subtraction.
DNN Forward Propagation A light-weight DNN inference engine.

Table 1: A partial list of ML modules provided in our system.

for experiments that construct PPs online. Unlike the actual UDF
classifiers which take complex features as inputs (some example
features are shown in Table 1), we use PPs that apply over raw input
blobs, i.e., they take as input pixels from images and videos and bag-
of-words representations for documents. The modified platform,
as shown in Figure 3(c), takes two additional inputs compared to
baseline systems: (1) the list of available probabilistic predicates
and (2) a desired accuracy threshold for the query. The modified
query optimizer injects an appropriate combination of PPs for the
query based on the accuracy threshold; the PPs, shown in the fig-
ure as green dotted circles, execute directly on raw inputs and the
remaining query plan is semantically equivalent to the baseline
query plan.

Key technical challenges: The prototype system has been built
to answer the following technical questions.
• Filtering rate and efficiency: PPs have to apply on the raw
input which can be highly dimensional and arbitrarily dis-
tributed. If PPs are not efficient and/or do not lead to sizable
data reduction, then query performance can worsen instead
of improving. Hence, we uses a variety of classifiers to con-
struct PPs including SVMs, kernel density functions and
deep NNs; different techniques are appropriate for different
queries and input types.
• Query precision and recall: Whereas conventional predicate
pushdown produces deterministic results, how the classifi-
ers used as probabilistic predicates will function on previ-
ously unseen inputs is unknown. Hence, filtering with PPs
is parametrized over a precision-recall curve; different filter-
ing rates (and hence speed-ups) are achievable based on the
desired accuracy.
• Handling complex predicates: Since query predicates can be
diverse, trivially constructing a PP for each query predicate
is unlikely to scale. To generalize, we construct PPs for only
simple clauses and extend the query optimizer to assemble,
at query compilation time, an appropriate combination of
PPs that has the lowest cost, is within the accuracy target
and is a necessary condition for (i.e., semantically implies)
the original query predicate.

Scope and limitations. We builds probabilistic predicates for
simple clauses of the form f (дi (b), . . .) ϕ c , where f and дi are func-
tions, b is an input blob, ϕ is an operator that can be =,,, <, ≤, >, ≥
and c is a constant. We builds PPs using diverse techniques and
uses only PPs that are useful, i.e., high data-reduction, accuracy
and throughput. With these PPs, the query optimizer in our system

Interactive Demonstration of Probabilistic Predicates SIGMOD’18 Demo, June 10–15, 2018, Houston, TX, USA

Input

V
eh

D
et

ec
to

r

C
1(

F
1)

, C
2(

F
2)

σ
su

v˄
(σ

re
d˅
σ

bl
u

e)

Result

Figure 5: Query plan for the inference job described in Figure 4.

supports predicates containing arbitrary conjunctions, disjunctions
or negations of the above clauses. On the other hand, predicates
that do not decompose onto individual inputs are not supported,
e.g., SELECT ∗ FROM T1, T2 WHERE F (T1.a,T2.b) > 0 and
F is not separable. UDFs that are not deterministic (e.g., those that
adapt to input data or have randomized components) are also not
supported.

3 DEMO SCENARIOS
The goals of our demonstration are listed below:
• Broad applicability of PPs. By using queries over documents,
images and videos and by training PPs using a variety of
techniques, we make a case that probabilistic predicates are
broadly useful.
• Query optimization with PPs. Given complex query predic-
ates, the query optimizer in our system picks which PPs to
apply and determines their parameters for different preci-
sion/recall settings. We will show modified query plans for
different target accuracy thresholds.
• End-to-end system demonstration of query processing with PPs.
Our system offers the users an interface to submit different
machine learning queries (such as the example in Figure 4)
and will show the behavior with and without the use of PPs.

To demonstrate broad applicability of PPs, we consider different
inference queries on different inputs. Some of the input blobs are
highly dimensional (e.g., high-res video clips) whereas others are
sparsely distributed (e.g., Wikipedia documents in bag-of-words
format). Furthermore, several of the considered inference queries
use non-linear classifiers (e.g., object recognition) as well as neural
networks (e.g., image labeling). In more detail:
• Case1: Image labeling. The COCO dataset [11] has 120K
images, each labeled with one or more of 80 object classes.
Queries in this scenario retrieve images that contain objects
satisfying the predicate which is a conjunction, disjunction,
negation of one or more clauses over class labels such as ‘has
person’∧ ‘has dog’ etc. We also generate similar queries over
images and classes from the ImageNet [1] dataset. Figure 6
shows some example images from COCO.
• Case2: Video activity recognition.Weuse a popular video
activity recognition dataset, UCF101 [16], which has 13K
video clips ranging from ten seconds to several tens of seconds.
Each video clip is annotated with one of 101 action categor-
ies such as ‘applying lipstick’, ‘rowing’, etc. We consider the
problem of retrieving clips that illustrate an activity; some
examples are in Figure 7.

Figure 6: Example images from COCO. A query may be retrieving images
that satisfy the predicate ‘has person’ ∧ ‘has dog’.

Figure 7: Example video clips and labels from UCF101. A query may be re-
trieving videos that satisfy the predicate ‘applying lipstick’ ∨ ‘shaving beard’.

Our demo will show that, in general, queries having non-linear
inference tasks require non-linear PPs (e.g., kernel-density-based
PPs or PPs that are based on shallow NNs). However, linear SVM
based PPs are inexpensive to execute and suffice for a large class
of queries and datasets. Moreover, we will also see that dimension-
ality reduction techniques such as sampling, principal component
analysis and feature hashing are needed in some cases; PPs can be
too expensive to execute otherwise. We will also show that domain-
specific data skipping tricks are highly relevant; for example, quer-
ies on videos benefit greatly from frame skipping, successive frame
differencing, background subtraction etc.

To stress the ability to handle complex predicates, we will demon-
strate performance on predicates which are conjunctions, disjunc-
tions and negations ofmultiple clauses.Wewill train a small number
of PPs, for simple clauses, and show that a large class of queries
with complex predicates can receive performance improvements
using these PPs.

Since PPs are only trained for simple clauses, complex query
predicates will not have an exactly matching PP. We uses logical
expressions over available PPs which are necessary conditions for
the actual complex predicate. Optimal rewriting (fully exploring
all possible necessary conditions) is an NP-hard problem. We use
a heuristic algorithm, and Figure 8 (a,b) illustrates an example to
parse a complex predicate into different alternate logical PP plans.
Given an input query with complex predicates, our demo will show
the parsing results.

We use the {precision, recall} curves of individual PPs, which
are generated during PP training, to compute the precision and
recall for conjunction/ disjunction expressions over multiple PPs.
Key challenges, here, are to decide in which order the PPs should
execute as well as the accuracy threshold to use per PP. For PP
expressions identified in the above paragraph, we will show their
cost and accuracy estimates. Figure 8 (b,c) illustrates this process

SIGMOD’18 Demo, June 10–15, 2018, Houston, TX, USA Yao Lu1,2, Srikanth Kandula2, Surajit Chaudhuri2

σ
su
v˄
(σ
re
d˅
σ
bl
u
e)

PPsuv

PPred˅blue

PPsuv˄(red˅blue)

PPsuv,PPred˅blue

PPsuv,PPred,PPblue

0.41

0.22

X

0.67

0.72

PPsuv

PPbus

PP!suv

PPred

PPwhite

PPred˅blue

PPblue

PP!red

(c)(b)(a) (d)

PPblack

Figure 8: Demonstration of the query optimization process in our system.
(a) Input complex predicate. (b) Candidate PP expressions that are implied
by the original predicate. (c) Estimated data reduction rate for each PP ex-
pression while satisfying accuracy threshold: ‘X’ indicates nomatching PP in
corpus. We underline the expression that has the largest data filtering rate.
(d) Corpus of available PPs.

Input

P
P

su
v

P
P

re
d

P
P

bl
ue

V
eh

D
et

ec
to

r

C
1(

F
1)

, C
2(

F
2)

σ
su

v˄
(σ

re
d˅
σ

bl
u

e)

Result

Discard

+ +

+PP expression

-- -

Figure 9:Modified query plan with PPs for themachine learning inference
job described in Figure 4.

wherein a dynamic programming method is used to parametrize
each PP. After obtaining the PP expression with the lowest cost that
meets the accuracy threshold, the query optimizer in our system
injects the PP expression into the query plan [13]; an example is
shown in Figure 9.

Queries over the above inputs retrieve (different) portions of the
inputs, i.e., they are selection queries. Beyond selection queries,
we consider a more comprehensive query set that has group-by,
aggregations, joins etc.
• Case3: Comprehensive Traffic Surveillance. Here, we
consider the problem of answering comprehensive queries
on traffic surveillance videos. Our datasets include surveil-
lance videos of considerable size from the DETRAC [19]
vehicle detection and tracking benchmark. We will use a
query set with complex predicates including those checking
on vehicle color, type, and traffic flow (vehicle speed and
flow) etc.; details are in [13]. We manually annotate vehicle
color (red, black, white, silver and other) and use the an-
notation of vehicle type (sedan, SUV, truck, and van/bus)
provided by the benchmark.

4 RELATEDWORK
There is a rich literature on optimizing queries with predicates:
pushing predicates closer to input [18], optimal ordering of con-
junctions [6], normalizing disjunctive and other complex predic-
ates [9, 10] etc. When predicates rely on columns generated by
user-defined operators, [14] shows that optimal ordering of the
UDFs and predicates is NP-hard. Our system differs from these
works because it uniquely injects additional probabilistic predic-
ates (PPs) to the plan rather than optimally ordering existing pre-
dicates and UDFs. One prior work observes that if input column(s)

are correlated with a user-defined predicate, then some function
over those column(s) can be constructed and used to bypass the
user-defined predicate [7]. While such functions over correlated
columns are (simple) PPs, in our experience, correlation between
input columns and predicates is harder to capture when inputs are
images, videos or documents. Hence, we train PPs using SVMs, ker-
nel densities, or shallow CNNs. Another prior work, NoScope [8],
is a domain-specific model cascade customized for selection queries
on videos. NoScope inserts a query-specific shallow DNN before a
complex DNN and accepts/rejects frames early using the shallow
DNN. We demonstrate gains across a wider range of datasets in-
cluding images and documents, across a wider range of inference
queries (accepting frames early only works for selection queries)
and does not require per-query training (i.e., uses a small corpus of
PPs for a large set of query predicates).

5 CONCLUSION
We focus on speeding-upmachine learning inference queries, where
classic static or post-facto optimization techniques, such as building
indices or predicate push-down, are not feasible. Our key idea is to
use probabilistic predicates (PPs) which execute over the raw input,
without needing the predicate columns, and can successfully mirror
the original query predicates. While introducing only a configur-
able amount of error, we show that PPs boost the performance of
machine learning queries by as much as 10× on various large-scale
datasets. This work is only a first step towards the larger goal of
optimizing the execution of large-scale machine learning queries
on relational big-data engines; open problems remain especially
in dealing with correlated predicate clauses and handling queries
with complex relational operations.

REFERENCES
[1] Imagenet. http://www.image-net.org.
[2] The rust programming language. http://www.rust-lang.org.
[3] Timely dataflow. https://github.com/frankmcsherry/timely-dataflow.
[4] Michael Armbrust et al. Spark SQL: Relational Data Processing in Spark. In

SIGMOD, 2015.
[5] Ronnie Chaiken et al. SCOPE: Easy and Efficient Parallel Processing of Massive

Datasets. In VLDB, 2008.
[6] Joseph M Hellerstein and Michael Stonebraker. Predicate migration: Optimizing

queries with expensive predicates. ACM SIGMOD, 1993.
[7] Manas Joglekar, Hector Garcia-Molina, Aditya Parameswaran, and Christopher

Re. Exploiting correlations for expensive predicate evaluation. In SIGMOD, 2015.
[8] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.

NoScope: Optimizing neural network queries over video at scale. VLDB, 2017.
[9] A Kemper, G Moerkotte, K Peithner, and M Steinbrunn. Optimizing disjunctive

queries with expensive predicates. In SIGMOD, 1994.
[10] Alon Levy, Inderpal Mumick, and Yehoshua Sagiv. Query optimization by pre-

dicate move-around. In VLDB, 1994.
[11] Tsung-Yi Lin et al. Microsoft COCO: Common objects in context. In ECCV, 2014.
[12] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. Optasia: A relational

platform for efficient large-scale video analytics. In ACM SoCC, 2016.
[13] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. Accel-

erating machine learning inferences with probabilistic predicates. In SIGMOD,
2018.

[14] Thomas Neumann, Sven Helmer, and Guido Moerkotte. On the optimal ordering
of maps and selections under factorization. In ICDE, 2005.

[15] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. CVPR, 2016.
[16] Khurram Soomro et al. UCF101: A dataset of 101 human actions classes from

videos in the wild. Preprint arXiv:1212.0402, 2012.
[17] Ashish Thusoo et al. Hive: A Warehousing Solution Over A Map-Reduce Frame-

work. Proc. VLDB Endow., 2009.
[18] Jeffrey Ullman. Principles of database and knowledge-base systems, 1989.
[19] Longyin Wen et al. Detrac: A new benchmark and protocol for multi-object

tracking. Preprint arXiv:1511.04136, 2015.

http://www.image-net.org
http://www.rust-lang.org
https://github.com/frankmcsherry/timely-dataflow

	Abstract
	1 Introduction
	2 The demo system
	3 Demo Scenarios
	4 Related work
	5 Conclusion
	References

