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Abstract—To write code, developers stitch together patterns, like API protocols or data structure traversals. Discovering these patterns
can identify inconsistencies in code or opportunities to replace these patterns with an API or a language construct. We present coiling, a
technique for automatically mining code for semantic idioms: surprisingly probable, semantic patterns. We specialize coiling for loop
idioms, semantic idioms of loops. First, we show that automatically identifiable patterns exist, in great numbers, with a large-scale
empirical study of loops over 25MLOC. We find that most loops in this corpus are simple and predictable: 90% have fewer than 15LOC
and 90% have no nesting and very simple control. Encouraged by this result, we then mine loop idioms over a second, buildable corpus.
Over this corpus, we show that only 50 loop idioms cover 50% of the concrete loops. Our framework opens the door to data-driven tool
and language design, discovering opportunities to introduce new API calls and language constructs. Loop idioms show that LINQ would
benefit from an Enumerate operator. This can be confirmed by the exitence of a StackOverflow question with 542k views that requests

precisely this feature.

Index Terms—data-driven tool design, idiom mining, code patterns

1 INTRODUCTION

N the big data era, data is abundant; the problem is finding useful
Ipatterns in it. Language designers seek to discover patterns
whose replacement with language constructs would increase the
concision and clarity of code. Tool developers, like those who
write compiler optimizations or refactorings, seek to prioritize
handling those patterns that maximize the coverage and utility
of their tools. Evidence-based language design and tool building
promises languages and tools that more closely fit developer needs
and expectations at less cost.

Kaijanaho [31]’s dissertation makes this case at length. A recent
Dagstuhl seminar [36] concurs and, indeed, unsubstantiated empiri-
cal claims are common in the design proposals of various languages,
underscoring both their importance and the current difficulty of
substantiating them. For example, multiple C# language proposals
make claims of the form “a relatively common request” [22], “It is
very common when...” [14], “It is common to name an argument
that is a literal...” [15]. Similarly in Java, we see “...but could result
in a startup penalty for the very common case...” [25] and “However,
the Deprecated annotation ended up being used for several different
purposes. Very few deprecated APIs...” [42], unbacked by concrete
statistics. Although we do expect the designers’ intuitions to be
mostly correct, designers are human and have biases.

Part of the problem is tooling. Currently, language designers
and tool developers often rely on grep, supplemented with manual
inspection and user feedback to discover and prioritize patterns.
Existing tools, such as grep, do not search for patterns at the right
level of abstraction, since they usually exactly match a pattern and
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require their users to have a priori knowledge about a target pattern.
Worse, existing tools do not provide a statistical measure of the
importance of a pattern and make it hard to reason about whether
shrinking or expanding a pattern would be fruitful.

To address these issues, we propose adding semantic idiom
mining to their toolbox. Semantic idioms are patterns over both
syntax and semantics. This fusion allows the discovery of infor-
mation rich, interpretable patterns, in the face of data sparsity and
noise. Semantic idioms allow a developer to reason about, and
write tools to operate on, all the concrete loops that a particular
semantic idiom matches. We extract semantic idioms from an
abstract syntax tree (AST) augmented with semantic properties
encoded as nodes in the AST and abstracting syntactic details. We
call the process of semantically enriching an AST coiling; coiling
builds a coiled AST, or CAST (Section 4.3). We then mine these
CASTs using probabilistic tree substitution grammars (pTSG), a
powerful machine learning technique for finding salient (rather
than merely frequent) patterns (Section 2).

Allamanis and Sutton [3] were the first to formulate the
idiom mining problem as the unsupervised problem of finding
interpretable patterns that compactly encode the training set
using Bayesian inference, specifically pTSG inference. Allamanis
and Sutton [3] mined purely syntactic idioms, directly from
conventional ASTs. Because they are oblivious to semantics,
syntactic idioms tend to capture shallow, uninterpretable patterns
and fail to capture widely used idioms, as those found in Section 5.
For example, in the top 200 syntactic idioms if Allamanis and
Sutton [3], we fail to find any idioms that summarize the semantic
properties of an underlying, concrete loop. The root cause is data
sparsity, here caused by the extreme variability of code.

As an anti-sparsity measure, we instantiate coiling for mining
loop idioms, semantic idioms rooted at loop headers (Section 4.3).
We focus on loops because their centrality to programming and
program analysis. The semantic annotations that coiling adds, like
RW in Figure 1a, make semantic properties visible for training
a probabilistic tree substitution grammar. Our coiling abstraction
also removes syntactic information, such as variable and method
names, while retaining loop-relevant properties like loop control
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foreach (var (@ in P)
$REGION[UR’, 7 URWR) ;1]

(a) A loop idiom capturing a reduce idiom, which reads the unitary
variables(0)and (1) and reduces them into the unitary variable 2}

foreach(var refMap? in mapping.ReferenceMaps)
this?.AddProperties(properties?,
refMap?.Data.Mapping);

(b) A concrete loop in csvhelper that matches the loop idiom in Figure 1a.

foreach(var ($MemberReferenceMap) in (EXPR)
this.AddProperties (EXPR), ($MemberReferenceMap).EXPR) ;

(¢) A hypothetical (because syntactic mining does not find it) syntactic
idiom for the concrete loop in Figure 1b.

Fig. 1: A loop idiom, a matching loop, and a hypothetical syntactic idiom.
For more loop idioms samples, see Figure 6.

variables, collections, and variable mutability (Section 4). Loop
idiom mining finds meaningful patterns, such as the simple reduce
idiom in Figure la that matches the concrete loop of Figure 1b.
Figure 1c shows a hypothetical syntactic idiom, which Allamanis
and Sutton [4] introduced, for Figure 1b: syntactic idioms comprise
syntactic code elements and non-terminal AST nodes. However,
because syntactic idioms are oblivious to semantics, they must
directly contend with the sparsity of the syntactic structures and
tend to capture shallow, uninterpretable patterns. In particular, the
syntactic mining does not find the hypothetical idiom in Figure 1c
and it fails to capture widely used idioms, as Section 4 shows.
Figure 6 shows more sample loop idioms and the concrete loops
they match.

To further combat sparsity, we tailor idiom mining to the
domain of source code. Instead of the simpler Dirichlet process,
used by Allamanis and Sutton [3], we employ the more general
Pitman-Yor process that provides control over the power-law tails
of the mined idioms (Section 2). Flexible tail behavior is important
in “natural” code — as in natural language — since we anticipate
code to contain common idioms as well as a heavy tail of rare
constructs. Additionally, we adapt the original mining method, as it
was devised for natural language processing [53, 13], by removing
the geometric distribution over the size of the idioms from the
prior distribution. Empirically, this change vastly improved idiom
quality, by allowing the mining of larger idioms.

In Section 5.4 to Section 5.6, we show how a data-driven
approach, summarizing how a language is actually used, can guide a
designer who is working on language and API evolution (rather than
de novo design). Academics often use existing code to validate the
commonality of patterns [52, 27]. Our work differs in two important
aspects. First, our CASTs provide an abstract, but semantically
expressive form, useful for matching patterns, as we show via our
case studies in Section 5.3, Section 5.4, Section 5.5 and Section 5.6.
Second, contrary to existing tools, which provide information about
a given pattern but require their user to already know the pattern,
idiom mining learns the common idioms directly from the data
without any need for a priori intuition about the patterns.

We introduce a novel form of testing, which we call property
modulo testing (PMT), to approximate semantic properties. PMT
tests snippets of a program for properties, like purity (freedom
from observable side-effects), that hold over a nontrivial proportion
of a program’s run and yet may not be entailed by the program’s
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specification. Testing, in practice, is fast enough to scale up to large
codebases. Beller et al. [9] found that 75% of the top projects in
GitHub require less than 10 minutes to execute the full test suites,
which often include more than 500 tests. Essentially, we check
whether a property holds modulo a test suite. Unsound methods,
like PMT, are difficult to combine with other logico-deductive
static analysis methods. In contrast, machine learning models —
including the one we present in this work — are designed to handle
noisy inputs while maintaining their robustness, especially given
big data. Our evaluation (Section 5) demonstrates the successful
exploitation of imprecise semantic information when mining loop
idioms; we conjecture that other, novel machine learning-based
source code analysis techniques can rely on efficiently collecting
accurate, albeit imprecise, semantic information which will be key
to scaling up machine learning methods over very large codebases.

First, we study the search space of loop patterns to validate
that such patterns exist in sufficient numbers and with sufficient
diversity to justify mining them for loop idioms. To this end, we
conducted a large-scale empirical study of loops across a corpus
of 25.4 million LOC containing about 277k loops (Section 3). Our
key finding is that real-life loops are mostly simple and repetitive.
For example, 90% of loops have no nesting, are less than 15
LOC long and contain very simple control-structure. Despite their
regularity, loops also have a heavy tail of diversity, exhibiting
nontrivial variability across domains: on average, 5% and, for
some projects, 18% of loops are domain-specific. For example,
we find that loops in testing code are much shorter than loops in
serialization code, while math-related loops exhibit more nesting
than loops that appear in error handling (Table 2).

Loop idioms capture sufficient detail to identify useful patterns
despite this diversity. To show this, we build a second smaller cor-
pus of programs we can build so we can apply PMT (Section 5.1).
Against this corpus, we show that loop idioms identify opportunities
to replace loops with functional operators, while retaining sufficient
generality to cover most loops: 100 idioms capture 62% and 200
idioms capture 70% of all loops in our corpus.

To demonstrate the utility of mining and ranking semantic loop
idioms, we present three case studies that exploit loop idioms to
suggest refactorings, new language constructs, or APIs.

For the first case study, we build and evaluate an engine
(Section 5.3) that uses loop idioms to map a concrete loop to
a functional construct in LINQ'. It is not a refactoring engine; its
aim is to prioritize refactorings for a tool developer. Nonetheless,
when we manually mapped the top 25 idioms to LINQ statements
in our corpus within 12 hours, this engine covered 45.4% of all
the concrete loops and correctly suggested LINQ replacements for
loops 89% of the time as judged by human annotators.

Second, mining semantic idioms identifies opportunities for
new API features that can significantly simplify existing code
(Section 5.6). For example, we found that in lucenenet developers
consistently use a common loop idiom that requires them to loop
over a collection of documents to invoke the AddDocument method.
This identifies an opportunity: adding a simple API method,
possibly called AddDocuments, that accept a collection of elements,
would simplify the code. This, in turn, would simplify many loops,
making the code even more readable and “idiomatic”.

Finally, semantic idioms can guide programming language
design (Section 5.4). Java’s foreach and multicatch constructs sim-

1. Language Integrated Query (LINQ) is a .NET extension that provides
functional-style operations, such as map-reduce, on streams of elements and is
widely used in C# code.
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plify common idioms that our framework identifies automatically.
Had our framework been available, designers might have seen the
need for these constructs earlier, speeding their implementation and
deployment. Our idiom mining has identified such opportunities in
C# and LINQ. A common operation is tracking the index of each
element in a collection during traversal. Adding an Enumerate
operator to C#, similar to Python’s, would simplify 12% of loops
in our 25.4 MLOC corpus.

This paper presents a principled and data-driven approach
for mining semantic idioms (i.e. rich code patterns) to help
tool developers conceive and implement code transformation
tools. Increasing the productivity of tool developers promises to
bring domain-specific, even project-specific, tools within reach at
reasonable cost; it also is a first step toward data-driven language
and API design. Our principal contributions follow:

e We introduce semantic idiom mining, a new technique for
mining code for semantic idioms, and specialize it for loop
idioms, based on coiling: a new code abstraction technique that
transforms code to create tailored training sets to improve the
performance of machine learning models, here probabilistic
tree substitution grammar inference (Section 4);

e We conduct two loop studies to motivate loop idioms: first, we
show, over a large-scale study of 277k loops in a corpus of 25.4
MLOC, that most loops are surprisingly simple with 90% of
them having less than 15 LOC and no nesting (Section 3) and
therefore amenable to abstraction to patterns; and then conduct
a second study over a smaller, buildable corpus to show how
effectively loop idioms cover concrete loops, finding that the
25 loops cover 45% of concrete loops (Section 5.1); and

e We demonstrate the utility of loop idioms for tool and language
construction via three case studies: two centered on language
and API design, showing that adding Enumerate to C# would
simplify 12% of loops, and the other on refactoring, which
shows that, if a developer wrote a refactoring engine that
transformed the top 25 loop idioms into LINQ operations, that
engine would achieve 89% accuracy over 45% of concrete
loops (Section 5.3).

Section 2 presents background material on statistical methods
used in this work, notably probabilistic tree substitution gram-
mars, which Allamanis and Sutton [4] first applied to software
engineering problems. To be useful, loop idioms must occur 1)
sufficiently often and 2) cover sufficiently many concrete loops. To
answer whether they occur sufficiently often, we conduct a large
scale empirical study of the search space of loop patterns over first
corpus we collect. Section 3, entitled “There are Idioms in Them
Thar Hills?>”, describes this study and affirms the prevalence of
interesting loop characteristics out of which patterns, and therefore
idioms, are built. Section 4 presents our core contribution, semantic
idiom mining, as realized for loop idioms, and the coiling and
property modulo testing techniques on which that mining rests.
Against a second, smaller corpus of programs that we can build
(a necessary condition for our property modulo testing), Section 5
answers the second question; it makes the case for the utility of
loop idioms. Section 5.1 quantifies the coverage of loop idioms,
showing that the top 25 cover 45% of all concrete loops. Section 5.2
presents example loop idioms; Section 5.3 and the next sections
present three examples that illustrate how to use loop idioms:

2. We adapted this title from “There’s gold in them thar hills” in Mark
Twain’s The American Claimant, 1892.
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prioritizing loop-to-LINQ refactorings, identifying calls to add to
an API, and identifying constructs to add to a language. Section 6
presents related work and Section 7 concludes. Our data and code is
available online at http://groups.inf.ed.ac.uk/cup/semantic-idioms/.

2 BACKGROUND: STATISTICAL METHODS

In this work, we follow Allamanis and Sutton [4] and employ
probabilistic tree substitution grammar (pTSG) inference to auto-
matically and exhaustively capture the idioms needed to reconstruct
a forest of ASTs. Here, we augment these ASTs with annotations
that record semantic properties, like variable mutability. We now
summarize pTSG inference, starting with explaining why powerful
statistical methods are necessary for mining syntactic and semantic
idioms, rather than simpler methods that are easier to apply.

2.1 Why These Methods?

Previous work mined frequent patterns to find meaningful patterns.
Unfortunately, the “a priori principle” states that the larger a pattern,
the smaller its support, i.e. the number of objects covered by that
pattern [2, Chap. 5]. Further, frequent pattern mining does not
capture statistical dependence among the mined elements. Thus,
filtering patterns based on frequency triggers pattern explosion,
returning an unwieldy number of patterns that differ only trivially
[2, 18, Chap. 5]. In contrast, idiom mining needs to take into
account the trade-offs involved. Adding one idiom, “steals” support
(viz. probability mass) from another idiom. Therefore, idiom
mining balances the frequency of a pattern with how surprising the
pattern is to achieve a reasonable balance and select the patterns
that most effectively maximize the likelihood of the training
data. For a concrete problematic example for frequency-based
methods consider foreach(var (0in (EXPR) which has an
unspecified loop body. It is a very frequent, but meaningless, pattern.
In short, frequent patterns are rarely meaningful to developer and
tend to miss many patterns that are present in the data [38].

One might also ask: why employ a probabilistic model here?
The reason is that probabilities provide a natural quantitative
measure of the quality of a proposed idiom. Imagine that we create
two different models, M) that contains a proposed idiom and M,
without it. Then we rank M, and M, under the posterior distribution.
A proposed idiom is worthwhile only if, when we add it to a pTSG,
it increases the probability that the pTSG assigns to the training
corpus. This encourages the method to avoid identifying idioms
that are frequent but trivial and meaningless. As we show below,
the statistical procedure that we, in fact, employ is quite a bit more
involved, but this is a good basic intuition. Second, it may seem
odd that we apply grammar learning methods when the grammar of
the programming language is already known. However, our aim is
not to re-learn the known grammar, but rather to learn probability
distributions over ASTs from a known grammar. These distributions
represent which rules from the grammar are used more often and,
crucially, which sets of rules tend to be used contiguously.

2.2 Representing Idioms

A tree substitution grammar (TSG) [30, 13, 53] is a simple
extension to a context-free grammar (CFG), in which productions
expand into tree fragments rather than simply into a list of symbols.
Formally, a TSG is also a tuple G = (£,N,S,R), where £, N, S are
exactly as in a CFG, but now each production r € R takes the form
X — %, where Jx is a tree fragment rooted at the nonterminal X.
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To produce a string from a TSG, we begin with a tree containing
only S, and recursively expand the tree top-to-bottom, left-to-
right as in CFGs — the only difference is that some rules can
increase the height of the tree by more than 1. A probabilistic tree
substitution grammar (pTSG) G [13, 53] augments a TSG with
probabilities, in an analogous way to a probabilistic CFG (PCFG).
A pTSG is G = (£,N,S,R,II), which augments a TSG with II,
a set of distributions Prgc(Zx|X), for all X € N, each of which
is a distribution over the set of all rules X — Zx in R that have
left-hand side X.

The key reason that we use pTSGs for idiom mining is that each
tree fragment Jx can be thought of as describing a set of context-
free rules that are typically used in sequence. This is exactly what
we are trying to discover in the idiom mining problem. In other
words, our goal is to induce a pTSG in which every tree fragment
represents a code idiom if the fragment has depth greater than 1 —
we call these rules fragment rules. The remaining TSG rules, those
whose RHS has depth 1, are less interesting, as they are simply the
productions from the original CFG of the programming language.
As a simple example, consider the probabilistic CFG

E—E+E (prob0.7) T — FxF (prob 0.6)
E—>T (prob 0.3) T—F (prob 0.4)
F— (E) (prob 0.1) F —id (prob 0.9),

where E, T, and F are non-terminals, and E the start symbol.
Note that the probabilities of all productions of each non-terminal
symbol sum up to one, i.e. define a probability distribution for
expanding the non-terminal. Now, suppose that we are presented
with a corpus of strings from this language that include many
instances of expressions like id * (id +id) and id  (id + (id + id)).
Then, we might choose to add a single pTSG rule to this grammar,
like E—F«(T+T) (prob0.4)

E—-E+E (prob0.3) E—T (prob0.3)

When we add the pTSG rule, we adjust the probabilities of the
previous rules so that all of E’s productions sum to 1 as shown.
Essentially, this allows us to represent a correlation between the
rules E - T+ T and T — F = F. Finally, note that every CFG can
be written as a TSG where all productions expand to trees of depth
1. Conversely, every TSG can be converted into an equivalent CFG
by adding extra non-terminals (one for each TSG rule X — J%). So
TSGs are, in some sense, fancy notation for CFGs. This notation
will prove very useful, however, when we describe the learning
problem next.

23

To solve the idiom mining problem, a natural idea is to search for
subtrees that occur often in a corpus. However, this naive method
does not work well, for the simple reason that frequent patterns are
often meaningless. This is a well-known problem in data mining [2,
Chap. 5]. To return to our previous example, the foreach semantic
loop idiom
foreach(var @) in (EXPR) {
$REGION[UR(@), (I); URW(2);1}

occurs commonly, but it would be hard to argue that the significantly
more common

foreach(var () in (EXPR)

on its own (with no body) is an interesting pattern. Instead,
Allamanis and Sutton [4] suggest a different principle: interesting

Inferring Idioms
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patterns are those that help to explain the code that programmers
write. It is when it comes to quantifying the phrase “help to explain”
that the machinery of statistical natural language processing
becomes necessary. Essentially the goal is that each returned idiom
corresponds to a group of syntactic rules that often co-occur. To
formalize this intuition, the idea is to infer a pTSG that is equivalent
to the original language grammar in the sense of generating the
same set of strings, but provides a better explanation of the data
in the statistical sense. We do this by learning a pTSG that best
explains a large quantity of existing source code. We consider as
idioms the tree fragments that appear in the learned pTSG. We
learn the pTSG using a powerful framework called nonparametric
Bayesian methods.

Nonparametric Bayesian methods provide a theoretical frame-
work to infer how complex a model should be from data. Adding
parameters (which correspond to pTSG fragment rules in our case)
to a machine learning model increases the risk of overfitting the
training data, simply by memorizing it. But if we allow too few
parameters, then the model will be unable to find useful patterns
(i.e. underfit). Bayesian statistics [23, 48] provides a simple and
powerful method to manage this trade-off. The basic idea is that
whenever we want to estimate an unknown parameter 6 from a
data set x1,x2,...xy, we should not only treat the data as random
variables — as in classical statistics — but also 6 as well. To
do this, we must choose a prior distribution Py(0) encoding any
prior knowledge about 6, and then a likelihood P(x; ...xy | 6) that
describes a model of how the data can be generated given 6. Once
we define a prior and a likelihood, we can infer 6 via its conditional
distribution P(6|x; ...xy) by Bayes’ rule. This distribution is called
the posterior distribution and encapsulates all of the information
that we have about 6 from the data. We can compute summaries
of the posterior to make inferences about 8. For example, if we
want to estimate 6 by a single vector, we might compute the mean
of P(B|x; ...xy). To summarize, applications of Bayesian statistics
have three steps: 1) choose a prior Py(0); 2) choose a likelihood
P(x;...xy]|0); and 3) compute P(8|x; ...xy) using Bayes’ rule.

As a simple example, suppose the data x;...xy are real numbers,
distributed independently according a Gaussian distribution with
variance 1 but unknown mean 6. Then we might choose a prior
P(0) to be Gaussian with mean 0 and a large variance, to represent
the fact that we do not know much about 0 before we see the data.
Our beliefs about the data indicate that p(x;|6) is Gaussian with
mean O and variance 1. By applying Bayes’ rule, it is easy to show
that P(8|x; ...xy) is also Gaussian, whose mean is approximately>
equal to N™'Y;x; and whose variance is approximately % This
distribution represents a Bayesian’s belief about the unknown mean
0, after seeing the data.

Nonparametric Bayesian methods handle the more complex
case where the number of parameters is unknown as well. They
focus on developing prior distributions over infinite dimensional
objects (e.g. the infinite set of possible pTSG rules in our case),
which are then used within Bayesian statistical inference. Bayesian
nonparametrics have been the subject of intense research in
statistics and machine learning [24, 64]. To infer a pTSG G using
Bayesian inference, our prior distribution must be a probability
distribution over probabilistic grammars, which we call P(G).
A sample from P(G) is a pTSG, which is specified by the set
of fragments .Fx that are rooted at each nonterminal X, and a

3. The exact value depends on precisely what variance we choose in Py(0),
but the formula is simple.
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distribution Prsg(x|X) over the rules that can be used to expand
each non-terminal X. Sampling this pTSG gives us full trees.

The specific prior distribution that we use is called a Pitman-
Yor process [24, 64]. This choice was based on previous work
in applying pTSGs to natural language [53, 13]. The Pitman-Yor
process prior has the following properties: 1) It places no a priori
upper bound on the size (the number of rules) of the pTSG (that
is, the method is nonparametric). 2) It favors small grammars,
discouraging the method from memorizing the training set. 3) It
allows modeling production usage as a Zipfian distribution. This last
property is particularly important, since it is well known that both
source code and natural language exhibit Zipfian properties. Here,
we differ from Allamanis and Sutton [4] in two ways: we use the
more general Pitman-Yor process (instead of its simpler Dirichlet
process) and we do not assume a geometric distribution over the
number of productions in the prior. The Pitman-Yor process is a
“stick-breaking process” [58] where a stick of size 1 (the probability
space) is split into countably infinite parts (each part represents a
pTSG rule in our case). Formally, we have

=

Pr[ﬂ S 9}(] = Z ﬂks{y:yk} T~ Py (1)
k=1
k=1
T, = Uy (lfl/tj) ukNBeta(lfd,Ochkd), )
=1

where & 7_ 7, is a delta function, i.e., a probability distribution
over .7 that generates .7 with probability 1. Setting d = O retrieves
the Dirichlet process. We define our prior distribution Py(G) as
the PCFG distribution of our corpus. We found that removing
the geometric distribution, used in related work [3, 13, 53], was
particularly important for mining longer idioms, since it imposed
strict constraints on the size of the inferred tree fragments. We
believe, that although this constraint is important for mining natural
language trees, it is harmful for mining idioms from source code.

Given Py(G), the prior distribution over pTSGs, we apply
Bayes’ rule to obtain a posterior distribution P(G|T},T5,...Ty).
Intuitively, this distribution represents, for every possible pTSG G,
how much we should believe that G generated the observed data
set. Applying Bayes’ rule, the posterior is

1L PTIG)R(G)

P(G|Ty, s, ...
( | [)(T],Tz,...TN)

Tv)

i.e. it assigns high probability to grammars G that themselves assign
high probability to the data (this is P(7;|G)) and that receive a high
score according the prior distribution Py(G). Unfortunately, the
posterior distribution cannot be efficiently computed exactly, so —
as is common in machine learning — we resort to approximations.
The most commonly used approximations in the literature are
based on Markov chain Monte Carlo (MCMC). MCMC is a family
of randomized method that runs for a user-specified number of
iterations. At each iteration 1, MCMC generates a pTSG G; that
has the special property that if ¢ is taken to be large enough,
eventually the sampled value G; will be approximately distributed
as P(G|Ty,T,...Ty). In our work, we use an MCMC method [39]
for as many iterations ¢ as we can afford computationally and then
extract idioms from the few final samples of the pTSG.
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3 THERE ARE IDIOMS IN THEM THAR HiLLS?

This work rests on the claim that we can mine semantic idioms of
code, specifically loop idiom, to provide data-driven knowledge to
refactoring tool developers and API and language designers. To
substantiate this claim, we demonstrate their prevalence in real
world code and their coverage of concrete loops.

Probabilistic tree substitution grammars capture surprising
patterns hidden in diverse data sets. For their application to
make sense, a data set must be diverse to make patterns hard
to find, but not so diverse as to lack patterns. Here, we conduct
a large scale study of real-world loops to show that they are
diverse, in no small part due to their domain-specificity. Humans
do not need sophisticated tools to discover frequent patterns. It
is finding patterns amid diversity that is hard; pTSG inference
excels at this task, as we show in this work. Here, we first
establish a necessary condition for these patterns to exist: that
loops have sufficiently common, but also diverse, characteristics
that indicate an underlying set of patterns. We show that these loop
characteristics exhibit domain-specificity, implying the presence
of domain-dependent loop idioms. Among the findings, we report
below is the fact that serialization has large loop bodies and that
testing code, in contrast, tends to have small loop bodies but
is surprisingly deeply nested. LINQ functionalizes loops; LINQ
statements form a type of loop idiom. One of our case studies
is to mine mapping between loop patterns and LINQ patterns; if
neither exhibits patterns, no such mapping could exist. Here, we
demonstrate this necessary condition: both have minable patterns.

To this end, we conduct a large-scale empirical study of loops
and LINQ statements on a large corpus of 25.4 MLOC. This study
of loops contributes to a long-standing line of research. Knuth [35]
analyzed 7,933 FORTRAN programs, finding that loops, are mostly
simple: 95% of them increment their index by one, 87% of the
loops have no more than 5 statements and only 53% of the loops are
singly nested. Here, we find comparable results but find that loop
nesting is much more rare. Changes in coding practices, notably
the dominance of structured programming and object-orientation,
may account for this difference. Most recently, CLAPP [20] studied
4 million Android loops, seeking to characterize execution time.
In contrast, our focus is on the semantic naturalness of the loop
constructs. Nonetheless, both studies find similar proportions of
simple loops.

First Corpus  We collect our first corpus from GitHub. Using
the GitHub Archive, we compile a list of all C# projects. We then
compute the z score of the number of forks and watchers and sum
them. We use this number as each project’s popularity score. Here,
in Section 3, we use the top 500 projects to compute the reported
results. This corpus contains 277,456 loops and 1,109,824 LINQ
operations.

Loop Statistics  We begin with some descriptive statistics over
the top 500 projects that contain 277,456 loops within. Table 1
presents summary statistics for different types of loops, their sizes
and complexities. The top row shows that foreach loops are the
most popular. These foreach loops already represent a degree of
abstraction, and their popularity suggests that programmers are
eager to embrace it when available. The other loops (for, while)
are less frequent, and do is relatively rare. The width of the violin
plot gives an indication of the proportion of the sample which

4. As noted in the introduction, we have adapted this title from “There’s gold
in them thar hills” in Mark Twain’s The American Claimant, 1892.
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lies in that value range. The foreach, for, while loops are most
often around 2 lines long, while do loops are a bit larger at the
mode, around 5 lines. Cyclomatic complexity [44] measures the
number of independent paths, and is used as a measure of code
complexity; in our sample it is most often around 3 for foreach
and for, and around 4 for while; this indicates that developers
pack a conditional inside a short loop. do loops’ complexities are
often a bit higher, presumably because they tend to be longer. These
results show that loops are natural, i.e. simple and repetitive. This
is the key finding on which our entire loop mining technique rests:
patterns that are repetitive enough can be efficiently and effectively
found.

Table 2 presents further characteristics of the loops. Leftmost,
we see the nesting level of loops. The vast majority (90%) of the
loops are singly nested; virtually all (99%) are at most 2 levels
of nesting. In our corpus, virtually none at 3 levels of nesting.
The second plot is the size of the loops, in LOC (we remove
empty lines, comments and lines that contain only braces); 90%
are under 15 LOC, and 99% under 58 LOC. The third plot shows
the proportion of lines in code that are loops. On average, 4.6%
of lines belong in a loop and 90% of the code has no more than
18% of loop density (i.e. the proportion of non-empty lines of code
that are contained within loops). Finally, at rightmost we have
the density of LINQ statements per kLOC in our corpus. We find
that in most cases (90%) there are no LINQ constructs at all; and
fully 99% of our samples have fewer than 25 LINQ statements
per kKLOC. These LINQ findings underscore the need for loop
to LINQ refactoring and motivates case study on the utility of
loop idioms for a developer seeking to write such a refactoring
tool (Section 5.3). These statistics and their associated graphs in
Table 2 verify that most loops are simple, and also illustrate the
Zipfian distribution of relevant metrics. Knowing this fact helps us
design and select models. Concretely, we used this fact to guide
our selection of the Pittman-Yor process as described in Section 2.

Loops per Topic To get a sense of the domain-specificity of loops,
we used topic analysis. To extract topics from source code, we
parsed all C# files in our 25.4MLOC corpus to collect all identifiers,
except those in using statements®. We then split the identifiers
on camelcase and on underscores, lowercasing all subtokens. We
remove any numerals. For the topic model, each file becomes a
multiset of subtokens. We use MALLET [45] to train LDA and
classify each file. For training, we used an asymmetric Dirichlet
prior and hyperparameter optimization. After extracting the topics,
we rank the topics by different descriptive statistics to analyze
loops by topic. The appendix contains the inferred topic model.

The ordered lists in Table 2 offer a more qualitative look
at the above statistics, giving insight into the prevalence of
domain-specific loop characteristics. For example, the leftmost
column suggests that loops in MVC (Model-View-Controller)
settings tend to be very shallow in nesting, whereas loops in
mathematical domains can be deeply nested (e.g. tensor operations).
On the second column, we see topics ordered by size (LOC) of
topical loops: testing loops are quite small, whereas loops relating
to serialization are quite long (presumably serializing intricate
container data structures within a loop).

The third column shows the loop density per topic. Security
concerns, native memory, testing and GUI have few loops in the
code. On the other hand, code that is concerned with collections,
serialization, math, streams, and buffers contains a statistically

5. The using statement in C# is similar to import in Java and Python.
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TABLE 1: Loop statistics per type. The statistically significant differences
(p < 107°) among the loops are: (a) average LOC do > while > for >
foreach and for cyclomatic complexity do > while > foreach, for.

foreach for while do
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Fig. 2: Common pairs of LINQ operations in our corpus. The darker
the color the more often the pair is used. Numbers show the percent of
times that the current operation is followed by another. The last column
suggests that the current operation is the last one. Data collected across
132,140 LINQ sequences from our corpus. Best viewed in screen. A larger
version can be found in the appendix.

significant larger proportion of code within loops. In the last
column, we present topics ordered by frequency of LINQ operator
usage. We can see that LINQ operators are frequently used within
session handling and testing, while it is more infrequently used for
security, native memory handling, GUI and graphics.

These results show that loops are “natural” in that they are
mostly simple and short, yet still have a long tail of highly diverse
loops. This suggests that it is possible to mine loop idioms that
can cover a large proportion of the loops, a fact that we exploit to
show the utility of loop idioms in the next section. Additionally,
across our 25MLOC corpus we find that loop characteristics and
usage differ significantly across domains, suggesting that different
loop patterns are dominant in different domains. For example, a
surprising finding is that testing code contains significantly more
deeply nested and small (in LOC) loops. Also surprisingly, loops
that deal with streams, buffers and databases tends to have much
larger nesting compared to other domains. Therefore, data-driven
loop idiom mining is needed to uncover domain-specific loop
idioms that humans, relying solely on intuition to find common
patterns, might miss.

LINQ Operator Usage  Programming rests on iteration. Loops
and LINQ expressions are two ways to express iteration in code.
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TABLE 2: Loop and LINQ statistics for the top 500 C# GitHub projects (25.4MLOC). Top high and low topics have a statistically significant difference
(p < 1073) using a Welsh ¢ test for the first two columns and the z test for population proportions for the other two. A full list of the topic ranking can
be found in the appendix.
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[Corpus]—»[ ASTs]-b[Coiling] CASTs into simpler trees through a combination of node fusion
and projection (Section 4.3). Figure 3 depicts the workflow of

[Semantic Analysis]/[pTSG Inference]—»[ldiom Ranking]

Fig. 3: The architecture of our semantic idiom mining system. As
Section 5 demonstrates, semantic idioms enable code transformation tool
developers and language designers to make data-driven decisions about
which transformations to implement.

Thus, LINQ expressions are another data source on how humans
think about iteration. Patterns in LINQ expressions strong indicates
patterns in semantically equivalent loops. For example, if we see
a Map-Reduce LINQ statement, we should expect a similar loop
idiom. But if we do not see a GroupBy-Map often in LINQ, we
do not expect to see this in loops either. Figure 2 shows the
probabilities of a bigram-like model of LINQ operations. The
table essentially shows transition frequencies from one LINQ
operator to the next. The darker the cell, the more frequent the
indicated transition. The special END token denotes that no LINQ
operation follows. For example, a common use of Select is to map
data from a container into another container data structure; hence
ToArray (19% of times) or ToList frequently follow Select. In
one direction, this suggests new LINQ operators; in the other, it
identifies common operations that we expect to find in loops, LINQ
operations our loop idioms discover, as Section 5.1 shows.

4 MINING SEMANTIC IDIOMS

To mine interesting, expressive idioms in the face of data sparsity,
we introduce semantic idioms. Semantic idioms improve upon
syntactic idioms through a process we call coiling. Coiling is a
graph transformation that augments standard ASTs with semantic
information to yield coiled ASTs (CASTs). Coiling combats
sparsity by (a) inferring semantic properties like variable mutability
and function purity, using a novel testing-based analysis that we
call property modulo testing, (Section 4.1), (b) encoding these
semantics properties into nodes (Section 4.2), and (c) transforming

semantic idiom mining: Given a corpus of code, we extract its
ASTs and perform all semantic analyses needed to extract the
relevant semantic information from code. Given this information,
the corpus of ASTs is coiled into arbitrary tree structures that
contain only the relevant syntactic and semantic information. The
coiled corpus is then given to the idiom miner which mines the
semantic idiom candidates. Finally, these candidates are ranked
and presented to the tool developer or language designer.

4.1 Property Modulo Testing

Property modulo testing (PMT) is a novel testing technique, first
presented here, that checks whether a property holds over all
executions of a subject under test (SUT) over a test suite. In
standard testing, each test can, and usually does, have its own test
oracle that usually checks a test-specific property, which is derived
from the SUT’s specification. In property modulo testing, all the
tests share the same test oracle that checks a property that the SUT’s
specification may not entail. PMT tests executable code fragments,
like a loop, of a larger program for execution properties like variable
mutability, functional purity, variable escape, aliasing [5, 55], or
loop-carried dependencies. It is because these fragments are often
implementation details relative to the larger program that contains
them that the larger, containing program’s specification does not
entail these properties.

Not all properties are amenable to PMT. It is well-suited
for properties that must hold over a sufficiently large portion
of program runs. “Sufficiently large” is a function of the testing
resources one wishes to devote to the task of finding such a property.
The intuition is that these frequent properties are hard to hide from
random testing, by definition. The execution of each test can be
seen as a throw of a biased coin which on one outcome (e.g.
tails) reveals the SUT’s “true” nature. This describes a geometric
distribution, which, in the limit, guarantees that we learn the ground
truth. Of course, if the probability of revelation is small, we
might need a huge number of trials. We mitigate this problem
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by augmenting random testing with manual tests; humans tend to
write tests that focus on the rare corner cases that are expensive for
random testing to discover. Also, we are assuming the trials are
independent. Although we do not do so here, we could strengthen
the independence by running each test on a virtual machine that
we reset to the same initial state before each run.

Like all testing methods, we lack the probability distribution
over the SUT’s inputs. Property modulo testing uses the input
distribution defined by a test suite, which may be arbitrarily
different from the SUT’s actual input distribution, but is designed
to exercise corner cases. So it is, intuitively, more likely to
elicit violations. Since it is testing-based, property modulo testing
underapproximates whether the checked property actually holds.
If it finds a violation, it is sound; however, it is incomplete with
respect to whether the checked property holds in general.

Variable Mutability and Function Purity A variable (or global)
is immutable modulo a function when that function does not write
that variable during its execution, otherwise it is mutable. A pure
function has no observable side-effects. Variable mutability gives us
function purity for free. To infer purity, we aggregate the mutability
of all of a function’s variables and globals: if any global is mutable,
the function is impure, otherwise it is pure. Here, we construe
global broadly to include the environment, such as reading files,
interacting with users, or reading network packets.

Loop idioms must encode variable mutability and function
purity because our main use-case — prioritizing concrete loops for
a tool designer who is creating a tool to convert loops to LINQ
statements (Section 5.1) — relies on it: you can only replace a
loop with a functional operator if it is pure. Beyond purity, variable
mutability allows us to recognize if a loop performs a reduce
operation or a map requires us to know which variables are read
and which are written. For most variables, only a few runs of a
function are necessary to reveal its mutability, because code must
be carefully written to hide the mutability of its variables and there
is rarely any reason to do so. Thus, exercising a function against its
program’s test suite is likely to detect the mutability of its variables.
Armed with this intuition, we implement an approximate dynamic
variable mutability and function purity detection technique, which
we then embed into CASTs tailored for loop idioms, described
next.

Given a method and a test suite that invokes that method, we run
the test suite and snapshot memory before and after each invocation
of the method. A variable (or global) is immutable modulo the test
suite if its contents are unchanged across all its invocations during
the execution of the test suite, otherwise it is immutable. As noted
above, a method is pure modulo a test suite if it does not mutate
any of its globals under the test suite, otherwise it is impure.

To snapshot the stack and the heap, we traverse them starting
from the SUT’s reference arguments and globals. We traverse
the heap breadth first, ignoring backedges, to compute its hash.
We snapshot and hash memory before and after each invocation.
We compare the before and after hashes of an invocation to
infer variable mutability. If the test suite does not execute the
method, the mutability of its variables and globals and therefore its
purity, are unknown. Otherwise, the SUT’s arguments and globals
are (possibly) immutable until marked mutable. As noted above,
our technique may report false positives (incorrectly reporting a

variable as immutable, when it is not) but not false negativesé.

6. With the rare exception of code that uses unmanaged memory.
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Our dynamic analysis underapproximates variable mutability
and is imprecise, but allows us to scale to industrial codebase
simply by leveraging their test suites. Static analysis also contends
with imprecision [67]. The mining of other idioms may require
soundness; for this reason, we designed our mining procedure so
that we can easily replace our dynamic analysis of purity and
mutability with any sound static analysis [63, 43, 12]. Also, we
emphasize that our PMT technique combines random testing with
human generated tests, which tend to test corner cases, thereby
testing both the common cases that humans tend to neglect and the
rare corner cases that random testing is unlikely to trigger. In any
case, we are using this imprecise mutability information as input
to a machine learning algorithm that can handle noise in the form
of variables mislabeled immutable.

We instrument every method to realize our technique. First,
we wrap its body in a try block, so that we can capture all the
ways the function might exit in a finally block. At entry and
in the finally block, we snapshot a method’s immutable-so-far
arguments and globals and compute their hash. In the finally
block after the snapshot, we compare the hashes and mark any
variables whose value binding changed as mutable. Once a variable
is marked mutable, we no longer check its mutability.

To speed our inference of variable mutability and avoid the
costly memory traversals, we use exponential backoft: if a method
has been tested n times and has not mutated any of its variables
or globals, then we test its variable mutability and purity only
with probability p". We used p = 0.9. As a further optimization
and to avoid stack overflows, we assume that GetHashCode() and
Equals(object) are pure and do not mutate their arguments
and ignore them. These methods execute very frequently, so
instrumenting them is costly. Our method does not detect when
a variable is overwritten with the same value. This causes false
positives if such identity rewritings imply variable mutability.

Since we cannot easily rewrite and rebuild libraries, our
technique cannot assess the variable mutability of their functions
and therefore the purity of calls into them. However, they are
frequent in code, so we manually annotated the variable mutability
and purity of about 1,200 methods and interfaces in core libraries,
including CoreCLR. These annotations encompass most operations
on common data structures such as dictionaries, sets, lists, strings
etc. These methods and interfaces are those used by our second
corpus. To annotate each method, one author manually examined
their source and their NET documentation. A second author
verified those annotations and fixed a few mistakes. Determining the
variable mutability of CoreCLR methods is relatively easy, thanks
to their strict adherence to a accurate and meaningful API naming
convention. For example, all methods that start with subtokens like
Get, Find and Is never modify their arguments, whereas methods
containing subtokens such as Set, Add and Clear do modify some
of their arguments.

To evaluate the accuracy of our dynamic variable mutability
analysis, we randomly sampled 100 instrumented methods and
manually assessed the correctness of the analysis. From the 100
methods, we found 91 to be correct for all globals and variables
they use, for two of the methods we could not reach to a conclusion
within the maximum of 10 minutes allotted to each method and
therefore excluded them from this analysis. The 7 incorrect cases
were related to either non-exercised paths within the test suite or
to accesses to native memory that our analysis cannot reach. This
suggest that our dynamic variable mutability analysis achieves an
accuracy of 92.9% + 5% at a 95% confidence level.
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Fig. 4: Abstract syntax tree with references.

4.2 Encoding Semantic Properties

Our pTSG mining infers patterns from the annotated nodes of a
tree. This approach requires semantic properties to be exposed to
the mining process through labeled subtrees. Say we are interested
in mining idioms containing invocations that may return null,
because we want transform their concrete loops to check for a null
pointer dereference. To coil this semantic property of call sites, we
could apply a nullability analysis and replace MethodInvocation
nodes with  either = MethodInvocationNullable or
MethodInvocationNonNullable, as determined by the analysis.
Indeed, in Section 4.3 below, we use this technique to distinguish
single and multi-exit code blocks.

Node labels are not enough; pTSG inference merges
and splits trees under the assumption that their labels, like
MethodInvocationNonNullable, are fixed. Thus, pTSG cannot
decompose node labels nor reason about the similarity of two
labels. As a result, encoding semantic properties solely as labels
can exacerbate sparsity. So, when we want the mining process
to efficiently “decide” whether semantic properties are part of an
idiom or not, we encode those properties into nodes. For example,
to separate variables into scalars or collections, we add a Scalar or
a Collection child node to each variable node in an AST, rather
than appending Scalar or Collection to their node label.

Semantically annotated subtrees increase the expressivity and
richness of idioms, but can exacerbate data sparsity. Coiling’s
pruning phase tackles data sparsity by removing nodes irrelevant
to the semantic properties we are currently interested in from a
CAST. For example, coiling tailored for loop idioms (introduced
next) retains only subtrees rooted at loop headers. Coiling also
fuses nodes. For example, if we are not interested in exception
handling details, we can replace all catch subtrees in a CAST with
a general catch node.

Conventional ASTs label nodes with raw variable names. These
names introduce spurious sparsity to idiom mining. To combat this
source of sparsity, we could o-rename variable names in every
subtree, including overlapping trees, to canonicalize them. Rather
rewrite all subtrees or employ fuzzy node matching, we introduce
references. A reference is an artificial AST node that connects
references to (i.e. uses of) a particular variable. In Figure 4, the
reference for x is pointed to by the foreach, cond, and the else
body nodes. The fact that coiling collapses straight line code into
uninterpreted functions (Section 4.3 means that many references
share nodes sets. To further combat sparsity, our pTSG inference
fuses these references.

As discussed in Section 2, pTSG inference uses the Pitman-
Yor process (Equation 1), a statistical process that defines a non-
parametric distribution over an infinitely large event space. In some
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cases, including pTSGs, Pitman-Yor marginalizes to a Chinese
restaurant process [21]. Let I = (L, R) be a TSG rule. In the standard
pTSG formulation, there is a restaurant for each nonterminal (or
root, in the pTSG nomenclature) L and each table represents a
potential expansion (RHS) R of L. The customers seated at a
table represent the support for R in the corpus. Equation 3 below
determines whether or not to seat a new customer at a table with
other customers or at a new table during sampling. Equation 3’s
shape and notation are standard [13]. In this equation, o and d are
scalar hyperparameters of the process; count(I) counts the uses of
I in the current state of the MCMC sampler, i.e. the number of
times the sampler expanded L to R or the number of customers
seated at R; countRoot(I) counts how many customers are in the
restaurant, i.e. the total support of all rules rooted at L. Below, we
let I[7] = count(I) = 0 be an indicator function that captures this
decision. Finally, & is the number of rules with non-zero support that
share the same root (i.e. total non-empty tables in the restaurant).
We compute the posterior probability of a rule 7 as
(1 =T[1])(count(I) — d) +1[I]dk + oPo(I")

Phos(l) = 3
vost (1) countRoot(I) + a ®)

This equation differs from its standard use in /-, the parameter to
Py. Normally, Py, count, and countRoot all take the same parameter
I. Unfortunately, coiled ASTs are not trees, because references
violate the tree property, as Figure 4 illustrates. We cannot drop
references, as they are crucial to the accuracy of our idiom mining.
For example, for the integer variables x,y, consider the simple
expressions “x+x” and “x+y”, where x # y. Without references,
the idiom miner would unify these into a single idiom, as integer +
integer; references distinguish these two expressions by mapping x
and y to distinct references.

To solve this problem, we hide the references from our PCFG
prior and define Py over I, but retain references everywhere else,
so that the idiom miner can learn them. We do this by defining
I to be the tree formed from 7 by stripping references and their
incident edges: in Figure 4, removing the edges to the references
nodes X, y, z on the left forms /. We also extend the standard
definitions of count and countRoot to take directed acylclic graphs,
defining I’s root to be the node that has zero indegree. Computing
the idiom prior over I~ and the use of Pitman-Yor differentiates
Equation 3 from Allamanis and Sutton [4, §3.2]. Using I~ in the
prior introduces an approximation to our statistical mining method,
but is nevertheless sufficiently accurate for our purposes.

Deciding which nodes to prune and which node to fuse during
coiling involves trial and error, guided by human intuition. When
successful, coiling heuristically removes spurious sparsity and
allows us to fully exploit pTSG inference. In this work, we mine
loop idioms, semantic idioms restricted to loop constructs. We focus
on loops because they are a ubiquitous code construct that resists
analysis and we define loop-focused CASTs that track variable
mutability and remove loop-irrelevant variability, like names and
operators used in loop bodies. Within our idiom mining framework,
the full circle of writing a transformation and viewing the coiled
results takes less than 30 minutes for someone familiar with the
framework. Of course, this does not account for any additional
time needed to implement a program analysis, like our variable
mutability analysis.

4.3 Coiling Loops

In this work, we are interested in mining loop idioms to capture
universal semantic properties of loops. Thus, we specialize coiling’s
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rewriting phrase to record variable mutability and to distinguish
collections from other variables and its pruning phase to keep only
AST subtrees rooted at loop headers and to abstract expressions
and control-free statement sequences, as detailed next.

Expressions  Loop expressions are quite diverse in their concrete
syntax, due to the diversity of variable names, but often share
variable access patterns. For example, many expressions read
only two variables and never write. Since our goal is to discover
universal loop properties, we abstract loop expressions into a
single EXPR node, labeled with the variables that it uses. This
removes idiom-disrupting sparsity, such as exact API invocations,
comparison operations etc. while retaining high-level information
that mining useful loop idioms requires.

Loop control expressions are the exception, since we want our
idiom mining to learn them. Thus, we do not collapse increment,
decrement, and loop termination expressions into a single EXPR
node. Because C’s pre and post increment and decrement operators
introduce spurious diversity, we abstract all increment or decrement
operations to the single INC/DEC node. We preserve the top-level
operator of a termination expression and rewrite its operands
to EXPR nodes, with the exception of the common bounding
expressions, which we identify with a whitelist, that compute
a size or length of a collection, which we rewrite to a SizeOf node
and label it with the reference to the measured collection variable.

Regions A region (basic block) is a control-free sequence of
statements. Regions are quite diverse, so we collapse their subtrees
into a single node labeled with references to the variables they use;
in effect, we treat regions as uninterpreted functions during idiom
mining. To make our pTSG inference aware of the mutability of a
region’s variables, we encode the mutability of each of the region’s
variables as children of the region’s node. We label each child node
with its variable’s reference and give it a node type that indicates
its mutability in the region. The mutability node types are R, W,
and ®W). Region collapsing is crucial: without it, we would mine
almost no idioms since nearly all regions are unique.

Collections  Loops usually traverse collections, so we distinguish
collections from unitary (primitive or non-collection) variables. U
denotes a unitary variable. We separate a collection variable C
into its spine — the references (e.g. a next pointer in a list) that
interconnect the elements — and the data elements it contains. Our
mutability analysis separately tracks the mutability of a collection’s
spine C5 and its elements CF. We refer to both the spine and its
elements as C5£ . This notation allows us to detect that a collection
has changed when the same number of elements have been added
and removed, without comparing its elements to the elements in a
snapshot. In practice, the spine and the elements change together
most often and only 9 idioms of the top 200 idioms (with total
coverage 1.2%) have loops that change the elements of a collection,
but leave the spine intact. Using annotations to separate collections
and unitary variables, again removes sparsity while retaining the
distinction between these two broad categories. Maintaining this
distinction allows us to mine loop idioms that are sufficiently rich
to convert a loop into a functional (e.g. LINQ) expression.

Blocks Blocks — the code that appears between { and } delimiters
in a C-style language — can have multiple exits, including those,
like break or continue statements, that exit the loop. Coiling
transforms block nodes into two types of nodes: single and multi-
exit blocks. This allows our pTSG inference to infer loop idioms
that distinguish single exit blocks, whose enclosing loops are often
easier to refactor or replace. Our consequent finding confirms the
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$REGION

Fig. 5: The coiled AST for the idiom in Figure 6-8. The colors and line
effects differentiate the arrows to references for readability.

simplicity of most loops: only 6 of the top 200 idioms, with total
coverage of concrete loops of 0.9%, are multi-exit blocks.

Pulling it all Together: A Coiled AST Figure 5 shows the coiled
AST of the for loop in Figure 6.8. $REGION corresponds to the if
body max=data[i] in the concrete loop of Figure 6.8, whereas the
middle EXPR node corresponds to the if condition. As you can see,
this conditional uses four variables, which map to references O, 1,
2, 4, and 5. Note that the references are numbered in the order of
lexical appearance.

Generalizability of Approach  Our coiling method is general
and can encode other semantic loop properties, once such program
analyses are implemented. For instance, coiling could use any off-
the-shelf analysis, either static or dynamic. Currently, coiling uses
our novel property modulo testing dynamic analysis, which uses
testing to estimate whether a property holds. Property modulo
testing could be adapted to approximate aliasing: we could
assess whether variables ever alias against a test suite. Then, we
would encode this aliasing information by merging references.
Similarly, our property modulo testing could check for loop-
carried dependencies against a test suite; coiling would encode this
dependency as a special edge between references.

4.4

We mine loop idioms from CASTs as described in Section 2.
After mining the idioms, we rank them in order of their utility in
characterizing the target constructs — loops in our case. The ranked
list provides data-based evidence to interested parties (e.g. API
designers, refactoring tool developers) augmenting their intuition
when identifying the most important code constructs.

To mine idioms, we use a score that balances coverage and
idiom expressivity. If we ranked idioms solely by coverage, we
would pick very general and uninformative idioms, as happens
with frequent tree mining. We want idioms that simultaneously
maximize their information content and coverage. To score an
idiom, we multiply its coverage and its cross-entropy gain. Cross-
entropy gain measures the expressivity of an idiom and averages
log-ratio of the posterior pTSG probability of the idiom over the
probability yielded by the basic probabilistic context free grammar
(PCFG) (Section 2). This ratio measures how much each idiom
“improves” upon the base PCFG distribution.

To pick the top idiom, we use the following simple iterative
procedure. First, we rank all idioms by their score (score =
cross-entropy gain * coverage) and pick the top idiom. Then,
we remove all loops that were covered by that idiom. We repeat

Idiom Ranking
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this process until the remaining idioms cover no more loops. This
greedy knapsack-like selection yields idioms that achieve both high
coverage and are highly informative. Since variable mutability is
explicitly encoded within the CASTs (as special nodes, as discussed
in Section 4.3), this ranking considers variable mutability alongside
the syntactic structure of each loop.

Figure la and Figure 6 in Section 5 shows example loop idioms.

5 EVALUATION

Neither the prevalence nor the coverage of loop idioms is enough.
Semantic idioms must also be sufficiently expressive, unlike
frequent trees, that tool developers or language/API designers
can read and reason about them without resorting to the concrete
loops that they match and summarize. Popular idioms identify
opportunities for identifying “natural” rewritings of code, those
that are structurally similar and frequent enough to warrant the
cost of abstracting and reusing its core. Therefore, highly ranked
idioms can suggest a new language construct, a new API call or the
left-hand side of a rewriting rule that implements a refactoring. For
each idiom, one has to write the right-hand side of the rewriting
rule. For example, loop idioms, our focus in this work, are well-
suited for identifying opportunities for evolving APIs by rewriting
APIs that involve complex loops, provide data-driven evidence
for introducing new language constructs for the evolution of
programming languages or allowing tool developers to create
high-coverage refactoring tools that functionalize loops into LINQ
statements. Because these rules are mined from actual usage, we
refer to this process as prospecting.

In this section, we first quantify the prevalence of loop idioms,
discuss examples to show the expressivity of loop idioms, then
show how to use loop idioms for prospecting. We start with a
case study detailing how loop idioms can be used for prospecting
loop-to-LINQ rewritings: a developer wondering whether to write
a refactoring engine would use loop idioms to validate the utility of
embarking on the project and to prioritize the implementation of the
specific refactorings. We then present two studies in which we show
that loop idioms mine idioms human identified on StackOverflow
with two highly requested language features in C# and LINQ.
We close with a recommendation based on loop idioms: that
lucenenet add an AddDocuments call that takes enumerations.
All of these analyses give evidence that loop idioms can help
with designing better APIs or provide data-driven arguments for
introducing new language features.

Second Corpus To coil ASTs, we need to instrument for variable
mutability and purity (Section 4.1) and thus need to be able to
compile and run unit tests. From the top 500 projects, we sampled
30 projects uniformly at random. We then removed projects that
we could not compile, do not have a NUnit [51] test suite or the
test suite does not have any passing tests,’ or the projects cannot
depend on the .NET 4.5 framework (e.g. Mono projects) that is
needed for our dynamic analysis. We ended up with 11 projects
(Table 3). Most of the projects are large, representing a corpus of
577kLOC, containing 34,637 runnable unit tests. We executed the
test suite and retrieved variable mutability and purity information
for 5,548 methods. Of course, this filtering could bias our sample,
but this bias is unlikely to correlate with the properties of the idioms
we mine. We base our claim that our corpus is representative and

7. This may happen when the test suite needs an external service e.g. a SQL
or Redis server.
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TABLE 3: C# Projects (577kKLOC) from GitHub that were used to mine
loop idioms after collecting mutability and purity information by running
their test suite (containing 34,637 runnable unit tests).

Project Git SHA  Description
castleproject/Core 3b9517  Castle framework core
JoshClose/CsvHelper 7¢c63dc  Read/write CSV files
dotliquid/dotliquid 9930ea  Template language
libgit2/libgit2sharp f4a600  Git implementation
apache/logging-log4net 782e82  Logging framework
apache/lucenenet 70ba37  Full-text search engine
mathnet/mathnet-numerics 1896  Math library
etishor/metrics.net 9b46ba  Metrics framework
mongodb/mongo-csharp-driver  6f237b  Database driver
jdiamond/Nustache 23f9cc  Logic-less templates
Sandra/Sandra.Snow C€75320  Static site generator

that our results generalize on our corpus selection process and the
size of the individual benchmarks. The fact that we find generic,
non-project specific, idioms suggests that our patterns generalize
well. Furthermore, the included projects are projects developed by
large teams and, as such, do not contain the idiosyncratic idioms
of a single developer.

5.1

In Section 3, we established that loop patterns are prevalent. To be
useful, they must cover, i.e. summarize, many concrete loops, or
they provide no leverage over the concrete loops they match. To
show this coverage, we build a second corpus and use it to establish
that loop idioms effectively summarize many concrete loops.

Loop Idiom Coverage

Idiomatic Loops Our idioms are mined from a large set of projects
consisting of 577kLOCs (Table 3), which form our “training
corpus”. Figure 7 shows the percent coverage achieved by the
ranked list of idioms. With the first 10 idioms, 30% of the loops are
covered, while with 100 idioms 62% of the loops are covered. This
shows that idioms have a Pareto distribution — a core property of
natural code — with a very few common idioms and a long tail
of less common ones. This shows a useful property of the idioms.
If a tool developer or a language or API feature designer uses
the ranked list of idioms, she will be capturing the most useful
loops but with diminishing returns as she goes down the list. In
our case, the top 50 idioms capture about 50% of the loops, while
the top 150 idioms increases the coverage only by another 20%.
Therefore, our data-driven approach allows the prioritization of
semantic idioms and helps to achieve the highest possible coverage
with the minimum possible effort.

Nonidiomatic Loops  Figure 7 shows that about 22.4% of the
loops are not covered by any of the idioms. Here, we perform a
case study of these nonidiomatic loops. We sampled uniformly at
random 100 loops that were not covered by any of the mined
idioms and studied how they differed from idiomatic loops.
We found that 41% of these loops were in test suites, while
another 8% of the nonidiomatic loops were loops that were either
automatically generated or were semi-automatically translated from
other languages (e.g. Java and C). Another 13% of these loops
were extremely domain-specific loops (e.g. compression algorithms,
advanced math operations). The rest of the nonidiomatic loops were
seemingly normal. However, we noticed they often contain rare
combinations of control statements (e.g. a for with an if and
another loop inside the else statement), convoluted control flow
in the body of the loops or rare variable mutability. Some of these
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Semantic Idiom Sample Matching Concrete Loop o .
peration erage
(1) for(int (OHEXPR; m INC(@)) for (int i® = 0; i9 < length; i%++) Reduce with for  14%
$REGION[UR(@) ;C @ i URW@)1 charsNeeded? += components®P[i®].Length;
(2) foreach(var @ in foreach(Term term® in pq.GetTerms()) Reduce with 2%
$REGION[UR(®), 1) ; U@) | rootMap?. AddTerm(tern®. Text, queryd.Boost); foreach
(3)  foreach(var (@) in (EXPR) foreach(DictionaryEntry entry® in dict) Map with 2%
$REGION[UR (@), (D) ;CS*RW(2)] hasti?[entry?.Keyl=entry®.value; foreach
(4)  foreach(var @ 1n ) foreach(var exp? in args) Map  overwrite 2%
$REGION[UR(D) ; © @1 exp®.Emit (member®d, ger?); and reduce with
foreach
(5) for(int @XEXPR; (©) XP INC(@)) for (int K®=a; KO<b; KO++) Map collection- 5%
$REGION[UR(.@) (@) CERWE) ] ranks®[index2[K?]]1 = rank?; th-collection with
or.
(6)  for(int @HEXPR); (@KEXPR); INC(©)) for (var K9= 0; KO%i; K®4+){ Map and reduce 5%
$REGION[UR(®)D); u@) CSERWB) ] K9] /= scaled; with for

HY += dI[K9] * dI[KO;

}

(1) foreach(var @) in (EXPR)
$REGION[UR (1) ; URW(0) |

(®)  for(var @50; < $EXP @@), INC(@)){

if ($EXPR(@)
$REGION[ UR(. @) U @) CER(@)]

foreach(LoggingEvent event® in loggingEvents)
event®. Fix

for(int i®=0;
if (datd?[i91>max?
&& !float®.IsNaN(datad?[i®]))

Map and over- 1%

m_fixFlags®y; write foreach

Reduce with for 1%
and conditional

i®datd?. Lengthd; i%+){

max? = datad?[i?];

Fig. 6: Loop idioms automatically mined by our method and ordered using our ranking method. For each idiom we include a sample concrete loop
it matches. Some concrete loops were slightly modified to fit the table and reduce their size (removed braces, shortened variable names). Idiom
metavariables are highlighted with a colored box and a unique reference number is assigned to them. The same numbers appear within the concrete
loops next to each variable, indicating each variable’s binding to a metavariable. Non-terminals (e. g- m are also denoted within the colored box.
Idiom (2) is the one shown in Figure 1. The this unitary variable is implied in some contexts (e.g. in Figure 6.3).
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Fig. 7: Cumulative loop coverage vs. the number of (top) idioms used.

Given the diminishing returns the distributions fits well into a Pareto
distribution. The Gini coefficient is G = 0.785 indicating a high coverage
inequality among idioms. When using 50 idioms, 50% of the loops can be
covered and with 200 idioms 70% of the loops are covered. 22% of the
loops in our corpus are non-idiomatic (i.e. are not covered by an idiom).

rare combinations, like two consecutive if-else statements, are,
in isolation, normal or frequent, but rare when enclosed in a loop
rather than a method. We speculate these loops look normal to
developers because human readers would find the code to be quite
unsurprising given the context, but would not necessarily notice
that the context per se might be rather unique or unusual. Knowing
which loops are nonidiomatic and that they are rare is crucial, since
it allows toolmakers to avoid wasting time on them.

5.2 Example Loop Idioms

Figure 6 shows example loop idioms, patterns mined after coiling,
and concrete loops they match. Showing idioms, and not merely
coiled code, allows us to illustrate both simultaneously. Loop

idioms are simply a ranked selection of segments of coiled code.
Map and reduce operations are quite common in our corpus.

We focus at the most complex idiom in Figure 6.8 (the 8th
element in Figure 6) to explain the notation. The idiom contains
the < operator, because our expression abstraction, discussed above,
preserves the top-level operator in termination expressions. INC
denotes the special node for increment expression. It contains a
single block that, in turn, contains a single region that references
at least (since we merge references with identical sets of nodes)
four variables: (2) and @ The first two are read-only unitary
variables (denoted by UR);(2)is a collection with a read-only spine
(defined in Section 3, Collections) and elements (denoted by SR
for the spine and CER for the elements); and @ is a read-write
unitary variable (denoted by URW)).

The reader may appreciate some of the semantic details that
idioms capture. For example, the idiom in Figure 6.7 performs a
map operation and modifies the original collection elements. In
our data, loops often perform multiple operations, e.g. the idiom
matching the concrete loop of Figure 6.6 is a reduce operation
in h and a map on d (the code generates the Householder vector
for matrix factorization in mathnet-numerics). As we discuss in
Section 5.5, this is a common loop idiom that lacks an efficient
functional LINQ replacement.

5.3 Prospecting Loop-to-LINQ Refactorings

Loop idioms can help in an important instance of refactoring:
identifying loop patterns a refactoring tool could target to replace
with functional operators. Since 2007, C# supports LINQ [46, 41],
that provides functional-style operations, such as map-reduce,
on streams of elements and is widely used in C# code. LINQ
is concise and supports lazy operations that are often easy to
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parallelize. For example, multiplying all elements of the col-
lection y by two and removing those less than 1, in parallel,
is y.AsParallel().Where(x=>x<1).Select(x=>2x*x). We call
a loop that can be replaced with a LINQ operator LINQable.
LINQability has important implications for the maintainability and
comprehensibility of code. LINQ’s more conceptually abstract syn-
tax 1) manifests intent, making loops easier to understand and more
amenable to automated reasoning and 2) saves space, in terms of
keystrokes, as a crude measure of effort to compose and read code.

A testament to the importance of refactoring loops to functional
operators is the fact that two tools already support such operations:
LAMBDAFICATOR [27] targets Java’s Streams and JetBrain’s
Resharper [28] replaces loops with LINQ statements. Both of these
tools have followed the classic development model of refactoring
tools: they support rewritings that their tool developers decided to
support from first principles: they first chose a set of preconditions,
possibly verifying their intuition about which constructs are most
common, and used textual matching.

In contrast, our approach complements the intuition of the
tool makers and finds important patterns that a designer may
not even be aware of. Therefore, it allows toolmakers to support
refactorings that the tool authors would not envision without
data, enabling the data-driven, inference-based, general or domain-
specific development of refactorings. Additionally, data-driven
inference allows to discover project or domain-specific semantic
idioms without needing a deep knowledge of a domain or a specific
project. This is important as our analysis suggests (Section 3) that
loops have domain-specific characteristics.

Tool developers can build a refactoring tool using loop idioms
as key elements to the rewritings that map loops to LINQ statements.
In other words, we can use our pTSG inference to automatically
identify loop constructs that could be replaced by a LINQ operator,
i.e. are LINQ-able. In our corpus, at least 55% of all loops are
LINQable.

To evaluate the fitness of our loop idiom mining for prospecting
natural loop rewritings, we built an idiom-to-LINQ suggestion
engine. The suggestion engine is not intended as a refactoring
tool for actual developers. Instead, it is a proof-of-concept to
demonstrate how loop idioms can be used by tool developers
to easily build new refactoring tools, and also to demonstrate
that the loop idioms have sufficient quality and convey sufficient
semantic information to support the construction of practical
program rewriting tools. Its suggestions are not sound, since it
simply matches an idiom to a concrete loop and without checking
the preservation of semantics that an automatic replacement would
entail. For example, our idiom-to-LINQ suggestion engine maps
the idiom in Figure 6.8 to a reduce operation. Thus, for the concrete
loop in Figure 6.8, the suggestion engine outputs the loop and its
location, then replaces references with the concrete loop’s variable
names and outputs the following suggestion:

The loop is a reduce on ‘max‘. Consider replacing it with
‘data.Where(cond) .Aggregate((elt, max)=>accum) "’

1. ‘Where(cond)‘ may not be necessary.

2. Replace ‘Aggregate’ with ‘Min‘ or ‘Max‘, if possible.

We know that this loop is a reduce because the matching idiom’s
mutability information tells us that there is a read-write only on a
unitary variable. When our suggestion engine accurately suggests
a loop refactoring, a refactoring tool developer should find it
easy to formalize a rewriting rule (e.g. identifying and checking
the relevant preconditions) using loop idioms as a basis. In our
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TABLE 4: Basic LINQ operators and coverage statistics from the top 100
loop idioms. # Idioms is the number of idioms our suggestion engine maps
to a LINQ expression that uses each LINQ operator. Use frequency is the
proportion of concrete loops that when converted to LINQ use the given
LINQ operator.

Operator Description # Idioms  Use Freq

Range Returns integer sequence 50 77%

Select Maps a lambda to each 42 32%
element

Aggregate Reduce elements into a 43 21%
value

SelectMany Flattens collection and 5 10%
maps lambda to each ele-
ment

Where Filters elements 13 7%

Zip Combines two enumer- 6 3%
ables

First Returns the first element 2 1%

example, a polished refactoring tool should refactor the loop in
Figure 6.8 into data.Where(x=>!float.IsNan(x)).Max().

We used the top 25 idioms that cover 45.4% of the loops
in our corpus. We mapped 23 idioms, excluding 2 of the loop
idioms (both while idioms, covering 1.5% of the loops) that have
no corresponding LINQ expression. To map each idiom to an
expression, we found the variables that match the references, along
with the mutability and type information of each variable. We then
wrote C# code to generate a suggestion template, as previously
described. The process of mapping the top 23 idioms to LINQ took
less than 12 hours.

With this map, our engine suggests LINQ replacements for
5,150 loops. Each idiom matches one or more loops and is mapped
to a LINQ expression in our idiom-to-LINQ map. To validate the
quality of these suggestions, we uniformly sampled 150 loops and
their associated suggestions. For each of these loops, two authors
assessed our engine’s suggestion accuracy. This should not be seen
as an effort for a batch-refactoring tool, but rather as a means of
evaluating the usefulness of the mined idioms. Our results show
that the suggestions are correct 89% of the time. The inter-rater
agreement was kK = 0.81 (i.e. agreed 96% of the time). So not
only is our idiom-to-LINQ map easy to build, it also achieves
good precision. This suggests that the mined idioms indeed learn
semantic loop patterns that a refactoring tool could target.

Table 4 shows the percent of loops matched by an idiom whose
LINQ expression uses the specified LINQ operator and explains
the most common LINQ operations. It shows how a refactoring
tool developer can easily use a loop idiom as the left-hand side
of a refactoring rule. She can write extra code that checks for
the correctness of the refactoring. Most importantly, this process
prioritizes rewritings that provide the maximum codebase coverage.

Finally, we manually examine the cases where an incorrect
refactoring suggestion was made with our simple loop idiom-to-
LINQ map. We observed three failure modes. First, we found cases
where the purity analysis had a false positive. Second, loop-carried
dependencies are not captured by the current coiling mechanism,
although if we were to employ an analysis that detects such
dependencies, we can easily add it to the coiling process. Finally,
since our program transformation suggestions were “best-effort”
heuristics, one heuristic did not account for two corner cases. Again,
our goal is not to build a refactoring tool but to evaluate the utility
of the idioms we mine; for this purpose, such errors are not a
problem.
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5.4 Prospecting for New Language Features

Loop idioms can provide data-driven evidence for the introduction
of new language features, providing data-driven evidence for the
evolution of programming languages. For example, some of the
top idioms suggest novel language features. For example, five top
loop idioms with total coverage 12% have the form:

for (int i=0; i < collection.Length; i++)
foo(i, collection[i])

where they are iterating over a collection but also require the index
of the current element.

A potential new feature is the introduction of an Enumerate
operation that jointly returns the index and the element of a
collection. This resembles the enumerate function that Python
already has and Ruby’s each_with_index. Interestingly, loop
idioms identify a common problem faced by C# developers: in
StackOverflow there is a related question for C# [61] with about
542k views and a highly voted answers (873 votes) that suggests a
helper method for bypassing the lack of such a function.

5.5 Prospecting for New LINQ Operators

Mined loop idioms can inform the evolution of LINQ by informing
the design of new LINQ operators. For example, while mapping
loop idioms to LINQ, we found 5 idioms (total coverage of 5.4%)
that could map to the rather cumbersome LINQ statement:

Range(0, M).SelectMany(i => Range(0, N)
.Select(j => foo(i, j)))

These idioms essentially are doubly nested for loops that perform
some operation for each i and j. This suggests that a 2-d Range
LINQ operator would be useful and would cover about 5.4%
of the loops. In contrast, our data suggests that a n-d (n > 2)
Range operator would be used very rarely and therefore no such
operator needs to be added. We note that we have found two
StackOverflow questions [59, 60] with 29k views that are looking
for this functionality. Another example is a set of idioms (coverage
6.6%) that map to

Range(M, N).Select(i=>foo(collection[i]))

essentially requiring a slice of an ordered collection®. The common
appearance of this idiom in 6.6% of the loops provides strong
data-driven evidence that a new feature would be highly profitable
to introduce. For example, to remove these loops or their cuamber-
some LINQ equivalent, we could introduce a new Slice feature
that allows the more idiomatic 1ist.Slice(M, N).Select(foo).
Indeed, the data has helped us identify a frequently requested
functionality: This operation seems to be common enough that
.NET 3.0 introduced the slice method, but only for arrays.
Additionally, the need of such a feature — that we automatically
identified through data — can be verified by the existence of a
highly voted StackOverflow question [62] with 166k views and 15
answers (with 503 votes in total) asking about slicing with some of
the answers suggesting a Slice LINQ extension function.
Finally, we observe that some loops mutate multiple variables
at a time (e.g. adding elements to two collections), while efficiently
reusing intermediate results. To refactor this with LINQ statements
an intermediate LINQ expression needs to be converted to an object
(e.g. by using ToList()) to be consequently used in two or more
other LINQ expressions, because of the laziness of LINQ operators.

8.  This could also be mapped to the
collection.Skip(M).Take(N-M).Select(foo).

equally ugly
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This is not memory efficient and may create an unneeded bottleneck
when performing parallel LINQ operations. A memoization LINQ
operator (like tee in Python) that can distribute the intermediate
value into two or more LINQ streams, could remove such hurdles
from refactoring loops into LINQ.

In our dataset, LINQ slicing seems to be a common idiom
required across many projects suggesting that an addition to core
LINQ API could be reasonable. In contrast, the 2d Range is
specific to mathnet-numerics, suggesting that a domain-specific
helper/extension LINQ operator could be introduced in that project,
as we discussed earlier.

5.6 Prospecting for New APls

The top mined loop idioms are interesting semantic patterns of
the usage of code. However, some of the common patterns may
be hard to read and cumbersome to write. Since semantic idioms
represent common operations, they implicitly suggest new APIs
that can simplify how developers invoke some operation. Thus, the
data-driven knowledge that can be extracted from semantic idiom
mining can be used to drive changes in libraries, by introducing
new API features that simplify common usage scenarios. Due to
space limitation, we present only two examples in this section.

One common set of loop idioms (covering 13.7% of the loops)
have the form

foreach (var element in collection)
obj.DoAction(foo(element))

where each element in the collection is mapped using foo and
then obj is written. The frequent usage of this loop idiom for an
API provides strong indication that a new API feature should be
added. For example in lucenenet the following (slightly abstracted)
loop appears
for (int i = 0; i < numDocs; i++) {
Document doc = foo(i);
writer.AddDocument(doc);

}

In this example, AddDocument does not support any operation that
adds more than one object at a time. This forces the developers of
the project to consistently write loops that perform this operation.
Adding an API method AddDocuments, that accepts enumerables
would lead to simpler, more readable and more concise code:

writer.AddDocuments(collection.Select(foo))

We find similar issues in other libraries, such as in mathnet-
numerics where the same operation (e.g. a test for a specific
condition) is applied in all entries of a matrix using multiple loops.
For example, in the testing code of mathnet-numerics there are
717 doubly nested for loops that test a simple property of each
element in a 2d-array. Adding a new API that accepts a lambda
for each location i, j would greatly simplify this code, replacing
doubly nested loops with

matrix.AssertAll((i, j, elem) => ...)

which is more concise.

6 RELATED WORK

The semantic idiom mining method we use in this paper builds on
the work of Allamanis and Sutton [4]. Allamanis and Sutton [4]
sought to find meaningful patterns in big code by mining syntactic
idioms, code patterns that do capture usage dependencies among
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mined elements. Although syntactic idioms are more likely to be
useful than frequent patterns, data sparsity, exacerbated by the
commendable practice of code reuse (e.g. sorting algorithms),
means that many syntactic idioms often fall short of being
meaningful, as you can see in this example, from Allamanis and
Sutton [4]:

FileSystem FileSystem.get ($Path). toUri(), conf);
where and are meta-variables. Specifically, few

syntactic idioms meaningfully contained loops at all, let alone
a loop that performs a reduce operation.

Code clones [7, 32, 33] are related to idiom mining. Clone
detection using ASTs has been studied extensively [8, 29, 37].
For a survey of clone detection methods, see Roy and Cordy
[57], Roy et al. [56]. In contrast, code idiom mining searches for
surprisingly frequent, rather than maximally identical subtrees [4]
(Section 2.1). Additionally, code clones do not abstract over the
semantic properties of code as we do in this work. Qiu et al. [54]
instrumented the Java parser to count the usage of production
rules across various releases of Java, but do not automatically find
meaningful patterns. Another related area is API mining [1, 50, 68,
66]. API protocols are a type of semantic idiom; thus idiom mining
is a general technique for pattern matching that we could specialize
to API mining, by devising an appropriate coiling. In this work,
we specialized coiling to loop idioms, so the coiling presented here
abstracts away method calls (removing information about method
names, instantiation of arguments efc.), which API mining needs,
and tracks semantic information: e.g. variable mutability, purity,
data, and control flow information, which API mining does not.

Semantic idiom mining is directly applicable to rewritings,
such as refactoring [19]. The most prominent area of research on
refactoring focuses on developing tools to automatically identify
locations to refactor and/or perform refactorings [11, 47, 16, 10, 34]
with tremendous impact: nearly all popular IDEs (e.g. Eclipse,
Visual Studio, NetBeans) include refactoring support of some
kind. However, existing refactoring tools are underutilized [49].
One reason may be the fact that many refactoring tools cannot
handle many of the constructs (such as loops) that developers
actually write. This is the problem we tackle in this work, by
giving tool developers the tools they need to make data-driven
decisions. Tsantalis and Chatzigeorgiou [65] use machine learning-
like methods to find opportunities to apply existing refactoring
operators. In contrast to this work, we mine, rank and present loop
idioms to refactoring tool developers as candidates for the left-hand
sides (the pattern to replace) of new refactoring operators.

Multiple tools focus on loop rewritings. Relooper [17] au-
tomatically refactors loops on lists and arrays into parallelized
loops. Resharper [28] provides refactorings to convert loops into
LINQ expressions. Gyori et al. [27] refactor Java loops to Java 8
streams, which are similar to LINQ in C#. All these works use
the classic approach that rests on the tool developer’s intuition
— not data — to decide which rewritings to implement. For
example, the tool of Gyori et al. [27] only handles four loop types,
comprising 46% of the loops that they encountered, underscoring
the challenges of refactoring loops and the importance and utility
of functionalizing them. Since all these tools contain hard-coded
refactorings, they may miss refactoring opportunities that are
project-specific. Similarly, a study of vectorizing compilers, which
rewrite sequential loops to use vector instructions, found that,
while collectively the compilers successfully rewrote 83% of
the benchmark loops, their individual performance ranged from
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45-71% [40]. Our work complements such work; it helps tool
developers and language designers to identify useful patterns by
identifying and ranking idioms, including domain, even project,
specific idioms.

7 CONCLUSION

Humans aggregate concepts and data into mental chunks [26].
Consider a compiler developer who has written a loop to alge-
braically simplify an instruction sequence. When talking to another
developer, the developer might describe the loop as “algebraically
simplifying arithmetic instructions”. We have defined semantic
idioms to capture these mental chunks and presented a method
for their unsupervised mining from a code corpus. We specialized
our framework to loop idioms, semantic idioms root at loops by
abstracting the AST and augmenting it with semantic facts, like
variable mutability and function purity. We used loop idioms to
show that idiom mining can cope with syntactic diversity to find and
prioritize patterns whose replacement might improve a refactoring
tool’s coverage and help language and API designers. Semantic
idioms can also benefit other other areas of program analysis and
transformation, guiding the selection of heuristics and choice of
corner cases with hard data, as in auto-vectorization [6].

ACKNOWLEDGMENTS

M. Allamanis was supported by Microsoft Research through
its PhD Scholarship Programme. E. Barr and P. Devanbu were
supported by Microsoft Research through its Visiting Scholar
Programme. C. Sutton was supported by the Engineering and
Physical Sciences Research Council [grant number EP/K024043/1].
P. Devanbu was supported by the National Science Foundation
award number 1414172.

REFERENCES

[1] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns
as partial orders from source code: from usage scenarios to
specifications,” in ESEC/FSE, 2007.

[2] C. C. Aggarwal and J. Han, Frequent pattern mining.
Springer, 2014.

[3] M. Allamanis and C. Sutton, “Mining source code repositories
at massive scale using language modeling,” in Proceedings
of the Tenth International Workshop on Mining Software
Repositories. 1EEE Press, 2013, pp. 207-216.

[4] ——, “Mining Idioms from Source Code,” in Symposium on
the Foundations of Software Engineering (FSE), 2014.

[5] E.T. Barr, C. Bird, and M. Marron, “Collecting a heap of
shapes,” in ISSTA, 2013.

[6] G. Barthe, J. M. Crespo, S. Gulwani, C. Kunz, and M. Marron,
“From relational verification to SIMD loop synthesis,” in
PPoPP, 2013.

[71 H. A. Basit and S. Jarzabek, “A data mining approach for
detecting higher-level clones in software,” IEEE Transactions
on Software Engineering, 2009.

[8] 1. D. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, and L. Bier,
“Clone detection using abstract syntax trees,” in International
Conference on Software Maintenance, 1998.

[9] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests
broke the build: An analysis of travis ci builds with github,”
PeerJ Preprints, Tech. Rep., 2016.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

[10] K. Beyls and E. H. D’Hollander, “Refactoring for data
locality,” 2009.

[11] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella,

“Automated refactoring of object oriented code into aspects,’

in ICSE, 2005.

S. Cherem and R. Rugina, “A practical escape and effect

analysis for building lightweight method summaries,” in

Proceedings of the 16th International Conference on Compiler

Construction, 2007.

T. Cohn, P. Blunsom, and S. Goldwater, “Inducing tree-

substitution grammars,” Journal of Machine Learning Re-

search, vol. 11, Nov 2010.

[14] J. Couvreur, “Async main,”’ https:
//github.com/dotnet/csharplang/blob/master/proposals/
csharp-7.1/async-main.md, Sep. 2017. [Online]. Available:
https://github.com/dotnet/csharplang/blob/master/proposals/
csharp-7.1/async-main.md

[15] ——, “Non-trailing named arguments,” https://github.
com/dotnet/csharplang/blob/master/proposals/csharp-7.2/
non-trailing-named-arguments.md, Sep. 2017. [Online].
Available: https://github.com/dotnet/csharplang/blob/master/
proposals/csharp-7.2/non-trailing-named-arguments.md

[16] D. Dig, “A refactoring approach to parallelism,” Software,
IEEE, 2011.

[17] D. Dig, M. Tarce, C. Radoi, M. Minea, and R. Johnson,
“Relooper: refactoring for loop parallelism in Java,” in
OOPSLA, 2009.

[18] J. Fowkes and C. Sutton, “A subsequence interleaving model
for sequential pattern mining,” KDD, 2016.

[19] M. Fowler, Refactoring: Improving the design of existing
programs. Addison-Wesley Reading, 1999.

[20] Y. Fratantonio, A. Machiry, A. Bianchi, C. Kruegel, and G. Vi-

gna, “CLAPP: Characterizing loops in Android applications,”

in ESEC/FSE, 2015.

B. A. Frigyik, A. Kapila, and M. R. Gupta, “Introduction to

the dirichlet distribution and related processes,” Department of

Electrical Engineering, University of Washignton, UWEETR-

2010-0006, 2010.

[22] N. Gafter, “Binary literals,” https:
//github.com/dotnet/csharplang/blob/master/proposals/
csharp-7.0/binary-literals.md, Feb. 2017. [Online]. Available:
https://github.com/dotnet/csharplang/blob/master/proposals/
csharp-7.0/binary-literals.md

[23] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari,
and D. B. Rubin, Bayesian data analysis. CRC Press, 2013.

[24] S. J. Gershman and D. M. Blei, “A tutorial on Bayesian

nonparametric models,” Journal of Mathematical Psychology,

vol. 56, no. 1, pp. 1-12, 2012.

B. Goetz, “State of the specialization,” http://cr.openjdk.

java.net/~briangoetz/valhalla/specialization.html, Dec. 2014.

[Online]. Available: http://cr.openjdk.java.net/~briangoetz/

valhalla/specialization.html

A. Guida, F. Gobet, and S. Nicolas, “Functional cerebral

reorganization: a signature of expertise? reexamining guida,

gobet, tardieu, and nicolas’(2012) two-stage framework,”

Frontiers in human neuroscience, vol. 7, p. 590, 2013.

A. Gyori, L. Franklin, D. Dig, and J. Lahoda, “Crossing

the gap from imperative to functional programming through

refactoring,” in FSE, 2013.

[28] JetBrains, “Resharper,” http://www.jetbrains.com/resharper/,
2015. [Online]. Available: http://www.jetbrains.com/

(12]

[13]

(21]

[25]

[26]

(27]

http://dx.doi.org/10.1109/TSE.2018.2832048

16

resharper/

[29] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard:
Scalable and accurate tree-based detection of code clones,” in
ICSE, 2007.

[30] A. K. Joshi and Y. Schabes, “Tree-adjoining grammars,” in
Handbook of formal languages. Springer, 1997.

[31] A.-J. Kaijanaho, “Evidence-based programming language
design: a philosophical and methodological exploration,”
Jyviskyli studies in computing 222., 2015.

[32] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code,” IEEE Transactions on Software
Engineering, 2002.

[33] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An
empirical study of code clone genealogies,” in ACM SIGSOFT
Software Engineering Notes, 2005.

[34] D. D. F. Kjolstad and M. Snir, “Bringing the HPC program-
mer’s IDE into the 21st century through refactoring,” in
SPLASH, 2010.

[35] D. E. Knuth, “An empirical study of FORTRAN programs,”
Software: Practice and experience, vol. 1, no. 2, pp. 105-133,
1971.

[36] A.J. Ko, “Designing and evaluating programming languages:
Dagstuhl trip report,” Feb. 2018. [Online]. Available:
https://bit.ly/2HAfeJK

[37] R. Koschke, R. Falke, and P. Frenzel, “Clone detection
using abstract syntax suffix trees,” in Working Conference on
Reverse Engineering (WCRE), 2006.

[38] I. Kuzborskij, “Large-scale pattern mining of computer pro-
gram source code,” Master’s thesis, University of Edinburgh,
2011.

[39] P. Liang, M. I. Jordan, and D. Klein, “Type-based MCMC,” in
Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics. Association for Computational
Linguistics, 2010.

[40] S. Maleki, Y. Gao, M. J. Garzaran, T. Wong, D. Padua
et al., “An evaluation of vectorizing compilers,” in Parallel
Architectures and Compilation Techniques (PACT), 2011
International Conference on. 1EEE, 2011, pp. 372-382.

[41] F. Marguerie, S. Eichert, and J. Wooley, LINQ in Action.
Manning, 2008.

[42] S. Marks, “Jep 277: Enhanced deprecation,” http:
/lopenjdk.java.net/jeps/277, Dec. 2017. [Online]. Available:
http://openjdk.java.net/jeps/277

[43] M. Marron, D. Stefanovic, D. Kapur, and M. V. Hermenegildo,
“Identification of heap-carried data dependence via explicit
store heap models,” in Languages and Compilers for Parallel
Computing, 2008.

[44] T.J. McCabe, “A complexity measure,” Software Engineering,
IEEE Transactions on, no. 4, pp. 308-320, 1976.

[45] A. K. McCallum, “MALLET: A Machine Learning for
Language Toolkit,” 2002.

[46] E. Meijer, “The world according to LINQ,” Queue, vol. 9,
no. 8§, p. 60, 2011.

[47] T. Mens and T. Tourwé, “A survey of software refactoring,”
Software Engineering, IEEE Transactions on, vol. 30, no. 2,
pp. 126-139, 2004.

[48] K. P. Murphy, Machine Learning: A Probabilistic Perspective.
MIT Press, 2012.

[49] E. Murphy-Hill and A. P. Black, “Refactoring tools: Fitness

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.1/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.1/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.1/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.1/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.1/async-main.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.2/non-trailing-named-arguments.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.2/non-trailing-named-arguments.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.2/non-trailing-named-arguments.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.2/non-trailing-named-arguments.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.2/non-trailing-named-arguments.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.0/binary-literals.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.0/binary-literals.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.0/binary-literals.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.0/binary-literals.md
https://github.com/dotnet/csharplang/blob/master/proposals/csharp-7.0/binary-literals.md
http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://www.jetbrains.com/resharper/
http://www.jetbrains.com/resharper/
http://www.jetbrains.com/resharper/
https://bit.ly/2HAfeJK
http://openjdk.java.net/jeps/277
http://openjdk.java.net/jeps/277
http://openjdk.java.net/jeps/277

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

for purpose,” Software, IEEE, vol. 25, no. 5, 2008.

[50] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi,
and T. N. Nguyen, “Graph-based mining of multiple object
usage patterns,” in ESEC/FSE, 2009.

[51] NUnit, “NUnit: Unit testing framework for .NET,” http://
nunit.org/, 2016.

[52] S. Okur, D. L. Hartveld, D. Dig, and A. v. Deursen, “A
study and toolkit for asynchronous programming in ¢,” in
Proceedings of the 36th International Conference on Software
Engineering, 2014.

[53] M. Post and D. Gildea, “Bayesian learning of a tree sub-
stitution grammar,” in Proceedings of the Association for
Computational Linguistics (ACL), 2009.

[54] D. Qiu, B. Li, E. T. Barr, and Z. Su, “Understanding the
syntactic rule usage in java,” Journal of Systems and Software,
vol. 123, pp. 160-172, 2017.

[55] V. Raychev, M. Vecheyv, and E. Yahav, “Code completion with
statistical language models,” in PLDI, 2014.

[56] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach,” Science of Computer Programming,
2009.

[57] C. K. Roy and J. R. Cordy, “A survey on software clone
detection research,” Queen’s University at Kingston, Ontario,
Tech. Rep., 2007.

[58] J. Sethuraman, “A constructive definition of Dirichlet priors,
DTIC Document, Tech. Rep., 1991.

[59] StackOverflow, “Using LINQ with 2D array, Select not
found,” http://stackoverflow.com/questions/3150678, Jun.
2010. [Online]. Available: http://stackoverflow.com/questions/
3150678

[60] ——, “How to search in 2D array by LINQ?” http:
/Istackoverflow.com/questions/18673822, Sep. 2013. [Online].
Auvailable: http://stackoverflow.com/questions/18673822

[61] ——, “How do you get the index of the current iteration of
a foreach loop?” https://stackoverflow.com/questions/43021,
Sep. 2008. [Online]. Available: https://stackoverflow.com/
questions/43021

[62] ——, “Array slices in C#,” http://stackoverflow.com/
questions/406485, Jan. 2009. [Online]. Available: http:
/Istackoverflow.com/questions/406485

[63] A. Sidlcianu and M. Rinard, “Purity and side effect analysis
for Java programs,” in Proceedings of the 6th International
Conference on Verification, Model Checking, and Abstract
Interpretation, ser. VMICAI’05, 2005, pp. 199-215.

[64] Y. W. Teh and M. I. Jordan, “Hierarchical Bayesian nonpara-
metric models with applications,” in Bayesian Nonparamet-
rics: Principles and Practice, N. Hjort, C. Holmes, P. Miiller,
and S. Walker, Eds. Cambridge University Press, 2010.

[65] N. Tsantalis and A. Chatzigeorgiou, “Identification of move
method refactoring opportunities,” Software Engineering,
IEEE Transactions on, vol. 35, no. 3, pp. 347-367, 2009.

[66] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang,
“Mining succinct and high-coverage API usage patterns from
source code,” in Proceedings of the Tenth International
Workshop on Mining Software Repositories. 1EEE Press,
2013, pp. 319-328.

[67] H. Xu, C. J. F. Pickett, and C. Verbrugge, “Dynamic purity
analysis for Java programs,” in Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, PASTE, 2007.

)

http://dx.doi.org/10.1109/TSE.2018.2832048

17

[68] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO:
Mining and recommending API usage patterns,” in ECOOP
2009-0Object-Oriented Programming. Springer, 2009, pp.
318-343.

Miltiadis Allamanis Miltiadis Allamanis is a re-
searcher at Microsoft Research in Cambridge,
UK. He holds a Ph.D. from the University of Ed-
inburgh. He focuses on applications of machine
learning and natural language processing to soft-
ware engineering and programming languages
with the goal to create smart software engineer-
ing tools for developers. He has published in
both machine learning and software engineering
conferences.

Earl T. Barr Earl Barr is a senior lecturer (asso-
ciate professor) at University College London. He
holds a Ph.D. from the University of California
at Davis. Earl has published more than 50 peer-
reviewed papers on testing and program analy-
sis, software engineering, and computer security.
His recent work focuses on automated software
transplantation (Gold medal at GECCO’s 2016
Humies), the application of empirical game theory
to software processes, and the application of nat-
ural language processing and machine learning

to software. Earl dodges vans and taxis on his bike commute in London.

Christian Bird Christian Bird is a researcher
in the Empirical Software Engineering group at
Microsoft Research. He focuses on using qualita-
tive and quantitative methods to both understand
and help software teams. Christian received his
Bachelor’s degree from Brigham Young University
and his Ph.D. from the University of California,
Davis. He lives in Redmond, Washington with his
wife and three (very active) children.

Prem Devanbu Prem Devanbu is professor of
Computer Science at UC Davis. His research
interests are focused on the use of statistical
methods and machine learning to exploit the
Naturalness of Software to improve software tools
and processes.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


http://nunit.org/
http://nunit.org/
http://stackoverflow.com/questions/3150678
http://stackoverflow.com/questions/3150678
http://stackoverflow.com/questions/3150678
http://stackoverflow.com/questions/18673822
http://stackoverflow.com/questions/18673822
http://stackoverflow.com/questions/18673822
https://stackoverflow.com/questions/43021
https://stackoverflow.com/questions/43021
https://stackoverflow.com/questions/43021
http://stackoverflow.com/questions/406485
http://stackoverflow.com/questions/406485
http://stackoverflow.com/questions/406485
http://stackoverflow.com/questions/406485

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2018.2832048

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Mark Marron Mark Marron is passionate about
programming language & software engineering
research. His recent focus has been on bringing
innovative ideas from the research community
into practical developer tools and is leading work
on low-overhead diagnostic tracing and time-
travel debugging tools at Microsoft Research.
Mark received his Bachelor's degree from the
University of California Berkeley and his Ph.D.
from the University of New Mexico.

Charles Sutton Charles Sutton received the
Ph.D. degree in computer science from the
University of Massachusetts Amherst in 2008.
His work received an Outstanding Dissertation
Award from the department. Dr. Sutton is now a
Reader in Machine Learning at the University of
Edinburgh. He has published over 50 papers in
probabilistic machine learning and deep learning,
motivated by the demands of a broad range of
applications, including natural language process-
ing, analysis of computer systems, sustainable
energy, data analysis, and software engineering. His work in software
engineering has won an ACM Distinguished Paper Award. He has served
as Director of the EPSRC Centre for Doctoral Training in Data Science at
the University of Edinburgh. He is a Fellow of the Alan Turing Institute, the
UK’s national research institute for artificial intelligence and data science.
He has been a visiting researcher at Microsoft and Google.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

18



