Formal Methods and Tools
for Distributed Systems

Thomas Ball
Microsoft

http://research.microsoft.com/~tball

http://research.microsoft.com/~tball

Outline

* 20 Years at Microsoft (1999-present)

* The great work of others at Microsoft

20 Years at Microsoft

From EULA to SLA
From Bugs and Bounties to Cyberweapons
From Spec to Spec+Check
From Closed to Open

Compute, Storage, Networking,

Backups, Hdw/Sft updates, ... gi

System administration

EULA

- -

Software

Compute, Storage, Networking,
Backups, Hdw/Sft updates, ...
System administration

-

Compute, Storage, Networking,
Backups, Hdw/Sft updates, ...
System administration

-
-

Compute, Storage, Networking,
Backups, Hdw/Sft updates, ...
System administration

Compute, Storage, Networking,
Backups, Hdw/Sft updates, ...
System administration

-

Microso
=11
MICROSOF1

SPECIAL, IN
DAMAGES W

RELATED T
SOFTWARE

' - THE ENTIRE RISK AS TO ll" QUALITY
AND PERFORMANCE OF THE PROGRAM IS WITH YOU

INNO EVENT
WILLANY COPYRIGHT HOLDE R, OR ANY OTHER l’\Rl\ WHO MAY

MODIEY AND/OR REDISTRIBUTE THE I’R()(RAM ' BE
LIABLE TO YOU FOR DAMAGES |

ARISINGOUTOF THE USE OR

INABILITY TO USE THE PROGRAM |

Compute, Storage, Networking,

Backups, Hdw/Sft updates, ... gi

System administration

EULA

- -

Software

Compute, Storage, Networking,
Backups, Hdw/Sft updates, ...
System administration

-

Compute, Storage, Networking,
Backups, Hdw/Sft updates, ...
System administration

-
-

Compute, Storage, Networking,
Backups, Hdw/Sft updates, ...
System administration

Compute, Storage, Networking,
Backups, Hdw/Sft updates, ...
System administration

-

Programs, Data, Users

Programs, Data, Users

SLA Programs, Data, Users

Azure

Programs, Data, Users QE gi QE

Compute, Storage, Networking, Programs, Data, Users
Backups, Hdw/Sft updates, ...
System administration

Programs, Data, Users
Programs, Data, Users

5 4 regions
worldwide

West Central US
West US 2 (&)

O

West US ()
US Gov Arizona ()

US Gov Texas ()
South Central US

O Available region
i Announced region

Availability Zone(s) present

140 available in
140 countries

US Gov lowa,

e () Canada East

() Canada Central
0O () North Central US
() US DoD East

East US,

East US 2,
US Gov Virginia

US DoD Central

() Brazil South

Norway West

West Europe &
UK South 7

North Europe (&) @)
UK West o~e

France Central (8) &
France South

+ Norway East

= Germany West Central
Fermany North

310 Germany Northeast
Germany Central

‘ Switzerland North
L Switzerland West

China North,

China North 2 @

Korea Central ()
Korea South

(@) O () Japan East

Japan West

China East,

UAE North | China East 2

UAE Central x5 -
East Asia
West India () O

Central India

South India ()

Southeast Asia (3)

™ South Africa North

oy) Australia East ()
-..c South Africa West

Australia Central,

Australia Southeast () Australia Central 2

Cloud Scale..

Cloud Scale

Service Level Agreement (SLA)

“For all Virtual Machines that have two or more instances deployed in
the same Availability Set, we guarantee you will have Virtual Machine
Connectivity to at least one instance at least 99.95% of the time.”

MONTHLY UPTIME SERVICE CREDIT
PERCENTAGE

< 99.95% 10%

<99%% 25%

<95% 100%

https://azure.microsoft.com/support/legal/sla/virtual-machines/vl 8/

https://azure.microsoft.com/support/legal/sla/virtual-machines/v1_8/

From

Bugs and

Bounties

to Cyberweapons

Bugs... because there are so many more ways
for things to go wrong than there are for them
to go right.

3ugs (2001): Nimda

https://en.wikipedia.org/wiki/Nimda

 Themail

transfers to

the victim's
ail server

https://www.zdnet.com/article/nimd
a-rampage-starts-to-slow/

The attacker sends the
raw email with forge

https://www.cnet.com/news/microsoft-
> == attempts-to-allay-security-fears/

https://digitalguardian.com/about/secu
rity-change-agents/code-red-and-
nimda-worms

Attacker's Ma
orRelay

~ Victim's Computer

https://pen-testing.sans.org/resources/papers/gcih/automated-execution-arbitrary-code-forged-mime-headers-microsoft-inte

https://en.wikipedia.org/wiki/Nimda
https://www.cnet.com/news/microsoft-attempts-to-allay-security-fears/
https://www.zdnet.com/article/nimda-rampage-starts-to-slow/
https://digitalguardian.com/about/security-change-agents/code-red-and-nimda-worms
https://pen-testing.sans.org/resources/papers/gcih/automated-execution-arbitrary-code-forged-mime-headers-microsoft-internet-explorer-100448

Bill Gates” Trustworthy Computing Memo

Availability: Our products should always be available when our customers need
them. System outages should become a thing of the past because of a software
architecture that supports redundancy and automatic recovery. ...

Security: The data our software and services store on behalf of our customers
should be protected from harm and used or modified only in appropriate ways. ...

Privacy: Users should be in control of how their data is used. Policies for information
use should be clear to the user. Users should be in control of when and if they
receive information to make best use of their time. ...

https://www.wired.com/2002/01/bill-gates-trustworthy-computing/

https://www.wired.com/2002/01/bill-gates-trustworthy-computing/

SDL Timeline

Collaboration Selective tooling

The perfect

SDL ramp up Setting a new

storm

bt

2000 — 2001 — 2002 — 2003 — 2004 — 2005 — 2006 — 2007 — 2008 — 2009 — 2010 — 20M

Growth of home PC's
Rise of malicious software
= Increasing privacy concerns

Internet use expansion

Bill Gates' TwC memo
Microsoft security push
Microsoft SDL released

SDL becomes mandatory
policy at Microsoft

Windows XP SP2 and

Windows Server 2003

launched with security
emphasis

bar and Automation

Windows Vista and Office
2007 fully integrate the SDL

SDL released to public

Data Execution Prevention
(DEP) & Address Space
Layout Randomization
(ASLR) introduced as
features

Threat Modeling Tool

Microsoft joins SAFECode

Microsoft Establish SDL Pro
Network

Defense Information
Systems Agency (DISA) &
National Institution
Standards and Technology
(NIST) specify featured in
the SDL

Microsoft collaborates with
Adobe and Cisco on SDL
practices

SDL revised under the
Creative Commons License

https://www.microsoft.com/en-us/securityengineering/sdl/about

Additional resources
dedicated to address
projected growth in Mobile
app downloads

Industry-wide acceptance
of practices aligned with
SDL

Adaption of SDL to new
technologies and changes
in the threat landscape

Increased industry
resources to enable global
secure development
adoption

https://www.microsoft.com/en-us/securityengineering/sdl/about

Bugs (2014): OpenSSL

“These produce wrong results. The first example does so only on 32 bit,
the other three also on 64 bit”

“| believe this affects both the SSE2 and AVX2 code. It does seem to be
dependent on this input pattern.”

“I'm probably going to write something to generate random inputs and stress
all your other poly1305 code paths against a reference implementation.”

Hi folks,

These ppoduce wrong results. The first e)(amp]_e dYou know the drill. See the attached polyl3@5_test2.c.
the other three also on 64 bit. $ OPENSSL_ia32cap=0 ./polyl3@5_test2

PASS

$./polyl3e5_test2

Poly13@5 test failed.

got: 2637408fe030862a73f97123425e2820
expected: 2637408fel3086ea73f971e3425e2820

I believe this affects both the SSE2 and AVX2 code. It does seem to be
dependent on this input pattern.

This was found because a run of our SSL tests happened to find a
Bproblematic input. I've trimmed it down to the first block where they

The Impact of One Bug

“The Heartbleed Bug (s a serious vulnerabllity in the popular
OpenSSL cryptographic software library. This weakness allows
stealing the information protected, under normal conditions, by the
SSL/TLS encryption used to secure the Internet.”

http://heartbleed.com/

http://heartbleed.com/

1995

On Oct. 10, 1995,
Netscape launched
the first bug bounty
program offering
cash rewards for
their Netscape
Navigator 2.0 Beta

@Netscape

2002

In 2002, IDefense’s
(acting as middlemen)
Vuinerability
Contributor Program
offered rewards for
reporting vulnerabilities
in softwares.

2004
®

Mozilla Foundation
launches bug bounty
program for identifying
critical vulnerabilities in
Firefox offering rewards
upto $500.

.DEFEHSEU

HE POWER OF INTELL

IDefense competitor
TippingPoint launched
another “middleman”
program called the Xero
Day Initiative connecting|
security researchers
with vendors

mozilla

FOUNDATION

https://blog.cobalt.io/the-history-of-bug-bounty-programs-50def4dcaab3

2007

PWN20OWN contest, a
hunt for security bugs in
Macs OSX

launched. The contest
was held within a limited
time frame, with
$10,000 reward
provided by ZDI

<
-

@

Bounties

2005 2010

Google kickstarts bug
bounties for web
applications similar to
Mozilla. Mozilla expands
into web applications
and Baracuda Networks
and others also launch
their programs.

Google

2011

Facebook follows
Google to launch
Whitehat program with
no upper limit on
rewards and a minimum
reward of $500

k(Barracuda

2015

Rewards increasing,
Giants merging hands
and the upcoming of
popular bug bounty
program marketplaces
with numerous online
opportunities is
happening toaay.

@
B Microsoft

“‘éfl

Etsy 2

."lif

'H.m

php
Perl

https://blog.cobalt.io/the-history-of-bug-bounty-programs-50def4dcaab3

“Stuxnet is a malicious computer worm, first uncovered in 2010. Thought to
have been in development since at least 2005, Stuxnet

targets SCADA systems and is believed to be responsible for causing
substantial damage to Iran's nuclear program.”

“Stuxnet attacked Windows systems using an unprecedented four zero-day
attacks (...)... The number of zero-day exploits used is unusual, as they are
highly valued and malware creators do not typically make use of (and thus
simultaneously make visible) four different zero-day exploits in the same
worm.”

https://en.wikipedia.org/wiki/Stuxnet

https://en.wikipedia.org/wiki/Malware
https://en.wikipedia.org/wiki/Computer_worm
https://en.wikipedia.org/wiki/SCADA
https://en.wikipedia.org/wiki/Iran%27s_nuclear_program
https://en.wikipedia.org/wiki/Zero-day_attack
https://en.wikipedia.org/wiki/Hacker_(computer_security)
https://en.wikipedia.org/wiki/Stuxnet

fFrom Spec to Spec+Check

Formal Methods

* Mathematical/logical specification of
desired (correct) behavior

 Automated/interactive checking of
implementation against specification

Specification

(Correct)
Implementation

(Incorrect)
Implementation

Correctness Properties

* Memory safety

* No buffer overruns

* Functional correctness

* Termination

* Minimize side-channel leaks
* Cryptographic security

Automatic verification of infinite-state systems

Property ¢

Rice’s Theorem

erification ,
— : | can’t decide!

l l

Counterexample Unknown / Diverge Proof

2 @

Slide from Mooly Sagiv

Deductive verification

@ive argume@

Deductive Verification
1) Is Inv an inductive invariant for §?
2) Does Inventail @ ?

1 v l

Counterexample to Induction Unknown / Diverge Proof

Property ¢

et
| hraidiiehmach
| ltv?

Slide from Mooly Sagiv

Inductive invariants

System State Space Safety

Reach

Init

System S is safe if all the reachable states satisfy the property ¢ = —Bad

Slide from Mooly Sagiv

Inductive invariants

System State Space Safety

Inv

Reach

Init

System S is safe if all the reachable states satisfy the property ¢ = —Bad
System S is safe iff there exists an inductive invariant /7.v :

Init € Inv (Initiation)

if o € Invand o — o' then o’ € Inv (Consecution)

Inv N Bad = @ (Safety)
Slide from Mooly Sagiv

Logic-based deductive verification

* Represent Init, =, Bad, by logical formulas
* Formula & Set of states

* Propositional logic (SAT) — industrial impact for hardware verification
* First-order theorem provers
e Satisfiability modulo theories (SMT) — major trend in software verification

Slide from Mooly Sagiv

Deductive verification by reductions to First Order Logic

Init(P\l/’)Cjt_?rC(a) @Inva riant |@ Qfety Property —'BadD
1) SAT(Init(V) A—=lnv(V))?
2) SAT(Inv(V) ATr(V, V') A= Inv(V’))?
3)SAT(Inv(X) ABad(V))?

/ First Order SAT Solver N

Counterexample to Induction (CTI) Proof

? é‘,
Slide from Mooly Sagiv

Automated Theorem Prover

Open Source (MIT License) Leonardo de Moura, Nikolaj Bjorner,
https://github.com/z3prover/z3 Christoph Wintersteiger, ...
https://rise4fun.com/Z3/tutorial

. Linear
Boolean =HERESID Arithmetic Floating

Algebra Point

/3 reasons over
a combination of theories

First-order Non-linear,
Axiomitizations Reals

Algebraic
Data Types

Sets/Maps/...

https://github.com/z3prover/z3
https://rise4fun.com/Z3/tutorial

Reduction to Logic

int Puzzle(int x)

{ . (declare-const x (_ BitVec 32))
int res = X; (assert (bvsgt x #x00000000))
res = res + (r\es << 1@); (assert (= (bvadd x #x00000001)
_ . bvxor (bvadd x (bvshl x #x0000000A))
=r A (e (
r,\es €> (es >> 6)’ (bvashr (bvadd x (bvshl x #x0000000A)) #x00000006))))
if (x > 0 & res == x + 1) (check-sat)
throw new Exception("bug"); (get-model)

return res;

)
z3

x = 389306474

https://rise4fun.com/Z3/n6ZB6

https://rise4fun.com/Z3/n6ZB6

Logic/Complexity Classes

Greater Practical problems often have
E . structure that can be exploited.
Xpressiveness >

Undecidable (FOL + LIA Algorithmic advances

Semi Decidable (FOL)

Large-scale evaluation
NEXPTIME (EPR) and careful engineering

PSPACE

Greater T
Automation

WHBELS

&

Symbolic Analysis
Tools

SLS, floats

vZ: Opt+MaxSMT

uZ: Datalog
FORMULA Generalized PDR

Modeling Foundatio

Existential Reals
Cc ,_,, 4 Model Constructing SAT

CutSAT: Linear Integer Formulas
WSIFAM SAG E Quantified Bit-Vectors
@ |ERMINATOE Linear Quantifier Elimination
YE R Model Based Quantifier Instantiation

Generalized, Efficient Array Decision Procedures

HAVOC Engineering DPLL(T) + Saturation
@“‘HE Effectively Propositional Logic

Model-based Theory Combination

23 Internals

Relevancy Propagation

Efficient E-matching for SMT solvers

Formal Methods: Substantial Progress

Better Tools Application to Real Systems
 Automated + Interactive e Static Driver Verifier (Windows drivers)
Theorem Provers e http://compcert.inria.fr/ (C compiler)
* Model Checking e https://sel4.systems/ (OS)

* Program Analysis .

fFrom Spec to Spec+Check

https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
http://compcert.inria.fr/
https://sel4.systems/

Open Source: Times have changed!

“We will move to a Chromium-compatible web platform for
Microsoft Edge on the desktop” https://blogs.windows.com/

* Microsoft actively contributes to and use open source

* The tools presented in this talk are open source, or have open
source equivalents

https://blogs.windows.com/windowsexperience/2018/12/06/microsoft-edge-making-the-web-better-through-more-open-source-collaboration/

20 Years at Microsoft

From EULA to SLA
From Bugs and Bounties to Cyberweapons
From Spec to Spec+Check
From Closed to Open

Formal Methods and Tools

High-level Specification

il thinking

Correctness of Cryptography and Protocols .
(F* tvy, PH) programming

Bug Finding and Verification for C/C++ tEStI ng
(SAGE, Corral)

verifying

Network Verification
(SecGuru)

Formal Methods and Tools

High-level Specification

il thinking

Correctness of Cryptography and Protocols .
(F* tvy, PH) programming

Bug Finding and Verification for C/C++ tEStI ng
(SAGE, Corral)

verifying

Network Verification
(SecGuru)

Nikola] Bjgrner,
Karthick Jayaraman

A Cloud run by Masters of Complexity

)
interface FastEthernet®/1
description +gu LAN +++
1p addres 1 1 & 11 & E 248
speed 10
Full-duplex
[
’ AP~ 2 e 1 |
'
‘. 8 Zines: interface ATHO/0/0.40 point-to-point
)
¢ 13 Bineag VL el il WP o34
: u eS
ip forue thedl
ip route 0.0.0.0 0.0.0.0 192.168.255.202 250
ip route 81.000.00.000 255.255.255.255 87.00.00.0
ip route 1 16.0.0 255.255.0.0 192.168.255.11
\ll route 192.168.255.252 255.255.255.255 ATHO/0/0.4§

| "Eﬂaster‘s f
' “omplexity

A Cloud Harnessed by Logic/SE

Network Policies:
Complexity, Challenge and Opportunity

Several devices, vendors, formats
e Net filters Human errors >4 x DOS attacks
* Firewalls
* Routers
Human Errors by Activity

Challenge in the field
Do devices enforce policy?
* Ripple effect of policy changes ® Config Changes
Arcane
* Low-level configuration files
* Mostly manual effort
* Kept working by

“Masters of Complexity”

m Device hw/sw updates

m WA Cluster Setup

Intent = Reality?

Reality? Intent? Validation Feedback

Forwarding

information
base (FIB) Graph Service .
(NGS) Continuous

Access Control verification

Lists (ACL) Contracts using local
derived from validation

Churn topology and
architecture

Remediation

Access Control

Contract:

DNS ports on DNS servers are accessible from
tenant devices over both TCP and UDP.

Contract:

The SSH ports on management devices are
Inaccessible from tenant devices.

Policies as Logical Formulas

]
+-———) 6§ lines: interface FastEthernetB/@
]

Precise Semantics as

» FastEthernetBs1
an +++ LAH +++

Tradltlonal LOW level Of 192 _168.255_18 255255255248
Configuration network

bit-vector formulas

Managers use
& tnes: interface ATHO/B/0 (10.20.0.0 < srclp 10.20.31.255) A

*) i i) Allow: (157.55.252.0 < dstlp < 157.55.252.255) A
+——— 8 lines: interface ATHB/B/8.48 point-to-point-—-

" (protocol = 6)

+-—— 13 lines: router eigrp 381

H

ip forward-protocol nd (65.52.244.0 < dstlp < 65.52.247.255) A
ip route B.0.0.08 A.0.0.8 192_168_255_2082 25Q Deny:

ip route 81.808.8A.888 255.255_255_255C §7.00.00.8 (protocol = 4)

ip route 172_16.8.8 255.255.0.8 192 _168_255_11

ip route 192.168.255.252 255.255.255.255 ATHA/0/0._ 48 Combining

semantics

Contracts/ R /\ ~Deny,

Policies

j
Semantic
Diffs

Beyond Z3: a new idea to go
from one violation to all violations

[ston (Ao -— [o]

srclp = 10.20.0.0/16,10.22.0.0/16
dstlp = 157.55.252.000/24,157.56.252.000/24
port = 80,443

Representing solutions

-2 %216 x 2 x 28 x 2 = 227 single solutions, or
- 8 products of contiguous ranges, or
- A single product of ranges

SecGuru contains optimized algorithm for turning
single solutions into all (product of ranges)

SecGuru in WANetmon

Cluster dc/dm/cluster/dm1prdstr08 40.000 ACL checks per month

Network ACL Validation Alerts for the cluster

Each check 50-200ms

This check validates the correctness of all the network ACLs in the devices in the cluster

b

Device = Timestamp ¢ Result ¢

I dm1-x3hl-cis-15-01 Sat Sep 14 2013 11:27:41 GMT-0700 (Pacific ™~ *=*+ 7= ==t
ACL Name IP Address Range Error Cluster dc/dm/cluster/dm1prdstrO1

Network ACL Validation Alerts for the cluster

mgmt-only 10.143.197.208/28 Partially b,

This check validates the correctness of all the network ACLs in the devices in the cluster
mgmt-only 10.143.197.224/27 Partially S .
Sep 14 2013 11:27:41 GMT-0700
ep 14 2013 11:27:41 GMT-0700
14 2013 09:18:00 GMT-0700

mgmt-only 10.143.198.0/26 Partially blocked Paciic Daylant Time

Pacific Daylight Time
Pacific Daylight Time

()

()

()

mgmt—only 10.143 1 9864‘;2}' Partia "yr leCkEd ~ 14 2013 11:27:41 GMT-0700 (Pacific Daylight Time)
~ ¥ ep 14 2013 11:27:41 GMT-0700 (Pacific Daylight Time)

- ~ Sat Sep 14 2013 11:27:41 GMT-0700 (Pacific Daylight Time)

mgmt-ﬂnhf 1{] 1 43'1 98'96‘;28 Partla "}'Ir bIDCkEd ~ & dmi1-x3hl-cis-1-09 Sat Sep 14 2013 11:27:41 GMT-0700 (Pacific Daylight Time)
~ % dm1-x3hl-cis-1-10 Sat Sep 14 2013 11:27:41 GMT-0700 (Pacific Daylight Time)

SSh—Dﬂ |}|’ 10.143.1 9?208}"28 BlDCkE‘d ~ v dm1-x3hl-cis-1-11 Sat Sep 14 2013 11:27:41 GMT-0700 (Pacific Daylight Time)
~ % dm1-x3hl-cis-1-12 Sat Sep 14 2013 11:27:41 GMT-0700 (Pacific Daylight Time)

SSh—Dﬂ I‘f -H] 1 43-1 9?-224}{2? BIDEkE‘d ~ & dm1-x3hl-cis-1-13 Sat Sep 14 2013 11:27:41 GMT-0700 (Pacific Daylight Time)
! dm1-x3hl-cis-15-03 Sat Sep 14 2013 11:27:41 GMT-0700 (Paciti ~ ¥ dm1-x3hi-cis-1-14 Sat Sep 14 2013 11:27:41 GMT-0700 (Pacific Daylight Time)
I . — . ~ & dm1-x3hl-cis-1-15 Sat Sep 14 2013 09:18:00 GMT-0700 (Pacific Daylight Time)
» dm1-x3hl-cis-15-04 Sat Sep 14 2013 11:27:41 GMT-0700 (Pacific [o 1 ancis 116 sar Sep 14 2013 11:27:41 GMT-0700 (Pacific Daylight Time)

Result

Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success
Success

Success

20 bugs/month (mostly for build-out)

~
<

Self-contained Windows Firewall Checker

@ GitHub, Inc. [US] | https://github.com/Z3Prover/firewallchecker

Two minimal tab-separated example firewall rule files are as follows (see Examples directory):

Firewall 1:
Name Enabled Action Local Port Remote Address Remote Port Protocol
Fool Yes Allow 100 106.3.141.90 100 ubp
Barl Yes Allow 200 16.3.141.90 200 TCP

Firewall 2:
Name Enabled Action Local Port Remote Address Remote Port Protocol
Foo2 Yes Allow 100 10.3.141.90 100 ubpP
Bar2 Yes Allow 200 16.3.141.1 200 TCP

This generates the following output from FirewallEquivalenceCheckerCmd.exe :

Microsoft.FirewallEquivalenceCheckerCmd.exe --firewalll .\firewalll.txt --firewall2 .\firewall2.txt §
Parsing first firewall...
Parsing second firewall...
Running equivalence check...
Firewalls are NOT equivalent.

Inconsistently-handled packets:

o matee o ront oot vt 1 protocen 1 miones a1 By Andrew Helwer, Azure

[10.3.141.0 | 200 | 200 | TP | First |
| 10.3.141.1 | 200 | 200 | TCP | Second |

| 0| First | Allow | 8art | https://github.com/Z3Prover/FirewallChecker

https://github.com/Z3Prover/FirewallChecker

Formal Methods and Tools

High-level Specification

oy thinking

Correctness of Cryptography and Protocols .
(F* tvy, PH) programming

Bug Finding and Verification for C/C++ testl ng
(SAGE, Corral)

verifying

Network Verification
(SecGuru)

Microsoft Security
Risk Detection

https://www.microsoft.com/en-us/security-risk-detection/

https://www.microsoft.com/en-us/security-risk-detection/

Security Basics

An important step in software security is identifying
high-risk targets...

Data Flow

Dataflow, movement of bits between two network
entities

Entry Point, where external data enters an entity

Trust Boundary, a dividing line across which data
flows

Security Bug, any regular code or design bug

Untrusted
Data Store

~ -
- .
-
e

Trust Boundary

-
-

_Entry Point

Process Boundary

Machine Boundary

White Box Input Fuzzing

void top(char input[4])
input = “gedd”

{ Genl Gen2 Gen3 Gen4
int cnt = O; Path constraint: \\“‘"W
' ‘ ’
if (input[0] == ‘b’) cnt++; [L!=‘b’|> I="b’ >
if (input[l] == ‘a’) cnt++; [Ii!=‘a’l> 1,=‘a’ =
if Ginput[2] == ‘d’) cnt++; |L,1=4d’| > I=*d’ ’
1if (input[3] == ‘!’) cnt++; I;1=11’ >|I;="1"

v
if (cnt >= 4) crash(Q); Theorem prover zg

good
1 10+ years of
sustained investment

White Box Fuzzing (SAGE)

Coverage
Data

Constraints

Generate Solve

Check for Code _
Crashes | B— Coverage I——> | Path | p—— > |Constraints

Constraints Zs

fnputZ

Security Risk Detection and the SDL

SAGE used internally at Microsoft to meet SDL verification requirements

SDL Process: Verification

Thes phase involves 8 comprehensive effort to ensure that the code meets the secunty and privacy tenets established in the previous phases

2. Estabish S Establesh Design & Use Appeoved 11, Perform 14, Create an
Secunity fequiremnents Tools Dynamsc Inadent
Requirements Analyss Response Plan

1. Core Secunty :
Teaining 3 CresteQuality 6 PerformAttack 9. Deprecate 12 PeformFuzz [115. Conduct Final ST InCBent
Gates/Bug Bars Surface Analysis/ Unsafe Testing Security Review 5
Reduction Functions

4, Perform Secunty 7, Use Thremt 10. Perform Statc 13, Conduct Attack 16, Certify Release

and Privacy Rok Modeling Analyss Surface Review and Archive

Assessments

White Box Fuzzing (SAGE) Results

Since 2007: many new Security bugS found How fuzzing bugs found (2006_2009) :
— Apps: decoders, media players, document processors, ...

— Bugs: Write A/Vs, Read A/Vs, Crashes, ...
— Many triaged as “security critical, severity 1, priority 1”

* 100s of apps, 100s of bugs
— Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs
— Miillions of dollars saved (for Microsoft and the world)

e “Practical Verification”
— <5 security bulletins in SAGE-cleaned parsers since 2009

Default All Others SAGE
Blackbox

Fuzzer
+ Regression

Step 1: The user
manually uploads the
target binaries and seed
Files to the Customer VM, and uses the
wizard to configure the job

Job — Cloud Workflow

Step 2: Security Risk Detection
N validates the job, minimizes the
\\ seed files, and then clones the
\ customer VM dozens of times
based on workload

o ngTg

Customer VM

~N

Parallelized Runs

Step 3: Multiple fuzzers run for
multiple days: the targetapp is
executed roughly 8,000,000 times, each
time with a slightly modified input file
that’s intended to crash the target

Step 4: Any
time an
execution fails,

the offending file

Repro VM

\ 4

Job Results
API/Portal Page

is sent to the
repro VM to

ensure the bug is

reproducible

Step 5: Bugs that repro (along with the file,
stack trace, and other debug info) are
available in the portal and APl in real time

More on Dynamic Symbolic Execution

For real programs, compiled through LLVM
* https://klee.github.io/

For a small subset of Python, using Z3
* https://github.com/thomasjball/PyExZ3

https://klee.github.io/
https://github.com/thomasjball/PyExZ3

Hot off the press

REST-ler: Automatic Intelligent REST API Fuzzing

e Vaggelis Atlidakis, Patrice Godefroid, Marina Polishchuk
e https://arxiv.org/abs/1806.09739

https://arxiv.org/search/cs?searchtype=author&query=Atlidakis%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Godefroid%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Polishchuk%2C+M
https://arxiv.org/abs/1806.09739

Formal Methods and Tools

High-level Specification

il thinking

Correctness of Cryptography and Protocols .
(E*, vy, P#) programming

Bug Finding and Verification for C/C++ tEStI ng
(SAGE, Corral)

verifying

Network Verification
(SecGuru)

MSR’s Project Everest

Goal: verified HTTPS replacement
Challenges:

- scalability of verification

- performance

- usable tool chain

71

Y 455
VN

https://project-everest.github.io/

Services & Applications

L Edge JL cU RLJLWeb? LSkypeJ L IS Mpache Nginx

Certification
Authority

Wﬁ

Servers

- X.L509

y
>
(%)
<

| kokk
REA | SHA |+
ECDH.[}; 4Q
Crypto ithms

Network butfers
I Y

v
Untrusted network (TCP, UDP, ...)

https://project-everest.github.io/

Subgoal:
Verified
low-level crypto

Efficient crypto requires customizations

Everest subgoal:

* Poly1305: Uses the prime field withp = 2139 — 5

| generic,
Need 130 bits to represent a number . .
Efficient implementations require custom bignum libraries to delay carries EffICIEHt
On X86: use 5 32-bit words, but using only 26 bits in each word bignum libraries

On X64: use 3 64-bit words, but using only 44 bits in each word

 Curve25519: Uses the prime field with p = 22°> — 19
* On X64: use 5 64-bit words, but using only 51 bits per word

* OpenSSL has 12 unverified bignum libraries optimized for each case

A generic bignum library

Bignum code can be shared between
Curve25519, Ed25519 and Poly1305,

module Hacl.Bignum.Curve25519,Constants

which all use different fields let prime = pow; 255 - 19
let word _size = 64
let len =5
Only modulo is specific to the field let limb_size = 51
(optimized)
module Hacl.Bignum.Poly1305.Constants
Consequently: let prime = pow, 130 - 5
) let word size = 64
- write once let len = 3
- verify once let limb_size = 44

- extract three times

Prove correct in F*, extract to efficient C

poly1305 mac: tag:nbytes 16
len:u32
msg:nbytes len{disjoint tag msg}
key:nbytes 32 {disjoint msg key A disjoint tag key}

unit
((A h - msg € h key € h A tag € h))
((A he _ h1

r=Spec.clamp ho.[sub key 0 16]
s=ho.[sub key 16 16]
{tag} ho hi
hl.[tag] == Spec.mac_1305 (encode bytes h@.[msg]) r s))

poly1305_mac(*tag, len, *msg,
{

tmp [18] = { @ };

*acc = tmp

*ro=tmp + ()5;

s[16] = { @ };
Crypto_Symmetric_Poly1305 poly1305 init(r, s, key);
Crypto_Symmetric_Poly1305 polyl305 process(msg, len, acc, r);
Crypto_Symmetric_Poly1305 polyl305 finish(tag, acc, s);

}

*key)

Mathematical spec in F*

poly1305 mac: (1) computes a
polynomial in GF(2130-5),

(2) stores the result in tag,

(3) does not modify anything else

Efficient C implementation
Verification imposes no
runtime performance
overhead

Sample code Poly1305 MAC

F* source: core-ML with dependent types and effects

let polyl305 mac: tag:nbytes 16 -
len:u32 -
msg:nbytes len{disjoint tag msg} -
key:nbytes 32 {disjoint msg key A disjoint tag key} -
ST unit
(requires (A h - msg € h A key € h A tag € h))
(ensures (A he _ hl > ..)) = .

!

Type-checker C source, tuned for readability,
+ compiler compliance with C linters etc.
‘Era_]s_es types + poly1305_ mac(*tag, len,
inlining etc. *msg, *key)
{
@ ’ tmp [10] = { © };
. *acc = tmp
Core ML — kreMLln — *ro= tmp + ()5;
s[16] = { @ };
monomorphization, Crypto_Symmetric_Poly1305_ poly1305_init(r, s, key);

Crypto_Symmetric_Poly1305_poly1305_process(msg, len, acc, r);

more mlmmg' Crypto_Symmetric_Poly1305_poly1305_ finish(tag, acc, s);

}
clang, gcc,
msvc, CompCert, «ee

https://fstar-lang.org/tutorial/

https://fstar-lang.org/tutorial/

Performance of Everest’s
High Assurance Crypto Library (HACL*)

Algorithm Spec | Code+Proofs | C Code | Verification
(F* loc) | (Low™loc) (C loc) (s)
Salsa20 70 651 372 280
Chacha20 70 691 243 336
Chacha20-Vec 100 1656 355 614
SHA-256 96 622 313 798
SHA-512 120 737 357 1565
Ei?:ufn-ﬁb 3_8 Verification enables using 64x64 bit
Poly1305 45 multiplications, without fear of
X25519-1ib - getting it wrong
Curve25519 73 1901 798 \%
Ed25519 148 7219 2479 2118
AEAD 41 309 100 606
SecretBox - 171 132 62
Box - 188 270 43
Total 801 22,926 7,225 9127

Table 1: HACL* code size and verification times

Algorithm HACL* | OpenSSL
SHA-256 13.43 16.11
SHA-512 8.09 10.34

Salsa20 6.26 -
ChaCha20 6.37 (ref) 7.84
2.87 (vec)
Poly1305 2.19 2.16

Curve25519 154,580 358,764

Ed25519 sign 63.80 -

Ed25519 verify | 57.42 -
AEAD 8.56 (ref) | 8.55
5.05 (vec)

e Several complete TLS ciphersuites
* Verification can scale up!

cycles/ECDH

e With performance as good as or
better than hand-written C

https://blog.mozilla.org/security/2017/09/13/
verified-cryptography-firefox-57/

“Mozilla has partnered with INRIA and Project
Everest (Microsoft Research, CMU, INRIA) to bring
components from their formally verified HACL*
cryptographic library into NSS, the security engine
which powers Firefox.

https://blog.mozilla.org/security/2017/09/13/verified-cryptography-firefox-57/
http://prosecco.gforge.inria.fr/
https://project-everest.github.io/
https://github.com/mitls/hacl-star
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

Project Everest: Open Source

* https://www.github.com/FStarLang/FStar
* https://www.github.com/FStarLang/kremlin

* https://www.github.com/mitls/mitls-fstar

 https://www.github.com/mitls/hacl-star

* https://www.github.com/project-everest/vale

67

https://www.github.com/FStarLang/FStar
https://www.github.com/FStarLang/kremlin
https://www.github.com/mitls/mitls-fstar
https://www.github.com/mitls/hacl-star

Formal Methods and Tools

Correctness of Cryptography and Protocols

(F* vy, PH) programming

High-level Specification . .

Bug Finding and Verification for C/C++ testl ng
(SAGE, Corral)

verifying

Network Verification
(SecGuru)

TLA+ (Leslie Lamport

* A language for high-level modelling of
digital systems, especially concurrent
and distributed systems

* Tools for checking the models (TLC)

* IDE for end-to-end experience
(Toolbox)

* https://github.com/tlaplus

DOI:10.1145/2699417

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,

MARC BROOKER, AND MICHAEL DEARDEUFF

How Amazon
Web Services
Uses Formal
Methods

SINCE 2011, ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in
critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
expefrience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched S3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.? Less than a year later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*

66 COMMUNICATIONS OF THE ACM APRIL 2015 | VOL. 58 MNO. &

S3 is just one of many AWS ser-
vices that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
service relies on fault-tolerant dis-
tributed algorithms for replication,
consistency, concurrency control, au-
to-scaling, load balancing, and other
coordination tasks. There are many
such algorithms in the literature, but
combining them into a cohesive sys-
tem is a challenge, as the algorithms
must usually be modified to interact
properly in a real-world system. In
addition, we have found it necessary
to invent algorithms of our own. We
work hard to avoid unnecessary com-
plexity, but the essential complexity of
the task remains high.

Com plexity increase s the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-
pend. So, before launching a service,
we need to reach extremely high con-
fidence that the core of the system is
correct. We have found the standard
verification technigues inindustry are
necessary but not sufficient. We rou-
tinely use deep design reviews, code
reviews, static code analysis, stress
testing, and fault-injection testing but
still find that subtle bugs can hide in
complex concurrent fault-tolerant
systems. One reason they do is that
human intuition is poor at estimating
the true probability of supposedly “ex-
tremely rare” combinations of events
in systems operating at a scale of mil-
lions of requests per second.

key insights

B Formal methods find bugs in system
designs that cannot be found through
any other technique we know of.

B Formal methods are surprisingly feasible
for mainstream software development
and give good return on investment.

m AtAmazon, formal methods are routinely
applied to the design of complex
real-world software, including public
cloud services.

https://github.com/tlaplus

Chris Newcombe, AWS

* Formal methods find bugs in system designs that cannot be found
through any other technique we know of

* Formal methods are surprisingly feasible for mainstream software
development and give good return on investment

* At Amazon, formal methods are routinely applied to the design of
complex real-world software, including public cloud services.

Chris Newcombe, AWS

 Formal o found

throug “TLA+ is the most valuable thing that I've learned in
my professional career. It has changed how | work, by
giving me an immensely powerful tool to find subtle
Bl flaws in system designs. It has changed how [think, ftware
W[=\=lle]« by giving me a framework for constructing new kinds
of mental-models, by revealing the precise
relationship between correctness properties and
WAWNGE] system designs, and by allowing me to move from sign of
Welilll= ‘plausible prose’ to precise statements much earlierin £
the software development process.”

Formal Methods and Tools

High-level Specification

il thinking

Correctness of Cryptography and Protocols .
(F* tvy, PH) programming

Bug Finding and Verification for C/C++ tEStI ng
(SAGE, Corral)

verifying

Network Verification
(SecGuru)

