
Formal Methods and Tools
for Distributed Systems

Thomas Ball

Microsoft

http://research.microsoft.com/~tball

http://research.microsoft.com/~tball

Outline

• 20 Years at Microsoft (1999-present)

• The great work of others at Microsoft

20 Years at Microsoft

From EULA to SLA
From Bugs and Bounties to Cyberweapons

From Spec to Spec+Check
From Closed to Open

Compute, Storage, Networking,
Backups, Hdw/Sft updates, …
System administration

Compute, Storage, Networking,
Backups, Hdw/Sft updates, …
System administration

Compute, Storage, Networking,
Backups, Hdw/Sft updates, …
System administration

Compute, Storage, Networking,
Backups, Hdw/Sft updates, …
System administration

Compute, Storage, Networking,
Backups, Hdw/Sft updates, …
System administration

EULA

From EULA (1) to SLA

Software

End-User License Agreements
2002

EULA

From EULA (1) to SLA

Software

Compute, Storage, Networking,
Backups, Hdw/Sft updates, …
System administration

Compute, Storage, Networking,
Backups, Hdw/Sft updates, …
System administration

Compute, Storage, Networking,
Backups, Hdw/Sft updates, …
System administration

Compute, Storage, Networking,
Backups, Hdw/Sft updates, …
System administration

Compute, Storage, Networking,
Backups, Hdw/Sft updates, …
System administration

SLA

From EULA to SLA (2)

Compute, Storage, Networking,
Backups, Hdw/Sft updates, …
System administration

Programs, Data, Users

Programs, Data, Users

Programs, Data, Users

Programs, Data, Users

Programs, Data, Users

Programs, Data, Users

Programs, Data, Users

Azure

Cloud Scale..

Cloud Scale….

Service Level Agreement (SLA)

“For all Virtual Machines that have two or more instances deployed in
the same Availability Set, we guarantee you will have Virtual Machine
Connectivity to at least one instance at least 99.95% of the time.”

MONTHLY UPTIME
PERCENTAGE

SERVICE CREDIT

< 99.95% 10%

< 99% 25%

< 95% 100%

https://azure.microsoft.com/support/legal/sla/virtual-machines/v1_8/

https://azure.microsoft.com/support/legal/sla/virtual-machines/v1_8/

Bugs… because there are so many more ways
for things to go wrong than there are for them
to go right.

https://en.wikipedia.org/wiki/Nimda

https://www.cnet.com/news/microsoft-
attempts-to-allay-security-fears/

https://www.zdnet.com/article/nimd
a-rampage-starts-to-slow/

https://digitalguardian.com/about/secu
rity-change-agents/code-red-and-
nimda-worms

https://pen-testing.sans.org/resources/papers/gcih/automated-execution-arbitrary-code-forged-mime-headers-microsoft-internet

https://en.wikipedia.org/wiki/Nimda
https://www.cnet.com/news/microsoft-attempts-to-allay-security-fears/
https://www.zdnet.com/article/nimda-rampage-starts-to-slow/
https://digitalguardian.com/about/security-change-agents/code-red-and-nimda-worms
https://pen-testing.sans.org/resources/papers/gcih/automated-execution-arbitrary-code-forged-mime-headers-microsoft-internet-explorer-100448

Availability: Our products should always be available when our customers need
them. System outages should become a thing of the past because of a software
architecture that supports redundancy and automatic recovery. …

Security: The data our software and services store on behalf of our customers
should be protected from harm and used or modified only in appropriate ways. …

Privacy: Users should be in control of how their data is used. Policies for information
use should be clear to the user. Users should be in control of when and if they
receive information to make best use of their time. …

Bill Gates’ Trustworthy Computing Memo

https://www.wired.com/2002/01/bill-gates-trustworthy-computing/

https://www.wired.com/2002/01/bill-gates-trustworthy-computing/

https://www.microsoft.com/en-us/securityengineering/sdl/about

https://www.microsoft.com/en-us/securityengineering/sdl/about

The Impact of One Bug

“The Heartbleed Bug is a serious vulnerability in the popular
OpenSSL cryptographic software library. This weakness allows
stealing the information protected, under normal conditions, by the
SSL/TLS encryption used to secure the Internet.”

http://heartbleed.com/

http://heartbleed.com/

https://blog.cobalt.io/the-history-of-bug-bounty-programs-50def4dcaab3

https://blog.cobalt.io/the-history-of-bug-bounty-programs-50def4dcaab3

“Stuxnet is a malicious computer worm, first uncovered in 2010. Thought to
have been in development since at least 2005, Stuxnet
targets SCADA systems and is believed to be responsible for causing
substantial damage to Iran's nuclear program.”

“Stuxnet attacked Windows systems using an unprecedented four zero-day
attacks (…)… The number of zero-day exploits used is unusual, as they are
highly valued and malware creators do not typically make use of (and thus
simultaneously make visible) four different zero-day exploits in the same
worm.”

https://en.wikipedia.org/wiki/Stuxnet

https://en.wikipedia.org/wiki/Malware
https://en.wikipedia.org/wiki/Computer_worm
https://en.wikipedia.org/wiki/SCADA
https://en.wikipedia.org/wiki/Iran%27s_nuclear_program
https://en.wikipedia.org/wiki/Zero-day_attack
https://en.wikipedia.org/wiki/Hacker_(computer_security)
https://en.wikipedia.org/wiki/Stuxnet

From Spec to Spec+Check

Formal Methods

• Mathematical/logical specification of
desired (correct) behavior

• Automated/interactive checking of
implementation against specification

Specification

(Correct)
Implementation

(Incorrect)
Implementation

Correctness Properties

• Memory safety

• No buffer overruns

• Functional correctness

• Termination

• Minimize side-channel leaks

• Cryptographic security

• …

Verification
Is there a behavior

of 𝑆 that violates 𝜑?

Counterexample Proof

Automatic verification of infinite-state systems

Property 𝜑System 𝑆

Unknown / Diverge

Rice’s Theorem

I can’t decide!

Slide from Mooly Sagiv

Counterexample to Induction Proof

Deductive verification

Property 𝜑System 𝑆 Inductive argument 𝐼𝑛𝑣

Deductive Verification
1) Is 𝐼𝑛𝑣 an inductive invariant for 𝑆?

2) Does Inv entail 𝜑 ?

Unknown / Diverge

Slide from Mooly Sagiv

Inductive invariants

System State Space Safety
Property

𝐵𝑎𝑑

𝐼𝑛𝑖𝑡

𝑅𝑒𝑎𝑐ℎ

System 𝑆 is safe if all the reachable states satisfy the property 𝜑 = ¬𝐵𝑎𝑑

Slide from Mooly Sagiv

Inductive invariants

System State Space Safety
Property

𝐵𝑎𝑑𝐼𝑛𝑣

𝐼𝑛𝑖𝑡

System 𝑆 is safe iff there exists an inductive invariant 𝐼𝑛𝑣 :

𝑇𝑅

𝑇𝑅

𝐼𝑛𝑖𝑡 ⊆ 𝐼𝑛𝑣 (Initiation)
if 𝜎 ∈ 𝐼𝑛𝑣 and 𝜎 → 𝜎′ then 𝜎′ ∈ 𝐼𝑛𝑣 (Consecution)
𝐼𝑛𝑣 ∩ 𝐵𝑎𝑑 = ∅ (Safety)

𝑅𝑒𝑎𝑐ℎ

𝑇𝑅

System 𝑆 is safe if all the reachable states satisfy the property 𝜑 = ¬𝐵𝑎𝑑

Slide from Mooly Sagiv

Logic-based deductive verification

• Represent 𝐼𝑛𝑖𝑡, →, 𝐵𝑎𝑑, 𝐼𝑛𝑣 by logical formulas

• Formula  Set of states

• Automated solvers for logical satisfiability made huge progress

• Propositional logic (SAT) – industrial impact for hardware verification

• First-order theorem provers

• Satisfiability modulo theories (SMT) – major trend in software verification

Slide from Mooly Sagiv

Deductive verification by reductions to First Order Logic

Safety Property Bad(V)

Counterexample to Induction (CTI) Proof

Protocol
Init(V), Tr(V, V’)

Front-End

1) SAT(Init(V) Inv(V))?
2) SAT(Inv(V) Tr(V, V’)  Inv(V’))?

3)SAT(Inv(X) Bad(V))?

First Order SAT Solver

Loop Invariant Inv(V)

Y N

?

Slide from Mooly Sagiv

Z3 reasons over

a combination of theories

Boolean
Algebra

Bit Vectors
Linear

Arithmetic Floating
Point

First-order
Axiomitizations

Non-linear,
Reals

Algebraic
Data Types

Sets/Maps/…

Automated Theorem Prover
Leonardo de Moura, Nikolaj Bjorner,
Christoph Wintersteiger, …https://github.com/z3prover/z3

Open Source (MIT License)

https://rise4fun.com/Z3/tutorial

https://github.com/z3prover/z3
https://rise4fun.com/Z3/tutorial

int Puzzle(int x)
{

int res = x;
res = res + (res << 10);
res = res ^ (res >> 6);
if (x > 0 && res == x + 1)

throw new Exception("bug");
return res;

}

Reduction to Logic

x = 389306474

https://rise4fun.com/Z3/n6ZB6

https://rise4fun.com/Z3/n6ZB6

Logic/Complexity Classes

Undecidable (FOL + LIA)

Semi Decidable (FOL)

NEXPTIME (EPR)

PSPACE
(QBF)

NP (SAT)

Practical problems often have
structure that can be exploited.

Algorithmic advances

Large-scale evaluation
and careful engineering

Greater
Automation

Greater
Expressiveness

Symbolic Analysis
Tools

SAGE

HAVOC

Efficient E-matching for SMT solvers

Model-based Theory Combination

Relevancy Propagation

Effectively Propositional Logic

Engineering DPLL(T) + Saturation

Generalized, Efficient Array Decision Procedures

Linear Quantifier Elimination

Model Based Quantifier Instantiation

Quantified Bit-Vectors

CutSAT: Linear Integer Formulas

Model Constructing SAT

Existential Reals

Z: Opt+MaxSMT

Z: Datalog

Generalized PDR

SLS, floats

Internals

Formal Methods: Substantial Progress

Better Tools

• Automated + Interactive
Theorem Provers

• Model Checking

• Program Analysis

Application to Real Systems

• Static Driver Verifier (Windows drivers)

• http://compcert.inria.fr/ (C compiler)

• https://sel4.systems/ (OS)

• …

From Spec to Spec+Check

https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/static-driver-verifier
http://compcert.inria.fr/
https://sel4.systems/

Open Source: Times have changed!

“We will move to a Chromium-compatible web platform for
Microsoft Edge on the desktop” https://blogs.windows.com/

• Microsoft actively contributes to and use open source

• The tools presented in this talk are open source, or have open
source equivalents

https://blogs.windows.com/windowsexperience/2018/12/06/microsoft-edge-making-the-web-better-through-more-open-source-collaboration/

20 Years at Microsoft

From EULA to SLA
From Bugs and Bounties to Cyberweapons

From Spec to Spec+Check
From Closed to Open

Formal Methods and Tools

Network Verification
(SecGuru)

Bug Finding and Verification for C/C++
(SAGE, Corral)

Correctness of Cryptography and Protocols
(F*, Ivy, P#)

thinking

programming

verifying

High-level Specification
(TLA+)

testing

Formal Methods and Tools

Network Verification
(SecGuru)

Bug Finding and Verification for C/C++
(SAGE, Corral)

Correctness of Cryptography and Protocols
(F*, Ivy, P#)

thinking

programming

verifying

High-level Specification
(TLA+)

testing

SecGuru
Nikolaj Bjørner,

Karthick Jayaraman

Arcane
Systems and
Languages

Masters of
Complexity

Cloud

Explosion

A Cloud run by Masters of Complexity

Monitoring
at Scale

Cloud

Explosion

A Cloud Harnessed by Logic/SE

Network Policies:
Complexity, Challenge and Opportunity

Several devices, vendors, formats
• Net filters
• Firewalls
• Routers

Challenge in the field
• Do devices enforce policy?
• Ripple effect of policy changes

Arcane
• Low-level configuration files
• Mostly manual effort
• Kept working by

“Masters of Complexity”

74%

13%

13%

Human Errors by Activity

Config Changes

Device hw/sw updates

WA Cluster Setup

Human errors > 4 x DOS attacks

𝑰𝒏𝒕𝒆𝒏𝒕 = 𝑹𝒆𝒂𝒍𝒊𝒕𝒚 ?

Reality?

Forwarding
information
base (FIB)

Access Control
Lists (ACL)

Churn

Intent?

Network
Graph Service

(NGS)

Contracts
derived from
topology and
architecture

Validation

Continuous
verification
using local
validation

Feedback

Alerts

Remediation

Access Control

DNS ports on DNS servers are accessible from

tenant devices over both TCP and UDP.

The SSH ports on management devices are

inaccessible from tenant devices.

Contract:

Contract:

Policies as Logical Formulas

Allow:
10.20.0.0 ≤ 𝑠𝑟𝑐𝐼𝑝 10.20.31.255 ˄

157.55.252.0 ≤ 𝑑𝑠𝑡𝐼𝑝 ≤ 157.55.252.255 ˄

𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 = 6

𝐷𝑒𝑛𝑦:
65.52.244.0 ≤ 𝑑𝑠𝑡𝐼𝑝 ≤ 65.52.247.255 ˄

(protocol = 4)

ሧ

𝑖

𝐴𝑙𝑙𝑜𝑤𝑖 ∧ ሥ

𝑗

¬𝐷𝑒𝑛𝑦𝑗

Combining
semantics

Precise Semantics as
bit-vector formulas

Contracts/
Policies

Semantic
Diffs

Traditional Low level of
Configuration network

managers use

¬ ሧ

𝑚

𝐴𝑙𝑙𝑜𝑤𝑚 ∧ ሥ

𝑛

¬𝐷𝑒𝑛𝑦𝑛

Semantic
Diffs

ሧ

𝑖

𝐴𝑙𝑙𝑜𝑤𝑖 ∧ ሥ

𝑗

¬𝐷𝑒𝑛𝑦𝑗

𝑠𝑟𝑐𝐼𝑝 = 10.20.0.0/16,10.22.0.0/16
𝑑𝑠𝑡𝐼𝑝 = 157.55.252.000/24,157.56.252.000/24

𝑝𝑜𝑟𝑡 = 80,443

Beyond Z3: a new idea to go
from one violation to all violations

Representing solutions
- 2 ∗ 216 ∗ 2 ∗ 28 ∗ 2 = 227 single solutions, or
- 8 products of contiguous ranges, or
- A single product of ranges

SecGuru contains optimized algorithm for turning

single solutions into all (product of ranges)

MICROSOFT CONFIDENTIAL

SecGuru in WANetmon
40,000 ACL checks per month

Each check 50-200ms

20 bugs/month (mostly for build-out)

Self-contained Windows Firewall Checker

By Andrew Helwer, Azure

https://github.com/Z3Prover/FirewallChecker

https://github.com/Z3Prover/FirewallChecker

Formal Methods and Tools

Network Verification
(SecGuru)

Bug Finding and Verification for C/C++
(SAGE, Corral)

Correctness of Cryptography and Protocols
(F*, Ivy, P#)

thinking

programming

verifying

High-level Specification
(TLA+)

testing

Microsoft Security
Risk Detection

https://www.microsoft.com/en-us/security-risk-detection/

https://www.microsoft.com/en-us/security-risk-detection/

Security Basics

An important step in software security is identifying
high-risk targets…

Dataflow, movement of bits between two network
entities

Entry Point, where external data enters an entity

Trust Boundary, a dividing line across which data
flows

Security Bug, any regular code or design bug

Untrusted
Data Store

Untrusted
Data Store

Data
Parser

Process Boundary

Trust Boundary

Machine Boundary

Entry Point

Data Flow

void top(char input[4])

{

int cnt = 0;

if (input[0] == ‘b’) cnt++;

if (input[1] == ‘a’) cnt++;

if (input[2] == ‘d’) cnt++;

if (input[3] == ‘!’) cnt++;

if (cnt >= 4) crash();

}

input = “good”

I0!=‘b’

I1!=‘a’

I2!=‘d’

I3!=‘!’

Path constraint:

good

goo!

bood

gaod

godd

→ I0=‘b’

→ I1=‘a’

→ I2=‘d’

→ I3=‘!’

Gen 1
input = “bood”

…

baod

…

Gen 2

…

…

badd

Gen 3

bad!

…

Gen 4
input = “baod”input = “badd”input = “bad!”

Check for
Crashes

Code
Coverage

Generate
Path

Constraints

Solve
Constraints

(Z3)

Input0
Coverage

Data
Constraints

Input1
Input2

…

InputN

White Box Fuzzing (SAGE)

SAGE used internally at Microsoft to meet SDL verification requirements

Since 2007: many new security bugs found
– Apps: decoders, media players, document processors, …
– Bugs: Write A/Vs, Read A/Vs, Crashes, …
– Many triaged as “security critical, severity 1, priority 1”

• 100s of apps, 100s of bugs
– Bug fixes shipped quietly (no MSRCs) to 1 Billion+ PCs
– Millions of dollars saved (for Microsoft and the world)

• “Practical Verification”
– <5 security bulletins in SAGE-cleaned parsers since 2009

White Box Fuzzing (SAGE) Results

Parallelized Runs
Customer VM

Repro VM

Step 1: The user

manually uploads the
target binaries and seed

Files to the Customer VM, and uses the
wizard to configure the job

Job Results
API/Portal Page

Step 2: Security Risk Detection

validates the job, minimizes the
seed files, and then clones the
customer VM dozens of times

based on workload

Step 4: Any

time an
execution fails,

the offending file
is sent to the
repro VM to

ensure the bug is
reproducible

Step 3: Multiple fuzzers run for

multiple days: the target app is
executed roughly 8,000,000 times, each
time with a slightly modified input file

that s intended to crash the target

Step 5: Bugs that repro (along with the file,

stack trace, and other debug info) are
available in the portal and API in real time

More on Dynamic Symbolic Execution

For real programs, compiled through LLVM

• https://klee.github.io/

For a small subset of Python, using Z3

• https://github.com/thomasjball/PyExZ3

https://klee.github.io/
https://github.com/thomasjball/PyExZ3

Hot off the press

REST-ler: Automatic Intelligent REST API Fuzzing
• Vaggelis Atlidakis, Patrice Godefroid, Marina Polishchuk

• https://arxiv.org/abs/1806.09739

https://arxiv.org/search/cs?searchtype=author&query=Atlidakis%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Godefroid%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Polishchuk%2C+M
https://arxiv.org/abs/1806.09739

Formal Methods and Tools

Network Verification
(SecGuru)

Bug Finding and Verification for C/C++
(SAGE, Corral)

Correctness of Cryptography and Protocols
(F*, Ivy, P#)

thinking

programming

verifying

High-level Specification
(TLA+)

testing

MSR’s Project Everest

TLS

X.509

HTTPS

RSA SHA

ECDH

Network buffers

Untrusted network (TCP, UDP, …)

Crypto Algorithms

4Q

Services & Applications

ASN.1
Certification

Authority

ServersClients

cURL WebKit IIS ApacheSkype NginxEdge
Goal: verified HTTPS replacement
Challenges:
- scalability of verification
- performance
- usable tool chain

https://project-everest.github.io/

https://project-everest.github.io/

Subgoal:
Verified
low-level crypto

Efficient crypto requires customizations

• Poly1305: Uses the prime field with 𝑝 = 2130 − 5
• Need 130 bits to represent a number

• Efficient implementations require custom bignum libraries to delay carries

• On X86: use 5 32-bit words, but using only 26 bits in each word

• On X64: use 3 64-bit words, but using only 44 bits in each word

• Curve25519: Uses the prime field with 𝑝 = 2255 − 19
• On X64: use 5 64-bit words, but using only 51 bits per word

• OpenSSL has 12 unverified bignum libraries optimized for each case

Everest subgoal:
generic,
efficient

bignum libraries

A generic bignum library

Bignum code can be shared between
Curve25519, Ed25519 and Poly1305,
which all use different fields

Only modulo is specific to the field
(optimized)

Consequently:
- write once
- verify once
- extract three times

Prove correct in F*, extract to efficient C

val poly1305_mac: tag:nbytes 16 →

len:u32 →

msg:nbytes len{disjoint tag msg} →

key:nbytes 32 {disjoint msg key ∧ disjoint tag key} →

ST unit

(requires (λ h → msg ∈ h ∧ key ∈ h ∧ tag ∈ h))

(ensures (λ h0 _ h1 →

let r=Spec.clamp h0.[sub key 0 16] in

let s=h0.[sub key 16 16] in

modifies {tag} h0 h1 ∧

h1.[tag] == Spec.mac_1305 (encode_bytes h0.[msg]) r s))

void

poly1305_mac(uint8_t *tag, uint32_t len, uint8_t *msg, uint8_t *key)

{

uint64_t tmp [10] = { 0 };

uint64_t *acc = tmp

uint64_t *r = tmp + (uint32_t)5;

uint8_t s[16] = { 0 };

Crypto_Symmetric_Poly1305_poly1305_init(r, s, key);

Crypto_Symmetric_Poly1305_poly1305_process(msg, len, acc, r);

Crypto_Symmetric_Poly1305_poly1305_finish(tag, acc, s);

}

Mathematical spec in F*
poly1305_mac: (1) computes a
polynomial in GF(2130-5),
(2) stores the result in tag,
(3) does not modify anything else

Efficient C implementation
Verification imposes no
runtime performance
overhead

Sample code Poly1305 MAC

F* source: core-ML with dependent types and effects

Z3

let poly1305_mac: tag:nbytes 16 →
len:u32 →
msg:nbytes len{disjoint tag msg} →
key:nbytes 32 {disjoint msg key ∧ disjoint tag key} →

ST unit
(requires (λ h → msg ∈ h ∧ key ∈ h ∧ tag ∈ h))
(ensures (λ h0 _ h1 → …)) = …

Type-checker

+ compiler

Core ML

Erases types +
inlining etc.

kreMLin

void

poly1305_mac(uint8_t *tag, uint32_t len,

uint8_t *msg, uint8_t *key)

{

uint64_t tmp [10] = { 0 };

uint64_t *acc = tmp

uint64_t *r = tmp + (uint32_t)5;

uint8_t s[16] = { 0 };

Crypto_Symmetric_Poly1305_poly1305_init(r, s, key);

Crypto_Symmetric_Poly1305_poly1305_process(msg, len, acc, r);

Crypto_Symmetric_Poly1305_poly1305_finish(tag, acc, s);

}

C source, tuned for readability,
compliance with C linters etc.

monomorphization,
more inlining,
…

https://fstar-lang.org/tutorial/

https://fstar-lang.org/tutorial/

Performance of Everest’s
High Assurance Crypto Library (HACL*)

Low*

• Several complete TLS ciphersuites
• Verification can scale up!

• With performance as good as or
better than hand-written C

cycles/ECDH

Verification enables using 64x64 bit
multiplications, without fear of
getting it wrong

https://blog.mozilla.org/security/2017/09/13/
verified-cryptography-firefox-57/

“Mozilla has partnered with INRIA and Project
Everest (Microsoft Research, CMU, INRIA) to bring
components from their formally verified HACL*
cryptographic library into NSS, the security engine
which powers Firefox.

https://blog.mozilla.org/security/2017/09/13/verified-cryptography-firefox-57/
http://prosecco.gforge.inria.fr/
https://project-everest.github.io/
https://github.com/mitls/hacl-star
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

Project Everest: Open Source

• https://www.github.com/FStarLang/FStar

• https://www.github.com/FStarLang/kremlin

• https://www.github.com/mitls/mitls-fstar

• https://www.github.com/mitls/hacl-star

• https://www.github.com/project-everest/vale

67

https://www.github.com/FStarLang/FStar
https://www.github.com/FStarLang/kremlin
https://www.github.com/mitls/mitls-fstar
https://www.github.com/mitls/hacl-star

Formal Methods and Tools

Network Verification
(SecGuru)

Bug Finding and Verification for C/C++
(SAGE, Corral)

Correctness of Cryptography and Protocols
(F*, Ivy, P#)

thinking

programming

verifying

High-level Specification
(TLA+)

testing

TLA+ (Leslie Lamport)

• A language for high-level modelling of
digital systems, especially concurrent
and distributed systems

• Tools for checking the models (TLC)

• IDE for end-to-end experience
(Toolbox)

• https://github.com/tlaplus

https://github.com/tlaplus

Chris Newcombe, AWS

• Formal methods find bugs in system designs that cannot be found
through any other technique we know of

• Formal methods are surprisingly feasible for mainstream software
development and give good return on investment

• At Amazon, formal methods are routinely applied to the design of
complex real-world software, including public cloud services.

Chris Newcombe, AWS

• Formal methods find bugs in system designs that cannot be found
through any other technique we know of

• Formal methods are surprisingly feasible for mainstream software
development and give good return on investment

• At Amazon, formal methods are routinely applied to the design of
complex real-world software, including public cloud services.

“TLA+ is the most valuable thing that I've learned in
my professional career. It has changed how I work, by
giving me an immensely powerful tool to find subtle
flaws in system designs. It has changed how I think,
by giving me a framework for constructing new kinds
of mental-models, by revealing the precise
relationship between correctness properties and
system designs, and by allowing me to move from
`plausible prose' to precise statements much earlier in
the software development process.”

Formal Methods and Tools

Network Verification
(SecGuru)

Bug Finding and Verification for C/C++
(SAGE, Corral)

Correctness of Cryptography and Protocols
(F*, Ivy, P#)

thinking

programming

verifying

High-level Specification
(TLA+)

testing

