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ABSTRACT
An appropriate set of indexes can result in orders of magni-
tude better query performance. Index management is a chal-
lenging task even for expert human administrators. Fully au-
tomating this process is of significant value. We describe the
challenges, architecture, design choices, implementation, and
learnings from building an industrial-strength auto-indexing
service for Microsoft Azure SQL Database, a relational data-
base service. Our service has been generally available for
more than two years, generating index recommendations
for every database in Azure SQL Database, automatically
implementing them for a large fraction, and significantly im-
proving performance of hundreds of thousands of databases.
We also share our experience from experimentation at scale
with production databases which gives us confidence in our
index recommendation quality for complex real applications.
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1 INTRODUCTION
1.1 Motivation
A relational database with an appropriate set of indexes
can have orders of magnitude better performance and lower
resource consumption. Choosing good indexes is challeng-
ing even for expert Database Administrators (DBA) since
it is workload, schema, and data dependent. Decades of re-
search [2, 9–11, 13, 14, 18, 40, 46] and many commercial
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tools [2, 14, 46] have helped DBAs search the complex search
space of alternative indexes (and other physical structures
such as materialized views and partitioning). However, a
DBA still drives this tuning process and is responsible for
several important tasks, such as: (i) identifying a representa-
tive workload; (ii) analyzing the database without impact-
ing production instances; (iii) implementing index changes;
(iv) ensuring these actions do not adversely affect query
performance; and (v) continuously tuning the database as
the workload drifts and the data distributions change.
Cloud database services, such as Microsoft Azure SQL

Database, automate several important tasks such as provi-
sioning, operating system and database software upgrades,
high availability, backups etc, thus reducing the total cost
of ownership (TCO). However, in most cases, performance
tuning, e.g., index management, remains the user’s responsi-
bility. Offering existing on-premises tuning tools hosted as a
cloud service still leaves a significant burden on the users,
which is daunting for many users of cloud databases who
are application developers lacking expert DBA skills.
Another pattern we commonly observe is Software-as-a-

Service (SaaS) vendors and Cloud Software Vendors (CSV)
deploying hundreds to thousands of databases for customers
of their applications. Managing such a huge pool of databases
is a formidable task even for expert DBAs, where individual
DB instances can have different schema, queries, and data
distributions [24, 33, 39]. Therefore, being able to fully au-
tomate indexing, i.e., not only identifying the appropriate
indexes, but also automating the above-mentioned steps cru-
cial for holistic index lifecycle management, is a significant
step in the cloud’s promise of reducing the TCO.

Azure SQLDatabase is a fully-managed relational database-
as-a-service with built-in intelligence [6]. Query performance
is tuned through services such as automated plan correc-
tion [4], automated indexing [5], and intelligent insights [19];
here we focus on auto-indexing. Existing approaches that
rely on human intervention for the critical steps in indexing
do not scale for Azure SQL Database automating indexing for
its millions of databases. Therefore, several years back, we
embarked on the journey to build the first industrial-strength
fully-automated indexing solution for Azure SQL Database.
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1.2 Challenges
The first challenge is to scale the auto-indexing service to all
databases in Azure SQL Database while meeting the statu-
tory and compliance requirements. Azure has more than 50
regions worldwide spread over more than 140 countries [7].
The auto-indexing service must operate with minimal or
no human intervention to achieve this scale. In addition to
ensuring the proper health and operation of this service, we
need to be able to debug the quality of the recommendations
as the workloads and databases change. Moreover, the data-
base server bits are frequently upgraded, our service itself
goes through upgrades, and we must tolerate a wide variety
of software and hardware failures we see at Azure-scale. Un-
like a DBA tuning a database who can examine the queries
or understand the applications, due to compliance reasons,
all of the above actions must be performed without the engi-
neers having knowledge of the application, its workload, or
data distributions, which further amplifies the challenge!
The second challenge is to automate generating the sev-

eral critical inputs to the index tuner needed for high quality
recommendations. Unlike a DBA who can use additional ap-
plication context, we need to automatically identify a work-
load to tune indexes for and specify other tuning constraints,
e.g., the types of indexes to recommend, storage budget, or
maximum number of indexes, etc.
The third challenge is that the state-of-the-art index rec-

ommenders [9, 14, 31, 46] rely on the query optimizer’s cost
estimates to determine the benefits of new index configu-
rations. However, users care about actual query execution
cost (e.g., query’s CPU time). Due to well-known limitations
of the query optimizer’s estimates [20, 21], there are many
instances where an index, which is estimated to improve
query performance based on the optimizer’s cost, makes
query execution costs (or performance) worse once imple-
mented [8, 16, 17]. Having the ability to ideally avoid or at
least quickly detect and correct query performance regres-
sions due to index changes is crucial in a production setting.
The fourth challenge is to ensure auto-indexing, which

is a built-in service, does not significantly impact normal
application workload and interfere or disrupt application
processes. This has two facets: (a) low resource footprint;
and (b) not blocking user operations. There are databases
in Azure SQL Database which only have less than a CPU
core allocated. Therefore, the service must be able to operate
with low resource footprint. To support our user’s 24 × 7
business continuity, indexing must not block user’s workload
or upgrades to the application or database schema.

1.3 Approach and Contributions
We describe how we overcame the above-mentioned chal-
lenges and built Azure SQL Database’s auto-indexing service.

We explain the user-facing auto-indexing offering (Section 2),
where we expose several controls for expert users to con-
figure the service and provide transparency of the indexes
implemented and their impact on performance. We iden-
tify the architecture and the key components essential to
fully-automate recommendation and implementation of in-
dexes (Section 3). These components are: (a) control plane:
the backbone of our automation that drives index lifecy-
cle management and coordinates the other components in
the system (Section 4); (b) index recommender : analyzes the
workload to identify an appropriate set of indexes to create
or drop (Section 5); (c) validator: a novel component that
analyzes the impact of implementing the indexes, detects if
performance has improved or regressed, and takes corrective
action if it detects a significant regression (Section 6).

The control plane is crucial to scale the service to millions
of databases in Azure SQL Database. It is a fault-tolerant
service that automatically invokes the recommender, imple-
ments indexes (with user’s permission), validates them, moni-
tors the service health, detects issues, and wherever possible
takes corrective actions. To meet the compliance require-
ments, any system component that accesses sensitive cus-
tomer data, e.g., query text or data distributions, runs within
Azure’s compliance boundaries that is guarded by multi-
ple levels of security, authentication, and auditing. Health
signals of the service and debugging is primarily through
anonymized and aggregated data.
The index recommender analyzes query execution sta-

tistics to automatically identify inputs, such as a workload
to tune. To generate high quality index recommendations,
we adapt and extend two building blocks for index recom-
mendations in SQL Server: (a) Missing Indexes [34]; and
(b) Database Engine Tuning Advisor (DTA) [2, 10]. These
approaches provide complementary benefits which we to-
gether leverage to support the huge diversity requirements
in Azure SQL Database, e.g., tuning databases with very
different workload complexity and available resources [28].

The validator compares the execution costs before and af-
ter implementing an index change, detects large regressions,
and takes corrective actions (e.g., automatically reverting the
created index) to fix such regressions. Thus, we can tolerate
the shortcoming of the index recommender relying on the
optimizer’s estimates and automatically implement recom-
mendations while limiting impact to production workloads.
To ensure our automated actions do not adversely affect

application performance, we carefully select the automated
actions and build necessary mechanisms to prevent or mini-
mize disruptions. For instance, we only support online index-
ing operations that does not block queries, drop auto-created
indexes whenever it conflicts with an application’s actions
such as schema change or partition switching [44], minimize
metadata contention using different locking levels [43], and
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Figure 1: A snapshot of the UI that customers use in
Azure portal to configure the auto-indexing service.

use resource governance to isolate resources for tuning and
index builds from concurrent workload [15, 25].

Azure SQL Database imposes few restrictions on the types
of applications and workloads that customers deploy. Since
we take the responsibility to fully automate indexing, we
must maintain high quality of index recommendations in
spite of this huge diversity in schema, workloads, and data
distributions. To build confidence on our recommendation
quality, we leverage the unique opportunity in Azure SQL
Database to experiment at scale with production workloads.
Since index changes can have significant performance im-
pact, such experimentation is not possible on a database’s pri-
mary replica. We create B-instances, which are independent
copies of the database seeded from a snapshot of the primary
copy where the real application’s workload is forwarded and
replayed in parallel to the primary copy. We make physical
design changes or enable new features on these B-instances
without impacting the primary workload, allowing us to ex-
periment with different index configurations and measure
their impact on execution (Section 7). While such experimen-
tation has significantly helped the auto-indexing service, it
is an orthogonal component which is used by many other
services in Azure SQL Database.
Our service launched in preview in July 2015 and has

been generally available since January 2016. Our current
offering manages non-clustered (secondary) B+ tree indexes,
has successfully implemented and validated millions of in-
dexes, and significantly improved performance of hundreds
of thousands of databases. At the time of writing, Azure SQL
Database’s automated indexing service is, to the best of our
knowledge, the only fully-automated solution indexing mil-
lions of databases. We summarize our major learnings from
operationalizing this service and the feedback from hundreds
of customers (Section 8). We also summarize related work
(Section 9) and conclude the paper discussing some hard
challenges ahead of us (Section 10).

2 AUTO-INDEXING OFFERING
Azure SQL Database exposes a hierarchy of logical servers
and logical database endpoints where a logical server can
have one or more logical databases. To fully automate index-
ing, we eliminate the need for human inputs. However, we

Figure 2: A snapshot of theUIwhere customers see the
index recommendations/actions.

Figure 3: A snapshot of theUIwhere customers see the
recommendation details.

allow human intervention and provide controls to config-
ure the service and selectively turn off features. We expose
such controls through the Azure management portal, REST
API for management, and T-SQL API [5]. Figure 1 provides
a snapshot of the UI where users can configure the auto-
indexing service for each database using Azure Portal. A
user can also specify a setting for the logical server which
every database on the server can inherit. The service au-
tomatically generates recommendations to create and drop
indexes. These settings control whether the recommenda-
tions are automatically implemented and validated on the
user’s behalf. There are also defaults for cases where the user
decides not to exercise this control. In Figure 1, the database
is configured (see Current State column) to automatically
create indexes, but only recommend indexes to drop (both
settings inherited from the logical server).

Tomaintain transparency, we always show a list of current
recommendations and the history of indexing actions. Fig-
ure 2 provides a summary of the different recommendations
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Figure 4: Conceptual architecture of auto-indexing
service within a single Azure region.

for a demo database. Each item descries the index (i.e., the
table, key columns, and included columns), and its estimated
impact. A detailed view (e.g., see Figure 3) shows additional
information e.g., index size. A list of SQL statements which
will be impacted once the index is implemented is also ex-
posed. If the database is configured for auto-implementation,
then the system will execute these operations and validate
them. If auto-implementation is off, then the user has an
option of analyzing the recommendations and selectively
applying them. The user can manually specify the system to
apply a recommendation which are validated by the system.
A user also has the option to copy the details and apply the
recommendation themselves (e.g., through a schema man-
agement tool). In this case the user is responsible to validate
them. For every action implemented by the system, a his-
tory view shows the state of such actions, e.g., successfully
validated, reverted etc, and summarize the actual query exe-
cution costs before and after implementation.

3 ARCHITECTURAL OVERVIEW
We identify the key components essential to fully automate
indexing at the scale of Azure SQL Database. Figure 4 pro-
vides a conceptual architecture of how these loosely-coupled
components work together. Each Azure region comprises
one or more database clusters spread over one or more data
centers. There is one instance of the auto-indexing service
managing all clusters and databases in a region. This per-
region design meets the data sovereignty and compliance
requirements and avoids data flow across regions.
Figure 4 numbers the different steps in the typical work-

flow of states when auto-indexing a database. The Con-
trol Plane is the brain of the system, designed as a highly-
available service that manages the fault-tolerant state ma-
chine of auto-indexing for each database (see Section 4) and

ensures the health of the auto-indexing service. The differ-
ent system components are decentralized and communicate
through asynchronous RPCs and events emitted through
Azure SQL Database telemetry. The control plane invokes
the Index Recommender to analyze the workload and gener-
ate index recommendations (see Section 5). Depending on
whether the database is enabled to automatically implement
the indexes or the user invokes creation of indexes through
the system, the control plane implements the actions and
invokes the Validator (see Section 6).
There are two SQL Server components that we rely on

to build the auto-indexing service. First is the SQL Server
query optimizer. It generates the missing index candidates
per query [34]. We also use the optimizer’s “what-if” API to
simulate hypothetical index configurations [11]. Second is
Query Store [29] which persistently tracks the query text,
history of query plans, and a variety of execution statistics
(e.g., CPU time, duration, logical and physical I/O, etc.) ag-
gregated over time intervals. The Index Recommender and
Validator relies on Query Store for several critical operations.

4 CONTROL PLANE
The control plane orchestrates the different components of
the auto-indexing service. Every database in Azure SQL Data-
base is independently indexed. Therefore, conceptually, this
control logic can be co-located with the database as a back-
ground service. We chose to have a per-region centralized
service to optimizer the speed of engineering, operational-
ization, and monitoring. A centralized control plane also
allowed a centralized store for the state and details of rec-
ommendations, history of actions, etc. This centralization
further simplified exposing this information to users who
administer several databases, e.g., SaaS vendors and CSVs
who manage hundreds to thousands of databases.

We implement the control plane as a collection of micro-
services, where each micro-service is responsible for a desig-
nated task. The major micro-services (and their tasks) are:
(a) invoke database analysis and generation of index recom-
mendations; (b) implement recommendations; (c) validate
recommendations; (d) detect issues with the auto-indexing
service and taking automated corrective actions or filing a
service incident to notify on-call engineers;
Each of these micro-services appropriately update the

state machine of a database or a recommendation for a
database. The database state corresponds to different auto-
indexing configuration settings (see Section 2 for some ex-
amples). We will discuss some additional database states as
we discuss specifics of the index recommenders (Section 5.3).

A recommendation can be in one of the following states:
(i) Active: an index create or drop recommendation ready
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to be applied; (ii) Expired: a terminal state of a stale recom-
mendation either due to the age of the recommendation (i.e.,
when it was generated) or a newer recommendation invali-
dated it; (iii) Implementing: the recommendation is currently
in the process of being implemented on the database (either
user-initiated or system-initiated if auto-implement setting is
turned on); (iv) Validating: validation in progress analyzing
execution data after the recommendations have been imple-
mented; (v) Success: a terminal state where a recommenda-
tion was successfully applied and validated; (vi) Reverting:
validation detected a query performance regression and the
system auto-initiated a revert of the action (e.g., drop a cre-
ated index); (vii) Reverted: a terminal state where a recom-
mendation was successfully reverted; (viii) Retry: a transient
error was detected in one of the actions on a recommenda-
tion and the failed action will be retried; (ix) Error: a terminal
state where the system encountered an irrecoverable error
(e.g., an index with the same name already exists, the table or
column was dropped, the index was dropped external to the
system, etc.). Many of the above states have sub-states for
further diagnosis and automated actions. Some of the error
states are well-known and automatically processed, while
others are treated as service health issues which will trigger
incidents for analysis by on-call engineers.
This state information needs to be stored in a persistent,

highly-available data store. Being part of such a highly-
available persistent database service, the control plane stores
its state in a database within the same region of Azure SQL
Database. This database is similar to a customer database in
Azure SQL Database with enhanced manageability options
since it stores system state instead of customer data.

5 INDEX RECOMMENDER
5.1 Background
5.1.1 Recommendation Source. SQL Server 2005 introduced
the Missing Indexes (MI) feature where the server, during
query optimization, identifies indexes that are not present
in the database that can improve this query’s performance.
These missing indexes are exposed via dynamic management
views (DMVs), the special system views in SQL Server, and
in the execution plan XML [34]. The benefit of the MI feature
is that it is a lightweight always-on feature where missing
indexes from across queries are accumulated in the DMVs.
However, the lightweight nature also implies that MI only
performs a local analysis, predominantly in the leaf node of
a plan, to identify a lower bound of improvement. The MI
feature cannot recommend indexes that benefit joins, group
by, or order by clauses, and does not perform workload-level
analysis or the cost of maintaining them [23].

The Database Engine Tuning Advisor (DTA), on the other
hand, is a more comprehensive physical design tool initially

released with SQL Server 7.0 (or 1998) [10] and significantly
enhanced over future releases [2, 17]. DTA takes a work-
load (W) as input and outputs a recommendation that min-
imizes the optimizer-estimated total cost of W. DTA can
recommend clustered and non-clustered indexes, B+ tree and
Columnstore indexes, filtered indexes, materialized views,
and partitioning. DTA’s candidate selection considers sar-
gable predicates, joins, group by, and order by columns to
identify candidate physical designs [22]. In addition, DTA
supports constraints such as maximum number of indexes,
storage budget, etc. However, in contrast to MI, a DTA tun-
ing session needs to be manually invoked with appropriate
settings for these options. Moreover, DTA creates sampled
statistics and makes additional “what-if” optimizer calls [11]
which result in higher overhead compared to MI.

MI and DTA have complementary benefits. The low over-
head of MI allows us to still recommend beneficial indexes
for databases with small amounts of resources (e.g., the data-
bases in the Basic tier). On the other hand, DTA performs a
more comprehensive analysis which is suitable for more com-
plex applications deployed in the higher-end Premium tier
databases. There are several factors that determine which of
these two recommendation sources will be used for a given
database, e.g., the service tier [28], activity level and resource
consumption of the database, etc. A pre-configured policy in
the control plane determines which recommender to invoke.

5.1.2 Workload Coverage. Identifying an appropriate set of
indexes for a given database requires a holistic analysis of the
queries (and updates) on the database. When a DBA drives
this tuning, e.g., in an on-premises setting, representative
workload (W) identified by the expert human helps in this
holistic analysis. Tuning tools require this input W to be
provided. Interviewing several DBAs and customers revealed
that in many real settings, identifying such a representative
workload is challenging even for expert humans due to the
complexity and heterogeneity of applications and the com-
plex mapping of application logic to the corresponding SQL
statements executed. When automatically indexing without
the knowledge of the application or human inputs, it is even
hard to define representative.

To evaluate the goodness ofW analyzed to generate the
index recommendations, we instead rely on workload cover-
age. If the index recommender analyzed a set of statements
W, workload coverage is the resources consumed by these
statements in W as a percentage of the total resources con-
sumed by all statements executing on the database. A high
workload coverage, e.g.,> 80%, implies that the statements
analyzed by the tuner account for a significant amount of
resources consumed for the database. We use Query Store’s
historical execution statistics to compute workload coverage.
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5.2 Missing Indexes
When SQL Server query optimizer searches for an execution
plan for a query, it analyzes the query predicates to identify
the best indexes that provide cheap access to the data relevant
to the predicates. If these indexes do not exist, the query op-
timizer exposes this information through the MI feature [34].
These indexes are accumulated in a set of DMVs. They have
associated details of the predicate in the DMV, e.g., which
columns are accessed in an equality predicate (EQUALITY
columns), which in an inequality predicate (INEQUALITY
columns), and which columns are needed upstream in the
query plan (INCLUDE columns).
One limitation of the MI feature is that it only provides

raw information about index candidates. In order to use these
candidates to generate the final recommendations, we need
to analyze their holistic impact. The statistics accumulate
over time, but are reset after a server restart, failover, or
schema change. To tolerate such resets, we take periodic
snapshots of the MI DMVs, while keeping the overhead of
taking snapshots low. The index recommender performs a
workload-level analysis leveraging the raw MI snapshots.

We perform the following high-level steps to generate
the final index recommendations. First, we define a non-
clustered (secondary) index candidate with information in
the MI DMV. The EQUALITY columns are selected as keys,
INCLUDE columns are the included columns. SQL Server
storage engine can seek a B+ tree index with multiple equal-
ity predicates but only one inequality predicate. Hence, we
pick one of the INEQUALITY columns as a key (ordered after
EQUALITY columns), the remaining are included columns.
This column choice is deferred to the merging phase.Second,
the MI DMV provides statistics such as the number of queries
that triggered theMI recommendation, the average estimated
cost of each query that could be improved, and a percentage
improvement expected from the index (in optimizer’s esti-
mates). We use these statistics to determine the aggregated
benefit of an index, using the raw optimizer-estimated ben-
efit for each candidate. Third, we filter out candidates that
have very few query executions (e.g., ad-hoc queries).

Fourth, since the MI DMV accumulates these statistics, we
expect that really beneficial indexes will have an impact that
will accumulate and increase over time. However, due to our
need to tolerate resets of the DMV, we need a statistically-
robust measure of this positive gradient of the impact scores
over time. We formulate this as a hypothesis test. Assuming
that these errors are distributed normally, we compute the
t-statistic on the slope of an index’s impact over time being
above a configurable threshold. By analyzing these statis-
tics over hundreds of thousands of databases, we found that
for high-impact indexes, a few data points are sufficient to
surpass the pre-determined certainty limit. Fifth, to identify

opportunities for indexes that benefit multiple queries, we
merge indexes [12]. We perform conservative merging of
indexes, e.g., merge candidates whose key columns are a pre-
fix of another, but include columns differ. We merge indexes
only if the improve the aggregate benefit across queries that
the merged impact improves. As the last step, we identify
the top indexes with the highest impact with an impact slope
above the threshold. Since we do not make additional opti-
mizer calls for the workload-level analysis, we use a classifier
to further filter out index recommendations which are ex-
pected to have low impact on execution. We use data from
previous index validations and features such as estimated
impact, table and index size, etc. to train a classifier that
identifies such low impact indexes.
This approach does not use an explicitly-specified W.

Missing indexes are analyzed for every statement, except in-
serts, updates, and deletes without predicates. Hence, work-
load coverage is all resources except the percentage con-
sumed by the above statement types.

5.3 Database Engine Tuning Advisor
DTA is a comprehensive physical design tool that given a
workloadW, finds the physical design that minimizes the
optimizer-estimated cost ofW [2, 10]. DTA uses a cost-based
search where for every query Q ∈ W, DTA starts with can-
didate selection that finds the optimal configuration for Q.
Candidates from all queries are used for a workload-level
enumeration, which outputs the final recommendation. DTA
uses the query optimizer’s “what-if” API to cost hypothet-
ical configurations during its search [11]. DTA is designed
to be invoked by a DBA. To leverage DTA for auto-indexing
in Azure SQL Database, we rearchitected it to run as an
automated service. Our enhancements and design changes
fall in three broad categories: (a) ability to run DTA with
strict resource budget and minimal impact on any produc-
tion workloads; (b) automatically acquiring a representative
workload W for tuning; (c) running DTA as a service at the
scale of Azure SQL Database.

5.3.1 Reducing DTA overheads. DTA needs to connect to
the database to access metadata, build and read sampled
statistics, and make query optimizer calls. Due to the number
of calls DTA makes to the server and to satisfy security and
compliance requirements, we need to run DTA co-located
with the primary copy of the database server in Azure SQL
Database, running concurrent with the customer’s workload.
Therefore, DTAneeds to runwith a stringent resource budget
and ensure minimal impact on the customer’s workload.
There are two ways DTA can impact customer’s work-

loads: (i) Resources consumed by DTA: for resources con-
sumed on the server with optimizer calls, creating sampled
statistics, etc., we rely on SQL Server’s resource governance
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mechanisms to limit CPU, memory, and I/O consumed by
DTA calls [15, 25]. For resources consumed by the DTA pro-
cess, we use Windows Job Objects [45]. (ii) Lock and latch
contention: caused due to creation and dropping of hypo-
thetical indexes and sampled statistics. Such lock contention,
especially for modifying metadata, can cause significant im-
pact on user workload due to the FIFO nature of SQL Server’s
lock scheduler. We rely on low priority locking support that
allows DTA to request a lock with lower priority, without
blocking lock requests by user’s workload [43].We also made
several changes to DTA to reduce the overheads, e.g., we
reduced the number of sampled statistics created by DTA by
2−3×without noticeable impact on recommendation quality.
To further minimize the resource footprint, the control plane
only invokes DTA on-demand when we need to analyze a
database. Since these approaches only reduce the chances of
impacting the user workload, we added automated tracking
to detect instances where a DTA session is slowing down
user queries and abort such a DTA session. We leverage
SQL Server’s detailed wait statistics, blocked process reports,
and signals from Azure SQL Database’s Intelligent Insights
feature [19] to detect such slow downs.

5.3.2 Identifying a Workload. We need to automatically de-
riveW for DTA to tune.We leverage past execution statistics
and query text captured by Query Store [29] to construct
W. At the start of a DTA session, we analyze the execution
statistics for the past N hours to identify the K query state-
ments (or templates) which are most expensive in terms of
duration or resources (e.g., CPU time). Since this analysis
can be resource intensive for database with many queries
accumulating gigabytes of data in Query Store, we set N
and K based on the amount of resources available to the
database. While other approaches can be used to selectW,
the above approach efficiently identifies the most important
statements, balancing workload coverage with the resources
spent on workload analysis.
Identifying the statements to tune is only a start. DTA

needs the full query statements inW to estimate its cost for
the different hypothetical index configurations [11]. While
Query Store captures the query text, it is designed to help
users get context about a query when debugging perfor-
mance issues, and not as a detailed workload capture tool
(which is often too expensive to be always-on like Query
Store). T-SQL, SQL Server’s dialect of SQL, supports com-
plex constructs such as conditionals, loops, scalar and table-
valued variables. As a result, statements in Query Store are
often incomplete, e.g., missing variables, or only having a
fragment of a complex conditional statement, etc. Such state-
ment text cannot be costed by DTA via the “what-if” API.
Another challenge arises from statements that SQL Server

cannot optimize in isolation or is not supported in the “what-
if” API. For instance, in a batch of T-SQL statements, one
statement can store a result of a query into a temporary table,
and then another statement can reference this temporary
table. Such batches in SQL Server can only be optimized dur-
ing execution. These limitations restrict the set of statements
DTA can successfully tune, often significantly impacting
DTA’s workload coverage.

We made several enhancements to DTA to overcome these
limitations. First, while Query Store is our primary source
of workload, we augment query text from other sources.
For instance, if statements are part of stored procedures
or functions whose definition is available in system meta-
data, we obtain the statements from metadata. Second, for
incomplete T-SQL batches, we use SQL Server’s query plan
cache to obtain the full batch definition if available. Third,
we rewrite some types of statements from the original form,
which cannot be optimized in the “what-if” mode, into equiv-
alent statements which can be successfully optimized. For
instance, BULK INSERT statement used by bulk load tools or
APIs cannot be optimized. DTA rewrites them into equivalent
INSERT statements which can be optimized, thus allowing
it to cost the index maintenance overheads due to these op-
erations. Last, for all of the above statement types, the MI
feature generates candidates if these statements can benefit
from indexes. Hence, we augment DTA’s search with these
MI candidates. We use the optimizer’s cost estimates when
generating the MI candidates whenever DTA cannot cost
them using the “what-if” API, thus allowing such candidates
to be used in DTA’s cost-based search.
Once DTA completes analyzing a database, it emits de-

tailed reports specifying which statements it analyzed and
which indexes in the recommendation will impact which
statement. We use this report to expose the recommendation
details to the users. We also use these reports to compute
the workload coverage which provides us an approximate
measure of the effectiveness of DTA’s recommendations.
Identifying patterns in errors for statements DTA is unable
to process prioritizes future DTA improvements.

5.3.3 Running DTA as a Service. A DTA tuning session for
a database can run for minutes to hours, depending on the
complexity of the workload, schema, and available resources.
There can be several types of failures during a DTA session,
either on the database server, the physical server, or DTA.
There could be DTA sessions on thousands of databases at a
given instant of time. To tolerate these failures and manage
the state of DTA sessions at scale, we created a micro-service
in the control plane dedicated to DTA session management,
and augmented a database’s state with DTA session states.
This micro-service identifies when to invoke a DTA session
on a given database, tracks progress of the DTA session, and
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ensures that the session reaches a terminal state of either
successful completion or an error which would trigger a
cleanup (to remove temporary objects such as hypothetical
indexes and statistics) and an optional retry.

A single DTA session involves a complex cost-based search
through a huge space of alternatives. Debugging the recom-
mendation quality for a given session is in itself a daunting
task when DTA is tuning a large and complex workload. We
need to be able to identify issues with thousands of such
sessions without knowledge of the database DTA is tuning.
Using carefully selected telemetry from DTA and correlating
with other Azure SQL Database telemetry, we determine the
overall health of DTA sessions, detect anomalies, potential
issues, and identify avenues to further improve DTA.

5.4 Dropping Indexes
As the workload, schema, and data distributions evolve and
new indexes are created, the benefit of existing indexes can
decrease. It is therefore important to identify and potentially
drop such low impact indexes to reduce their maintenance
overhead and storage space. Our analysis also revealed that
many databases often have several duplicate indexes, i.e., in-
dexes with identical key columns (including identical order),
which are also candidates to be dropped.

Dropping indexes pose several challenges. First, users of-
ten have indexes for occasional but important queries, such
as reports, at some cadence such as daily or weekly. Since
we automatically identify W, such infrequent events may
not be part ofW and hence ignored in analysis. Dropping
such indexes can cause significant slowdown for these oc-
casional queries. Such regressions are also hard to detect
in validation since the queries are infrequent. Second, it is
common for queries to hint indexes when users manually
tune queries [35] or force a plan [27]. Dropping such a hinted
index would prevent the query from executing, potentially
breaking the application. Third, identifying which among the
duplicate indexes to drop can also be a challenge. In many
cases, retaining any one of them is acceptable, while in some
other cases, a specific one (or many) may be preferred.

We take a conservative approach to identify indexes that
if dropped will have minimal risk of disruptions. Instead of
being workload-driven, we leverage other sources of infor-
mation from SQL Server to identify indexes with little or no
benefit to queries. First, we analyze statistics tracked statis-
tics tracked by Azure SQL Database, such as how frequently
an index is accessed by a query, how much it is modified
etc., to identify indexes that do not benefit queries but have
significant maintenance overheads. Second, to prevent dis-
rupting applications, we eliminate candidates that appear in
query hints or forced plans, or are enforcing an application-
specified constraint. We analyze statistics over a long time

period (e.g., 60 days). To reduce storage overheads for this
long term data retention, we leverage Azure SQL Database’s
telemetry and offline analysis systems to analyze this data
and identify drop candidates.

6 IMPLEMENTATION AND VALIDATION
Implementation. When a user decides to apply a recom-

mendation or if auto-implementation is enabled, the control
plane orchestrates index implementation (either create or
drop) and subsequent validation. Depending on the index
size, creation can be a resource-intensive operation that scans
the data (I/O intensive), sorts it (CPU and memory intensive),
and then creates the index (log intensive). We minimize the
impact of this resource-intensive task on concurrent user
workload by (i) governing the resources [15, 25]; and (ii)
scheduling most of the operations during periods of low
activity for the database. To further minimize impact, our
service only supports online operations, i.e., operations that
can be completed with minimal or no blocking. Since this
creation operation can be long-running, a micro-service in
the control plane tracks the state machine of this implemen-
tation step to ensure we tolerate the different errors and
failures during index implementation.

Validation. The goal of validation is to detect and cor-
rect major query performance regressions caused by index
creation or drop. We leverage Query Store [29] to analyze
execution statistics before and after we implement the index
change. One major challenge we encounter in validation is
the inherent noise in the execution statistics due to concur-
rent query executions in an uncontrolled production setting.
First, we focus on logical execution metrics such as CPU

time consumed, or logical bytes read. These metrics are rep-
resentative of plan quality and also have less variance com-
pared to physical metrics such as query duration or physical
I/O. If the logical metrics improve due to an index, metrics
such as duration generally improve. Second, we only con-
sider queries that have executed before and after the index
change and had a plan change due to the index change. That
is, if an index is created, the new plan after creation should
reference the index, while if an index is dropped, the old
plan before drop should reference the index. Third, for every
query plan, Query Store tracks the number of executions,
average, and standard deviation for every metric (e.g., CPU
time). Assuming the measurement variance follows a normal
distribution, we use the above statistics and Welch t-test [42]
to determine the statistical significance of improvement or
regression of the above-mentioned metrics. We compare the
state after the index change with that before the change.
If a significant regression is detected, the system auto-

matically reverts the change, i.e., drops the index if created,
or recreates it if dropped. The trigger to revert can be set
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Figure 5: A conceptual architecture for experimenta-
tion using B-instances in Azure SQL Database.

to a conservative setting where a regression for any state-
ment that consumes a significant fraction of the database’s
resources can trigger a revert. Without explicit application
knowledge or user inputs, this approach minimizes disrup-
tion, though might also reduce the workload-level improve-
ment possible. An alternative setting measures the holistic
improvement of all statements affected by the index, and re-
verts only if there is a regression at an aggregate level. This
approach may significantly regress one or more statements
if improvements to other statements offset the regressions.

7 EXPERIMENTATION IN PRODUCTION
Azure SQL Database presents us a unique opportunity to
experiment at scale with a diverse collection of production
workloads, which we can use to build confidence on our
recommendation quality or test major changes. This experi-
mentation is similar to A/B testing used in randomized ex-
periments [1], but adapted to the context of databases.

7.1 B-instances
Databases exhibit huge diversity in schema, queries, data
sizes, and data distributions. Hence, if we want to experiment
with two index recommenders and measure their quality in
terms of execution cost, we need the same set of databases
to generate recommendations, implement them, and com-
pare the execution costs before and after the implementa-
tion. Performing this on the primary database copy serving
application traffic is risky and unacceptable. Even using a
secondary replica is not feasible since Azure SQL Database
requires the replicas to be physically identical.
Our ability to create a B-instance of a database in Azure

SQL Database allows us to experiment at scale in production
without the risk of affecting customer workloads, while main-
taining Azure’s compliance, security, and privacy require-
ments. A B-instance is a different database instance (invisible
to external customers) that starts with a snapshot of the data-
base. It is on a different physical server within the compliance
boundary of Azure SQL Database. It has an independent set

of resources and different security credentials and can also
use a different database server binary. A B-instance receives
a fork of the Tabular Data Stream (TDS) [38] traffic from the
primary copy (called an A-instance in this context) which is
replayed on the B-instance. Resources for the B-instance are
accounted as Azure SQL Database’s operational overhead
and not billed to the customer. We use several levels of safe-
guards and isolation to ensure that the B-instance cannot
jeopardize the A-instance if it misbehaves. To eliminate any
expensive synchronization, the B-instance independently
executes the TDS stream, allowing reordering of operations.
A failure of the B-instance does not affect the A-instance’s
ability to progress normally. Hence, the B-instance is a best-
effort clone and can potentially diverge from the A-instance
due to dropped or reordered operations.

7.2 Experimentation Framework
Creating a B-instance is one small step in an experiment.
We need to randomly choose databases that meet the cri-
teria for an experiment, generate index recommendations,
implement them, collect execution statistics, and analyze
execution costs with and without the recommendations. Dif-
ferent experiments may also need custom steps, e.g., drop-
ping a subset of existing indexes, or enabling certain features.
To scale these experiment steps to hundreds or thousands
of databases across different geographical regions, we built
a framework for experiment design and control. Figure 5
presents a conceptual architecture of the experimentation
framework leveraging B-instances. It is a workflow engine
where different tasks of the experiment can be defined as
workflow steps which are then stitched to define an experi-
ment workflow. The framework executes the workflow on
each database identified as a candidate for the experiment,
monitors the state of the workflow, and takes corrective or
cleanup actions if an error is detected. The framework has a
library of commonly-used steps, e.g., creating a B-instance,
detecting divergence of a B-instance, common analysis steps
etc. It allows custom steps to be added for any experiment.

7.3 Experimentation Results
One major question for us was the quality of recommenda-
tions, in actual execution cost and not estimates, that the
different recommenders generate for the diverse collection of
workloads in Azure SQL Database. To answer this question,
we summarize experiments performed on a few thousand
production databases, between March and June 2017, lever-
aging our experimentation framework and B-instances.
We experiment with the two index recommenders we

developed–using Missing Indexes (MI ) and using Database
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Figure 6: Experimentation at scale with production
databases in the premium and standard tier.

Engine TuningAdvisor (DTA)–to better understand the trade-
offs between them and to determine a policy to best lever-
age their abilities to meet the diversity of Azure SQL Data-
base. We also compare these advisors with how human
administrators tune their databases (User). We develop a
heuristic to emulate this user’s tuning at the scale of our
experiments. We identify highly beneficial non-clustered
(secondary) indexes already existing in the database but do
not enforce any application constraint. Our hypothesis is
these indexes were added by the user to improve perfor-
mance. Using statistics tracked in Azure SQL Database such
as the dm_db_index_usage_stats DMV and Query Store,
for each database, we identify the N existing indexes the
provide the most benefit to queries. We then select a random
subset of k indexes to drop. For these experiments, we used
N = 20,k = 5. We assume the performance after dropping
the k indexes was performance before User tuned the data-
base, and performance with thek indexes is the improvement
due to User’s tuning. After dropping the indexes, we let MI
and DTA recommend up to k indexes to create.
We design the experiment in phases where each phase

measures the impact of one of the recommenders and col-
lects execution statistics for more than a day. For the phase
implementing MI or DTA recommendations, these indexes
are reverted at the end of the phase. We do not control the
arrival or concurrency of the queries executing on the data-
bases, since the B-instance is replaying the workload from
the TDS fork of the A-instance. To tackle this variance in
measurements due to concurrency, diurnal, or other tempo-
ral effects, we use statistical tests, such as Welch t-test [42],
to determine the statistical significance of changes in execu-
tion costs. We measure the average and standard deviation of
several metrics (e.g., CPU time, logical reads). Our analysis
uses a fixed execution count for all phases to address the
different number of executions of a query over the phases.

We run two sets of experiments by randomly selecting ac-
tive databases from two service-tiers in Azure SQL Database:
(a) premium which comprises high-paying customers with
business-critical workloads and more complex applications;

and (b) standard which is a cheaper tier where databases have
much fewer resources. Figure 6 presents a pie chart of the
percentage of the databases where a specific recommender’s
indexes outperformed the others by improving CPU time.
To account for variance, we only consider statistically signif-
icant improvements. For instance, the slice corresponding to
DTA implies indexes recommended by DTA outperformed
both user’s and MI’s recommendations. The slice Compara-
ble corresponds to databases where the performance of all
three alternatives was indistinguishable.

As evident from Figure 6, no one recommender dominates
on all databases. It was encouraging to see that our auto-
mated techniques were able to match or outperform human
administrators in 85 − 90% of databases. However, for more
complex workloads and expert users in the premium tier,
these approaches do not outperform expert DBAs. We also
compute the CPU time improvement due to each recom-
mender of the entire workload on a database, and average it
across all the databases. We observed DTA results in ∼ 82%,
MI results in ∼ 72%, and User results in ∼ 35% CPU time
improvement. That is, auto-indexing can unlock even more
significant improvements compared to that of User.

8 OPERATIONAL EXPERIENCE
8.1 Operational Statistics
Here we present a snapshot of some statistics from the op-
erational service as of October 2018. Index recommenda-
tions are generated for all databases in Azure SQL Database,
with ∼ 250K recommendations to create new indexes and
∼ 3.4M recommendations to drop existing indexes that are
not benefitting queries. About a quarter of the databases
have auto-implementation enabled where about ∼ 50K in-
dexes are created and ∼ 20K indexes dropped on an average
week. Since our service is tuning databases for more than
two years, we observe many databases reach a steady state
with only occasional new index recommendations generated
for them. However, we also observe an increasing stream
of new databases that are deployed. There are hundreds of
thousands of queries whose CPU time or logical reads re-
duced by > 2× due to indexes recommended by the service,
and tens of thousands of databases where the workload’s
aggregate CPU consumption reduced by > 50%.

In aggregate, ∼ 11% of our automated actions are reverted
due to validation detecting regressions. Since the MI -based
recommender does not account for index maintenance over-
heads, many reverts are due to writes becoming more expen-
sive. For both recommenders, a significant fraction of reverts
are due to regressions in SELECT statements where opti-
mizer’s errors results in query plans estimated to be cheaper
but is more expensive when executed. Reducing regressions
and revert rates is an area of future work.
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8.2 Customer Feedback
Setting and meeting customer expectations added an inter-
esting dimension to our operational experience. Customer
feedback spanned the spectrum of being delighted to cau-
tious skepticism.Many customers, especially large customers
managing hundreds to thousands of databases, saw immense
value from the savings to their database management costs.
They embraced the service and provided useful feedback. Sev-
eral interesting case studies are presented in [41]. Example
customers such as SnelStart, an invoicing and bookkeeping
application, AIMS360, a cloud technology provider for the
fashion industry, and several large internal applications at
Microsoft, all of which have hundreds to tens of thousands
of databases in Azure SQL Database, saw positive results by
enabling auto-implementation of recommendations, often
stating that the service “has allowed them to completely stop
proactively thinking about index management.”
Earning the customer’s trust is one of the major chal-

lenges for an automated indexing system for production
scenarios. Lack of trust is also a major hindrance in adoption
for automated implementation. Customers seeking to build
trust on the feature had the following concerns: (i) business
continuity: automatically applied indexes do not cause per-
formance regressions or other problems such as blocking
schema changes; (ii) meaningful performance gains: the re-
sources spent in analyzing and building indexes result in
noticeable performance improvements over time; (iii) trans-
parency: provide a history of the actions and their impact
on performance; (iv) robustness and reliability: handles the
different failure cases and reliably tunes the database over
time, even if the recommendations are not optimal.
Addition of the validation module to detect regressions

and automatically revert the indexes, resource governance
and other measures to ensure minimal impact on the work-
load, exposing the history of actions along with queries im-
pacted, maintaining a high quality of recommendations, and
exposing the option of disabling auto-implementation to
put the user in control contributed significantly to increase
the customer’s trust on the system. Most customers were
comfortable with the fact that in a small fraction of cases,
an index might regress performance, as long as a corrective
action automatically and reliably fixes the issue.
Many customers seek to exercise more control: (i) how

and when the indexes are implemented, e.g., implementing
indexes during low periods of activity or on a pre-specified
schedule; (ii) how to share resources between index creation
and concurrent transactions; (iii) naming scheme for indexes.
Customers managing hundreds of similar databases, e.g., a
SaaS vendor, desire features such as only implement indexes
that are beneficial for a significant fraction of their databases.

Another customer ask was the integration of automated
index management with other application development and
schema management tools, such as Visual Studio, SQL Server
Data Tools, or even third party management tools. This will
enable tracking versions of the schema and indexes and bet-
ter integration with deployment tools. Developers maintain
the logical database model in such tools. Lack of these inte-
grations implied automatically implemented indexes were
not propagated to the database model. Hence, every new de-
ployment of the application would drop these indexes, only
to be recreated by the auto-indexing service.

8.3 Operational Challenges and Lessons
Operationalizing the service at Azure-scale posed several
challenges. Some are common to many cloud services that
operate at this scale with several dependencies. Many others
are specific to indexing and the complexity of applications
leveraging many advanced Azure SQL Database features.
Monitoring this decentralized service spread across dif-

ferent geographic regions posed a major challenge. We rely
on dashboards to aggregate data from disparate regions to
create an aggregated view of the service for engineers to
uncover issues and find avenues to improve the service fur-
ther. The auto-indexing service has dependencies on other
services in Azure SQL Database or Azure. Any such service
can fail independently and our service needs to gracefully
handle these failures. Scaling auto-indexing to all databases
in Azure SQL Database generates vast amounts of state that
the control plane (see Section 4), which varies from one re-
gion to another. Appropriately provisioning resources for
the control plane requires careful planning.
Creating an index can take minutes to hours, especially

for databases in lower service tiers with small amounts of
resources. Index creation generates a significant amount of
log, which cannot be truncated until index is created. We en-
countered several instances where we filled up a database’s
transaction log when creating an index on a large table. Re-
cent improvements in Azure SQL Database, such a resumable
index create [37], help us address this challenge by allowing
more frequent log truncation even if the index is not fully
created. We can also pause/resume a creation if there is high
contention for resource or a failure during index build.

Metadata contention when creating and dropping indexes
posed an interesting challenge. We carefully chose opera-
tions which can be performed online without blocking con-
current queries, e.g., indexes that can be created online. How-
ever, reverting an index that caused regressions posed a chal-
lenge. To drop an index, the server must ensure that no con-
current query optimization or execution is using the index
being dropped. Hence, this operation requires an exclusive
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schema lock on the table. Similarly, any statement referenc-
ing the table will acquire a shared schema lock. Since SQL
Server’s lock scheduler is FIFO, if a request for an exclusive
lock is blocked behind one or more shared locks by long-
running queries, it will in turn block a subsequent shared
lock request. That is, even though dropping a non-clustered
index is a lightweight metadata operation, it can block other
concurrent transactions and create convoys. In rare instances,
it could significantly disrupt the application’s workload. To
overcome this issue, we use managed lock priorities in SQL
Server to first issue the drop index request at a low priority
that does not block concurrent user transactions [43]. We
use a back-off and retry protocol if this request times out.
The control plane manages this fault-tolerant protocol.

A major requirement to gain customer trust was to en-
sure auto-created indexes do not block application processes
such as schema changes, application upgrades, and bulk data
loads. Hence, we added mechanisms to cascade and force the
drop of auto-created indexes which block customer-initiated
actions such as dropping a column which is also part of an
auto-created index, or partition switching [44].

Azure SQL Database supports a rich set of features which
are used by different applications. Features such as in-memory
tables, Columnstore, full-text indexing, different data models
such as XML and Graphs, etc. have very different index-
ing characteristics and restrictions. Almost all simplifying
assumptions eventually break. Therefore, we intentionally
optimize for the most frequent scenarios but gracefully han-
dle the edge cases to ensure our indexes do not conflict with
these advanced features.

9 RELATEDWORK
Automatically finding the right set of indexes has been an
active area of research for several decades [18, 36]. The late
nineties saw several commercial index tuning tools from
the major database vendors [10, 14, 40]. These tools were
extended to support other physical design structures such as
materialized views and partitioning [2, 3, 30, 46]. Database
Engine Tuning Advisor (DTA) [2] was recently extended to
support both Columnstore and B+ tree index recommenda-
tions [17]. Our service leverages the decades of advances
in DTA and MI features in SQL Server, and complements
them with technology necessary to run it as a service that
automatically analyzes the workload, recommends indexes,
optionally implements them, detects and corrects any query
performance regressions caused by index changes.

The state-of-the-art commercial physical design tools for
RDBMSs have focused on assisting a human expert, such as
a DBA, in the complex search space of alternatives. They

put the human in the loop of tuning, require several criti-
cal inputs (e.g., the workload, when to tune). They also rely
on the human to analyze the recommendations to deter-
mine which recommendations to implement. Variants of the
problem have been studied in research such as continuous
tuning [9, 31], using the DBA in the loop [32], or leveraging
machine learning techniques to completely automate index-
ing [26]. This paper is the first industrial-strength solution
for fully-automated indexing.

10 CONCLUDING REMARKS
We presented the design, implementation, experience, and
lessons learned from building the first industrial-strength
auto-indexing service for Microsoft Azure SQL Database. An
industry-leading product offering that automatically recom-
mends, implements, and validates indexes, such automation
reduces our customer’s burden of performance tuning.While
our architecture was developed in the context of the Azure
SQL Database cloud platform, we expect many ideas can
be leveraged in an on-premises setting or in other cloud
database services. We also presented a novel approach for
experimentation in a cloud database service by leveraging
B-instances with no risks to production workloads. Such
experimentation helped us get more confidence on the rec-
ommendation quality.
We presented several key learnings from operationaliza-

tion and customer feedback. One meta learning was that we
can provide significant value to a large fraction of our cus-
tomers. However, it is incredibly difficult to cover all the spe-
cial cases that arise with all the features of a modern RDBMS.
Looking ahead, gaining trust of more customers will require
covering the special cases our expert customers care about.
These include giving more control where customers desire
(e.g., broader criteria for selecting W), further improve our
recommendation quality and reduce performance regres-
sions caused by our recommendations, improving workload
coverage and identifying more complex workload patterns,
and making this auto-indexing service transparent to our
customers by further reducing its impact.
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