Socrates: The New SQL Server in the Cloud

Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernandez
Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam,
Umar Farooq Minhas, Naveen Prakash, Vijendra Purohit, Hugh Qu, Chaitanya

Sreenivas Ravella, Krystyna Reisteter, Sheetal Shrotri, Dixin Tang, Vikram Wakade
Microsoft Azure & Microsoft Research

ABSTRACT

The database-as-a-service paradigm in the cloud (DBaaS)
is becoming increasingly popular. Organizations adopt this
paradigm because they expect higher security, higher avail-
ability, and lower and more flexible cost with high perfor-
mance. It has become clear, however, that these expectations
cannot be met in the cloud with the traditional, monolithic
database architecture. This paper presents a novel DBaaS
architecture, called Socrates. Socrates has been implemented
in Microsoft SQL Server and is available in Azure as SQL DB
Hyperscale. This paper describes the key ideas and features
of Socrates, and it compares the performance of Socrates
with the previous SQL DB offering in Azure.

CCS CONCEPTS

+ Information systems — DBMS engine architectures;

KEYWORDS

Database as a Service, Cloud Database Architecture, High
Availability

ACM Reference Format:

Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejan-
dro Hernandez Saenz, Jack Hu, Hanuma Kodavalla, Donald Koss-
mann, Sandeep Lingam,, Umar Farooq Minhas, Naveen Prakash,
Vijendra Purohit, Hugh Qu, Chaitanya Sreenivas Ravella, Krystyna

Reisteter, Sheetal Shrotri, Dixin Tang, Vikram Wakade. 2019. Socrates:

The New SQL Server in the Cloud. In 2019 International Conference
on Management of Data (SIGMOD °’19), June 30-July 5, 2019, Am-
sterdam, Netherlands. ACM, New York, NY, USA, 14 pages. https:
//doi.org/lO.l145/3299869.3314047

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD 19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06...$15.00
https://doi.org/10.1145/3299869.3314047

1 INTRODUCTION

The cloud is here to stay. Most start-ups are cloud-native.
Furthermore, many large enterprises are moving their data
and workloads into the cloud. The main reasons to move
into the cloud are security, time-to-market, and a more flexi-
ble “pay-as-you-go” cost model which avoids overpaying for
under-utilized machines. While all these reasons are com-
pelling, the expectation is that a database runs in the cloud
at least as well as (if not better) than on premise. Specifically,
customers expect a “database-as-a-service” to be highly avail-
able (e.g., 99.999% availability), support large databases (e.g.,
a 100TB OLTP database), and be highly performant. Further-
more, the service must be elastic and grow and shrink with
the workload so that customers can take advantage of the
pay-as-you-go model.

It turns out that meeting all these requirements is not
possible in the cloud using the traditional monolithic data-
base architecture. One issue is cost elasticity which never
seemed to have been a consideration for on-premise data-
base deployments: It can be prohibitively expensive to move
a large database from one machine to another machine to
support a higher or lower throughput and make the best
use of the computing resources in a cluster. Another, more
subtle issue is that there is a conflict between the goal to sup-
port large transactional databases and high availability: High
availability requires a small mean-time-to-recovery which
traditionally could only be achieved with a small database.
This issue does not arise in on-premise database deployments
because these deployments typically make use of special, ex-
pensive hardware for high availability (such as storage area
networks or SANs); hardware which is not available in the
cloud. Furthermore, on-premise deployments control the
software update cycles and carefully plan downtimes; this
planning is typically not possible in the cloud.

To address these challenges, there has been research on
new OLTP database system architectures for the cloud over
the last ten years; e.g., [5, 8, 16, 17]. One idea is to decom-
pose the functionality of a database management system and
deploy the compute services (e.g., transaction processing)
and storage services (e.g., checkpointing and recovery) in-
dependently. The first commercial system that adopted this
idea is Amazon Aurora [20].

https://doi.org/10.1145/3299869.3314047
https://doi.org/10.1145/3299869.3314047
https://doi.org/10.1145/3299869.3314047

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Today Socrates
Max DB Size 4TB 100TB
Availability 99.99 99.999
Upsize/downsize O(data) 0O(1)
Storage impact 4x copies (+backup) | 2x copies (+backup)
CPU impact 4x single images 25% reduction
Recovery 0(1) 0o(1)
Commit Latency 3 ms < 0.5ms
Log Throughput 50MB/s 100+ MB/s

Table 1: Socrates Goals: Scalability, Availability, Cost

This paper presents Socrates, a new architecture for OLTP
database systems born out of Microsoft’s experience of man-
aging millions of databases in Azure. Socrates is currently
available in Azure under the brand SQL DB Hyperscale [2].
The Socrates design adopts the separation of compute from
storage. In addition, Socrates separates database log from
storage and treats the log as a first-class citizen. As we will
see, separating the log and storage tiers separates durability
(implemented by the log) and availability (implemented by
the storage tier). Durability is a fundamental property of any
database system to avoid data loss. Availability is needed to
provide good quality of service in the presence of failures.
Traditionally, database systems have coupled the implemen-
tation of durability and availability by dedicating compute
resources to the task of maintaining multiple copies of the
data. However, there is significant, untapped potential by
separating the two concepts: (a) In contrast to availability,
durability does not require copies in fast storage; (b) in con-
trast to durability, availability does not require a fixed num-
ber of replicas. Separating the two concepts allows Socrates
to use the best fit mechanism for the task at hand. Concretely,
Socrates requires less expensive copies of data in fast local
storage, fewer copies of data overall, less network bandwidth,
and less compute resources to keep copies up-to-date than
other database architectures currently on the market.

Table 1 shows the impact of Socrates on Azure’s DBaasS of-
ferings in terms of database scalability, availability, elasticity,
cost (CPU and storage), and performance (time to recovery,
commit latency and log throughput). How Socrates achieves
these improvements concretely is the topic of this paper.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the state-of-the-art. Section 3 summarizes ex-
isting SQL Server features that we exploited to build Socrates.
Section 4 explains the Socrates architecture. Section 5 gives
an overview of important distributed workflows in Socrates.
Section 6 demonstrates the flexibility of Socrates to address
cost/availability/performance tradeoffs. Section 7 presents
the results of performance experiments. Section 8 concludes
this paper with possible avenues for future work.

P. Antonopoulos et al.

2 STATE OF THE ART

This section revisits four prominent DBaaS systems which
are currently used in the marketplace.

SQL DB is Microsoft’s DBaa$ in Azure. Before Socrates,
SQL DB was based on an architecture called HADR that
is shown in Figure 1. HADR is a classic example of a log-
replicated state machine. There is a Primary node which
processes all update transactions and ships the update logs
to all Secondary nodes. Log shipping is the de facto standard
to keep replicas consistent in distributed database systems
[13]. Furthermore, the Primary periodically backups data
to Azure’s Standard Storage Service (called XStore): log is
backed up every five minutes, a delta of the whole database
once a day, and a full backup every week. Secondary nodes
may process read-only transactions. If the Primary fails, one
of the Secondaries becomes the new Primary. With HADR,
SQL DB needs four nodes (one Primary and three Secon-
daries) to guarantee high availability and durability: If all
four nodes fail, there is data loss because the log is backed
up only every five minutes.

To date, the HADR architecture has been used success-
fully for millions of databases deployed in Azure. The service
is stable and mature. Furthermore, HADR has high perfor-
mance because every compute node has a full, local copy
of the database. On the negative side, the size of a database
cannot grow beyond the storage capacity of a single machine.
A special case occurs with long-running transactions when
the log grows beyond the storage capacity of the machine
and cannot be truncated until the long-running transaction
commits. O(size-of-data) operations also create issues. For
instance, the cost of seeding a new node is linear with the
size of the database. Backup / restore, scale-up and down are
further examples of operations whose cost grows linearly
with the size of the database. This is why SQL DB today
limits the size of databases to 4TB (Table 1).

Another prominent example of a cloud database system
that is based on log-replicated state machines is Google Span-
ner [11]. To address the O(size-of-data) issues, Spanner au-
tomatically shards data logically into partitions called splits.
Multiple copies of a split are kept consistent using the Paxos
protocol [9]. Only one of the partitions, called leader, can
modify the data; the other partitions are read-only. Span-
ner supports geo-replication and keeps all copies consistent
with the help of a TrueTime facility, a datacenter-based time
source which limits time drift between disparate replicas.
Splits are divided and merged dynamically for load balanc-
ing and capacity management.

In the last decade, an alternative architecture called shared
disk has been studied for databases in the cloud [5, 8, 16, 17].

Socrates: The New SQL Server in the Cloud

APPLICATION

* Read

Secondary

SQL Server

-

eulic
]

t Read/Write

Primary

SQL Server
 pATA
O

I LOG
BACKUP

J

Azure Standard Storage

Figure 1: HADR Arch. (Replicated State Machines)

This architecture separates Compute and Storage. AWS Au-
rora is the first commercial DBaa$S that adopted this archi-
tecture. An Aurora Primary Compute node processes update
transactions (as in HADR) and each log record is shipped to
six Storage Servers which persist the data. These six Storage
Servers are distributed across three availability zones and a
transaction commits safely if its log is persisted successfully
in four of the six Storage nodes. Within the Storage tier, the
data (and log) is partitioned for scalability. Aurora supports
a variable number of Secondary Compute nodes which are
attached to the Storage nodes to source data pages.

Oracle pioneered yet a different DBaaS architecture based
on Exadata and Oracle RAC. In this architecture, all the nodes
of a cluster are tightly coupled on a fast interconnect and
a Shared Cache Fusion layer over a distributed storage tier
with Storage Cells that use locally attached flash storage
(3, 7].

3 IMPORTANT SQL SERVER FEATURES

Socrates builds on foundations already present in SQL Server.
This section introduces several important (and not obvious)
SQL Server features that were developed independently of
Socrates and are critical for Socrates.

3.1 Page Version Store

SQL Server maintains versions of database records for the
purpose of providing read snapshots in the presence of con-
current writers (e.g., to implement Snapshot Isolation [4]).
In the HADR architecture, all this versioning is done locally

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

in temporary storage. As will become clear in Section 4,
Socrates adopts an extended shared-disk architecture which
requires that row versions can no longer be kept locally
in temporary storage: Compute nodes must also share row
versions in the shared storage tier.

3.2 Accelerated Database Recovery

SQL Server capitalizes on the persistent version store with
a new feature called Accelerated Database Recovery (ADR).
Prior to ADR, SQL Server used an ARIES-style recovery
scheme [18] that first analyzes the log, then a redo of all trans-
actions that have not committed before the last checkpoint,
and finally an undo of all uncommitted (failed) transactions.
In this scheme, the undo phase can become unboundedly
long in the presence of long-running transactions. In produc-
tion with millions of hosted databases, this unbounded undo
phase can indeed become a problem. It turns out that the ver-
sion store can be used to improve this situation significantly:
With a shared, persistent version store, the system has access
to the committed versions of a row even after a failure which
allows to eliminate the undo phase in many cases and the
database becomes available immediately after the analysis
and redo phases, a constant-time operation bounded by the
checkpointing interval.

3.3 Resilient Buffer Pool Extension

In 2012, SQL Server released a feature called buffer pool ex-
tension (BPE) which spills the content of the in-memory data-
base buffer pool to a local SSD file (using the same lifetime
and eviction policies across both main memory and SSD).
In Socrates, we extended this concept and made the buffer
pool resilient; i.e., recoverable after a failure. We call this
component RBPEX and it serves as the caching mechanism
for pages both in the compute and the storage tiers (Section
4). Having a recoverable cache like RBPEX significantly re-
duces the mean-time-to-recovery until a node reaches peak
performance (with warm buffers): If the failure is short (e.g.,
a reboot of a machine after a software upgrade), it is much
cheaper to read and apply the log records of the (few) updated
pages than to refetch all (cached) pages from a remote server
which is needed in a traditional, non-recoverable cache. A
shorter mean-time-to-recovery, increases availability [14].
Architecturally, RBPEX is a simple, straightforward con-
cept. However, a careful implementation, integration, and
management of RBPEX is critical for performance. If not
done right, performance can even degrade. We built RBPEX
as a table in our in-memory storage engine, Hekaton [15],
which ensures that read I/O to RBPEX is as fast as direct
I/0 to the local SSD. Furthermore, Hekaton recovers RBPEX
after a failure - just like any other Hekaton table. Write I/O
to RBPEX needs to be carefully orchestrated because RPBEX

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

metadata I/O cannot be allowed to stall data I/O and RBPEX
failures cannot be allowed to corrupt the RBPEX state. In
order to achieve this we intercepted the buffer pool page
lifetime tracking mechanism, which is a highly performance
sensitive component.

3.4 RBIO protocol

As we will see, Socrates distributes the components of a
database engine across multiple tiers. To support a richer
distribution of computation, we extended the traditional
SQL Server networking layer (called Unified Communication
Stack) with a new protocol called Remote Block 1/0O, or RBIO
for short. RBIO is a stateless protocol, strongly typed, has
support for automatic versioning, is resilient to transient
failures, and has QoS support for best replica selection.

3.5 Snapshot Backup/Restore

SQL Server 2016 introduced the ability to take an almost
instantaneous backup when the database files were stored
in Azure. This feature relied on the blob snapshots feature
implemented by Azure Storage (XStore) [10] which is or-
ganized as a log-structured storage system [19]. In a log-
structured file system, a backup is a constant-time operation
as it merely needs to keep a pointer (timestamp) to the cur-
rent head of the log. Socrates extends this feature by making
backup/restore work entirely on XStore snapshots. As a re-
sult, Socrates can do backups (and restores) in constant time
without incurring any CPU or I/O cost in the Compute tier.
With XStore’s Snapshot mechanism, the database files of
even a very large database of hundreds of TBs can be re-
stored in minutes. Of course, it takes longer to apply the
log to recover to the right moment in time (using ADR) and
spin up the servers and refresh the caches for the restored
database, but none of those operations depend on the size
of the database. Backup/restore is one prominent example
where Socrates eliminated size-of-data operations from a
critical operational workflow.

3.6 I/0 Stack Virtualization

At the lowest level of the I/O stack, SQL Server uses an
abstraction called FCB for “File Control Block”. The FCB
layer provides I/O capabilities while abstracting the details
of the underlying device. Using this abstraction layer, SQL
Server can support multiple file systems and a diverse set
of storage platforms and I/O patterns. Socrates exploits this
/O virtualization tier extensively by implementing new FCB
instances which hide the Socrates storage hierarchy from
the compute process. This approach helped us to implement
Socrates without changing most core components of SQL
Server: Most components “believe” they are components of a
monolithic, standalone database system, and no component

P. Antonopoulos et al.

above the FCB layer needs to deal with the complexity of a
distributed, heterogeneous system that Socrates indeed is.

4 SOCRATES ARCHITECTURE
4.1 Design Goals and Principles

Today, Azure successfully hosts many databases using the
HADR architecture described in Section 2. Operating all
these databases in production has taught us important lessons
that guided the design of Socrates. Before explaining the
Socrates architecture, we describe these lessons and the cor-
responding Socrates design goals and principles.

4.1.1 Local Fast Storage vs. Cheap, Scalable, Durable Stor-
age. The first lesson pertains to the storage hierarchy: Direct
attached storage (SSD) is required for high performance,
whereas cheap storage (hard disks) is needed for durabil-
ity and scalability of large databases. On premise, these re-
quirements are met with storage systems like SANs that
transparently optimize different kinds of storage devices in
a single storage stack. In the cloud, such storage systems
do not exist; instead, there is local storage (SSD) attached
to each machine which is fast, limited, and non-durable as
it is lost when the machine fails permanently. Furthermore,
clouds like Azure feature a separate, remote storage service
for cheap, unlimited, durable storage. To achieve good per-
formance, scalability, and durability in the cloud, Socrates
has a layered, scale-out storage architecture that explicitly
manages the different storage devices and services available
in Azure. One specific feature of this architecture is that
it avoids fragmentation and expensive data movement for
dynamic storage allocation of fast-growing databases.

4.1.2 Bounded-time Operations. As shown in Table 1, one
important design goal of Socrates is to support large databases
in the order of 100 TB. Unfortunately, the current HADR ar-
chitecture involves many operations whose performance
depends on the size of the database as described in Section
2. Fast creation of new replicas is particularly important to
achieve high availability at low cost because this operation
determines the mean-time-to-recovery which directly im-
pacts availability for a given number of replicas [14]. The
requirement to avoid any “size-of-data operations” has led
us to develop new mechanisms for backup/restore (based
on snapshots), management of the database log (staging),
tiered caching with asynchronous seeding of replicas, and
exploitation of the scale-out storage service.

4.1.3 From Shared-nothing to Shared-disk. One of the funda-
mental principles of the HADR architecture (and any other
replicated state-machine DBMS architecture) is that each
replica maintains a local copy of the database. This principle
conflicts with our design goal to support large databases of

Socrates: The New SQL Server in the Cloud

several hundred TBs because no machine has that amount
of storage. Even if it were possible, storage becomes the lim-
iting factor and main criterion when placing databases on
machines in HADR; as a result, CPU cycles go to waste if
a large, say, 100TB database is deployed with a fairly light
workload.

These observations motivated us to move away from the
shared-nothing model of HADR (and replicated state ma-
chines) and towards a shared-disk design. In this design, all
database compute nodes which execute transactions and
queries have access to the same (remote) storage service.
Sharing data across database nodes requires support for data
versioning at different levels. To this end, Socrates relies
on the shared version store described in Section 3.1. The
combination of a shared version store and accelerated recov-
ery (ADR, Section 3.2) makes it possible for new compute
nodes to spin up quickly and to push the boundaries of read
scale-out in Socrates well beyond what is possible in HADR.

4.1.4 Low Log Latency, Separation of Log. The log is a poten-
tial bottleneck of any OLTP database system. Every update
must be logged before a transaction can commit and the
log must be shipped to all replicas of the database to keep
them consistent. The question is how to provide a highly
performant logging solution at cloud scale?

The Socrates answer to this question is to provide a sep-
arate logging service. This way, we can tune and tailor the
log specifically to its specific access pattern. First, Socrates
makes the log durable and fault-tolerant by replicating the
log: A transaction can commit as soon as its log records have
been made durable. It turns out that our implementation of
quorum to harden log records is faster than achieving quo-
rum in a replicated state machine (e.g., HADR). As a result,
Socrates can achieve better commit performance as shown
in Table 1.

Second, reading and shipping log records is more flexible
and scalable if the log is decoupled from other database
components. Socrates exploits the asymmetry of log access:
Recently created log records are in high demand whereas old
log records are only needed in exceptional cases (e.g., to abort
and undo a long-running transaction). Therefore, Socrates
keeps recent log records in main memory and distributes
them in a scalable way (potentially to hundreds of machines)
whereas old log records are destaged and made available
only upon demand.

Third, separating log makes it possible to stand on giant’s
shoulders and plug in any external storage device to imple-
ment the log. As shown in Appendix A, this feature is al-
ready paying off as Socrates can leverage recent innovations
in Azure storage without changing any of its architectural
tenets. In particular, this feature allows Socrates to achieve

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

low commit latencies without the need to implement its own
log shipping, gossip quorum protocol, or log storage system.

4.1.5 Pushdown Storage Functions. One advantage of the
shared-disk architecture is that it makes it possible to off-
load functions from the compute tier onto the storage tier,
thereby moving the functions to the data. This way, Socrates
can achieve significant performance improvements. Most
importantly, every database function that can be offloaded
to storage (whether backup, checkpoint, IO filtering, etc.)
relieves the Primary Compute node and the log, the two
bottlenecks of the system.

4.1.6 Reuse Components, Tuning, Optimization. SQL Server
has a rich eco-system with many tools, libraries, and existing
applications. Applications on the existing, millions of SQL
DB databases in Azure must migrate to Socrates in a seamless
way. Moreover, full backward compatibility with the millions
of SQL Server on-premise databases that might one day be
migrated to Azure is also a top priority. Thus, Socrates needs
to support the same T-SQL programming language and basic
APIs for managing databases. Furthermore, SQL Server is an
enterprise-scale database system with decades of investment
into robustness (testing) and high performance. We did not
want to and cannot afford to reinvent the wheel and degrade
customer experience under any circumstances. So, critical
components of SQL Server such as the query optimizer, the
query runtime, security, transaction management and re-
covery, etc. are unchanged. Furthermore, Socrates databases
are tuned in the same way as HADR databases and Socrates
behaves like HADR for specific workloads (e.g., repeated
updates to hot rows). Socrates (like HADR) also embraces
a scale-up architecture for high throughput as this is the
state-of-the-art and sufficient for most OLTP workloads.

4.2 Socrates Architecture Overview

Figure 2 shows the Socrates architecture. As will become
clear, it follows all the design principles and goals outlined in
the previous section: (a) separation of Compute and Storage,
(b) tiered and scaled-out storage, (c) bounded operations, (d)
separation of Log from Compute and Storage, (e) opportuni-
ties to move functionality into the storage tier, and (f) reuse
of existing components.

The Socrates architecture has four tiers. Applications con-
nect to Compute nodes. As in HADR, there is one Primary
Compute node which handles all read/write transactions.
There can be any number of Secondaries which handle read-
only transactions or serve as failover targets. The Compute
nodes implement query optimization, concurrency control,
and security in the same way as today and support T-SQL
and the same APIs (Section 4.1.6). If the Primary fails, one
of the Secondaries becomes the new Primary. All Compute

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

‘ APPLICATION |

tRead/Write

Primary

SQL Server

Secondary

SQL Server

GetPage@LSN

GetPa

A 4 v
Page Server #2 Page Server #N

SQL Server SQL Server

Page Server #1

SQL Server

(Checkpoint/Backup
A A

Synchronous Asynchronous
Interaction Interaction
.

Figure 2: Socrates Architecture

nodes cache data pages in main memory and on SSD in a
resilient buffer pool extension (Section 3.3).

The second tier of the Socrates architecture is the XLOG
service. This tier implements the “separation of log” prin-
ciple, motivated in Section 4.1.4. While this separation has
been proposed in the literature before [6, 8], this separation
of log differentiates Socrates from other cloud database sys-
tems such Amazon Aurora [20]. The XLOG service achieves
low commit latencies and good scalability at the storage tier
(scale-out). Since the Primary processes all updates (includ-
ing DML operations), only the Primary writes to the log.
This single writer approach guarantees low latency and high
throughput when writing to the log. All other nodes (e.g.,
Secondaries) consume the log in an asynchronous way to
keep their copies of data up to date.

The third tier is the storage tier. It is implemented by Page
Servers. Each Page Server has a copy of a partition of the
database, thereby deploying a scale-out storage architecture
which, as we will see, helps to bound all operations as pos-
tulated in Section 4.1.2. Page Servers play two important
roles: First, they serve pages to Compute nodes. Every Com-
pute node can request pages from a Page Server, following
a shared-disk architecture (Section 4.1.3). We are currently
working on implementing bulk operations such as bulk load-
ing, index creation, DB reorgs, deep page repair, and table
scans in Page Servers to further offload Compute nodes as
described in Section 4.1.5. In their second role, Page Servers
checkpoint data pages and create backups in XStore (the

P. Antonopoulos et al.

Primar Read Replicas Page Servers
/—vﬁ ~ (
. SQUServer SQL Server
‘ SQL Server Engine ‘ p
\ Vitualized 10)/ :
- ¢

XLOG Service
-

XLOG Process

K Log Broke
pi

Sequence Map

LOG

Vv

LOG

BSN: 150,
Length:5, Tog Block)
Filter:0x3} 74{ B:N 150\‘

i

Not Yet

(4 D —
’ 9 \““g”g Received
La Zone BsN:110, | Tog Block
Length: 13, (BSN 110‘
Filter:0x51}
’ Azure Standard Storage (XStore) \ W
- —" "
\/ [111 ““ 72 “
’ §;, | FULL || FULL |
()
’ P 7 \\/

Figure 3: XLOG Service

fourth tier). Like Compute nodes, Page Servers keep all their
data in main memory or locally attached SSDs for fast access.

The fourth tier is the Azure Storage Service (called XStore),
the existing storage service provided by Azure independently
of Socrates and SQL DB. XStore is a highly scalable, durable,
and cheap storage service based on hard disks. Data access
is remote and there are throughput and latency limits im-
posed by storage at that scale and price point. Separating
Page Servers with locally attached, fast storage from durable,
scalable, cheap storage implements the design principles
outlined in Section 4.1.1.

Compute nodes and Page Servers are stateless. They can
fail at any time without data loss. The “truth” of the database
is stored in XStore and XLOG. XStore is highly reliable and
has been used by virtually all Azure customers for many
years without data loss. Socrates leverages this robustness.
XLOG is a new service that we built specifically for Socrates.
It has high performance requirements, must be scalable, af-
fordable, and must never lose any data. We describe our
implementation of XLOG, Compute nodes, and Page Servers
in more detail next.

4.3 XLOG Service

Figure 3 shows the internals of the XLOG Service. Starting
in the upper left corner of Figure 3, the Primary Compute
node writes log blocks directly to a landing zone (LZ) which
is a fast and durable storage service that provides strong
guarantees on data integrity, resilience and consistency; in
other words, a storage service that has SAN-like capabilities.

Socrates: The New SQL Server in the Cloud

The current version of SQL DB Hyperscale uses the Azure
Premium Storage service (XIO) to implement the landing
zone. For durability, XIO keeps three replicas of all data.
As with every storage service, there is a performance, cost,
availability, and durability tradeoff. Furthermore, there are
many innovations in this space. Socrates naturally benefits
from these innovations. Appendix A studies this effect by
showing the performance impact of using an alternative
storage service instead of XIO.

The Primary writes log blocks synchronously and directly
to the LZ for lowest possible commit latency. The LZ is meant
to be fast (possibly expensive) but small. The LZ is organized
as a circular buffer, and the format of the log is a backward-
compatible extension of the traditional SQL Server log format
used in all of Microsoft’s SQL services and products. This
approach obeys the design principle of not reinventing the
wheel (Section 4.1.6) and maintaining compatibility between
Socrates and all other SQL Server products and services.
One key property of this log extension is that it allows con-
current log readers to read consistent information in the
presence of log writers without any synchronization (be-
yond wraparound protection). Minimizing synchronization
between tiers leads to a system that is more scalable and
more resilient.

The Primary also writes all log blocks to a special XLOG
process which disseminates the log blocks to Page Servers
and Secondaries. These writes are asynchronous and possibly
unreliable (in fire-and-forget style) using a lossy protocol.
One way to think about this scheme is that Socrates writes
synchronously and reliably into the LZ for durability and
asynchronously to the XLOG process for availability.

The Primary writes log blocks into the LZ and to the
XLOG process in parallel. Without synchronization, it is
possible that a log block arrives at, say, a Secondary be-
fore it is made durable in the LZ. We call such an unsyn-
chronized approach speculative logging and it can lead to
inconsistencies and data loss in the presence of failures. To
avoid these situations, XLOG only disseminates hardened
log blocks. Hardened blocks are blocks which have already
been made durable (with write quorum) in the LZ. To this
end, the Primary writes all log blocks first into the “pend-
ing area” of the XLOG process. Furthermore, the Primary
informs XLOG of all hardened log blocks. Once a block is
hardened, XLOG moves it from the “pending area” to the
LogBroker for dissemination, thereby also filling in gaps and
reordering out of order blocks from the lossy protocol to
write into the “pending area”.

To disseminate and archive log blocks, the XLOG process
implements a storage hierarchy. Once a block is moved into
the LogBroker, an internal XLOG process called destaging
moves the log to a fixed size local SSD cache for fast ac-
cess and to XStore for long term retention. Again, XStore is

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

cheap, abundant, durable, yet slow. We refer to this long-term
archive for log blocks as LT. If not specified otherwise, SQL
DB keeps log records for 30 days for point-in-time recovery
and disaster recovery with fuzzy backups. It would be prohib-
itively expensive to keep 30 days-worth of log records in the
LZ which is a low-latency, expensive service. This destaging
pipeline must be carefully tuned: Socrates cannot process any
update transactions once the LZ is full with log records that
have not been destaged yet. While this tiered architecture is
complex, no other log backup process is needed; between the
LZ and LT (XStore), all log information is durably stored. Fur-
thermore, this hierarchy meets all our latency (fast commit
in LZ) and cost requirements (mass storage in XStore).

Consumers (Secondaries, Page Servers) pull log blocks
from the XLOG service. This way, the architecture is more
scalable as the LogBroker need not keep track of log con-
sumers, possibly hundreds of Page Servers. At the top level,
the LogBroker has a main-memory hash map of log blocks
(called Sequence Map in Figure 3). In an ideal system, all
log blocks are served from this Sequence Map. If the data
is not found in the Sequence Map, the local SSD cache of
the XLOG process is the next tier. This local SSD cache is
another circular buffer of the tail of the log. If a consumer
requests a block that has aged out of the local SSD cache, the
log block is fetched from the LZ and, if that fails, from the
LT as a last resort where the log block is guaranteed to be
found.

The XLOG process implements a few other generic func-
tions that are required by a distributed DBaaS system: leases
for log lifetime, LT blob cleanup, backup/restore bookkeep-
ing, progress reporting for log consumers, block filtering,
etc. All of these functions are chosen carefully to preserve
the stateless nature of the XLOG process, to allow for easy
horizontal scaling, and to avoid affecting the main XLOG
functions of serving and destaging log.

4.4 Primary Compute Node and
GetPage @LSN

A Socrates Primary Compute node behaves almost identi-
cally to a standalone process in an on-premise SQL Server
installation. The database instance itself is unaware of the
presence of other replicas. It does not know that its storage
is remote, or that the log is not managed in local files. In
contrast, a HADR Primary node is well aware that it partici-
pates in a replicated state machine and achieves quorum to
harden log and commit transactions. In particular, a HADR
Primary knows all the Secondaries in a tightly coupled way.
The Socrates Primary is, thus, simpler.

The core function of the Primary, however, is the same:
Process read/write transactions and produce log. There are
several notable differences from an on-premise SQL Server:

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

e Storage level operations such as checkpoint,
backup/restore, page repair, etc. are delegated to the
Page Servers and lower storage tiers.

e The Socrates Primary writes log to the LZ using the
virtualized filesystem mechanism of Section 3.6. This
mechanism produces an I/O pattern that is compatible
with the LZ concept described in Section 4.3.

e The Socrates Primary makes use of the RBPEX cache
(Section 3.3). RBPEX is integrated transparently as a
layer just above the I/O virtualization layer.

e Arguably, the biggest difference is that a Socrates Pri-
mary does not keep a full copy of the database. It
merely caches a hot portion of the database that fits
into its main memory buffers and SSD (RBPEX).

This last difference requires a mechanism for the Primary
to retrieve pages which are not cached in the local node.
We call this mechanism GetPage@LSN. The GetPage@LSN
mechanism is a remote procedure call which is initiated by
the Primary from the FCB I/O virtualization layer using the
RBIO protocol (Section 3.4). The prototype for this call has
the following signature:

getPage(pageld, LSN)

Here, pageld identifies uniquely the page that the Primary
needs to read, and LSN identifies a page log sequence number
with a value at least as high as the last PageLSN of the page.
The Page Server (Section 4.6) returns a version of the page
that has applied all updates up to this LSN or higher.

To understand the need for this mechanism, consider the
following sequence of events:

(1) The Primary updates Page X in its local buffers.

(2) The Primary evicts Page X from its local buffers (both
buffer pool and RBPEX) because of memory pressure
or accumulated activity. Prior to the page eviction,
the Primary follows the write-ahead logging protocol
[18] and flushes all the log records that describe the
changes to Page X to XLOG.

(3) The Primary reads Page X again.

In this scenario, it is important that the Primary sees the
latest version of Page X in Step 3 and, thus, issues a getPage(X,
X-LSN) request with a specific X-LSN that guarantees that
the Page Server returns the latest version of the page.

To guarantee freshness, the Page Server handles a get-
Page(X, X-LSN) request in the following way:

(1) Wait until it has applied all log records from XLOG up
to X-LSN.
(2) Return Page X.

This simple protocol is all that is needed to make sure that
that the Page Server does not return a stale version of Page
X to the Primary. (Section 4.6 contains more details on Page
Servers.)

P. Antonopoulos et al.

We have not described yet how the Primary knows which
X-LSN to use when issuing the getPage(X, X-LSN) call. Ide-
ally, X-LSN would be the most recent page LSN for Page
X. However, the Primary cannot remember the LSNs of all
pages it has evicted (essentially the whole database). Instead,
the Primary builds a hash map (on pageld) which stores in
each bucket the highest LSN for every page evicted from the
Primary keyed by pageld. Given that Page X was evicted at
some point from the Primary, this mechanism will guarantee
to give an X-LSN value that is at least as large as the largest
LSN for Page X and is, thus, safe.

4.5 Secondary Compute Node

Following the reuse design principle (Section 4.1.6), a Socrates
Secondary shares the same apply log functionality as in
HADR. A (simplifying) difference is that the Socrates Sec-
ondary need not save and persist log blocks because that is
the responsibility of the XLOG service. Furthermore, Socrates
is a loosely coupled architecture so that the Socrates Sec-
ondary does not need to know who produces the log (i.e.,
which node is the Primary). As in HADR, the Socrates Sec-
ondary processes read-only transactions (using Snapshot
Isolation [4]). The most important components such as the
query processor, the security manager, and the transaction
manager are virtually unchanged from standalone SQL Server
and HADR.

As with the Primary, the most significant changes between
Socrates and HADR come from the fact that Socrates Secon-
daries do not have a full copy of the database. This fact is
fundamental to achieving our goal to support large databases
and making Compute nodes stateless (with a cache). As a
result, it is possible that the Secondary processes a log record
that relates to a page that is not in its buffers (neither main
memory nor SSD). There are different policies conceivable
for this situation. One possible policy is to fetch the page
and apply the log record. This way, the Secondary’s cache
has roughly the same state as the Primary’s cache (at least
for updated pages) and performance is more stable after a
fail-over to the Secondary.

The policy that SQL DB Hyperscale currently implements
is that log records that involve pages that are not cached
are simply ignored. This policy results in an interesting race
condition because the check for existence in the cache can
conflict with a concurrent, pending GetPage@LSN request
from a read-only transaction processed by the Secondary. To
resolve this conflict, Secondaries must register GetPage @LSN
requests before making the actual call and the apply-log
thread of the Secondary queues log records of pending Get-
Page@LSN requests until the page is loaded.

Socrates: The New SQL Server in the Cloud

Another interesting race condition arises when the Sec-
ondary does B-tree traversals to process read-only transac-
tions. The Secondary applies the same GetPage@LSN proto-
col to fetch pages from Page Servers as the Primary. Again,
the Secondary has a PageLSN cache to conservatively de-
termine the right LSN. This LSN is typically lower than the
last LSN written by the Primary at the same point in time.
This can result in inconsistencies. Consider the following
situation as part of a B-tree traversal:

o The Secondary reads B-tree Node P with LSN 23. (The
Secondary has applied log until LSN 23.)

e The next Node C, a child of P, is not cached. The Sec-
ondary issues a getPage(C, 23) request.

o The Page Server returns Page C with LSN 25, following
the protocol described in Section 4.4.

According to the GetPage@LSN protocol, the Page Server
may return a page from the future. This can create incon-
sistencies. For instance, what if Page C was split at Time
24? In this case, the Secondary has looked at Page P from
its present (before the split) and looks at Page C from the
future (after the split) which may result in wrong results.
Fortunately, it is easy to detect such inconsistencies. If the
Secondary detects such an inconsistency during an index
traversal, it will pause to give the log apply thread some time
to consume more log to refresh the stale index pages (i.e.,
Page P). After that pause, it will restart the B-tree traversal,
hoping that the index structure is now consistent.

The key insight here is that persistent data structures in
SQL Server have been designed such that logically coherent
traversals can be achieved even in the presence of pages that
are physically obtained from different points in time (from
an LSN perspective). Logical traversals rely on the version
store described in Section 3.1 to extract the right version of
a record from a page given the transaction timestamp (using
Snapshot Isolation).

4.6 Page Servers

A Page Server is responsible for (i) maintaining a partition
of the database by applying log to it, (ii) responding to Get-
Page@LSN requests from Compute nodes and (iii) perform-
ing distributed checkpoints and taking backups.

Following the reuse principle of Section 4.1.6, Page Servers
carry out the log apply task in a manner that is similar to
the procedure for Secondaries described in Section 4.5. In
contrast to Secondaries which need to be made aware of all
changes to the database and, thus, need to consume all log
blocks, Page Servers only ever care about log blocks that
contain log records that involve pages of the database parti-
tion handled by that particular Page Server. To this end, the
Primary includes sufficient out-of-band annotations for each
log block that indicates which partitions are affected by log

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

records in a log block. XLOG uses this filtering information
to disseminate only relevant log blocks to each Page Server.

Serving GetPage@LSN requests is also straightforward.
The Page Server simply follows the protocol of Section 4.4.
To this end, Page Servers also use RBPEX, the SSD-extended,
recoverable cache. The mechanisms to use RBPEX are the
same for Page Servers as for Compute nodes, but the pol-
icy is different. Compute nodes cache the hottest pages for
best performance; their caches are sparse. In contrast, Page
Servers cache less hot pages, those pages that are not hot
enough to make it in the Compute node’s cache. That is why
SQL DB Hyperscale currently implements Page Servers us-
ing a covering cache; i.e., all pages of the partition are stored
in the Page Server’s RBPEX. Furthermore, Socrates organizes
a Page Server’s RBPEX in a stride-preserving layout such
that a single I/O request from a compute node that covers
a multi-page range translates into a single I/O request at
the Page Server. Since the Page Server’s cache is dense, the
Pager Server does not suffer from read amplification while
the sparse RBPEX caches at Compute nodes do. This charac-
teristic is important for the performance of scan operations
that commonly read up to 128 pages. Another important
characteristic of the Page Server cache is that it provides in-
sulation from transient XStore failures. On an XStore outage,
the Page Server continues operating in a mode where pages
that were written in RBPEX but not in XStore are remem-
bered and checkpointing is resumed (and XStore is caught
up) when XStore is back online. The same mechanism allows
Socrates to aggregate multiple I/Os being sent to XStore in a
single large write operation in order to get the best possible
throughput out of the underlying storage service. Finally,
when a new Page Server is started, its RBPEX is seeded asyn-
chronously while the Page Server is already available and
able to serve requests and apply log. Decoupling long run-
ning operations such as seeding new Page Servers from other
operational tasks (Section 4.1.3) is one of the key principles
we tried to enforce at all layers in the Socrates stack.

Finally, Page Servers take checkpoints and do backups
by interacting with XStore. How Page Servers and XStore
operate together for these operations is the subject of the
next subsection.

4.7 XStore for Durability and
Backup/Restore

As shown in the previous sections, the truth of the database
is stored in XStore. The details of XStore are described in [10].
In a nutshell, XStore is cheap (based on hard disks), durable
(virtually no data loss due to a high degree of replication
across availability zones), and provides efficient backup and
restore by using a log-structured design (taking a backup

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

merely requires keeping a pointer into the log) [19]. But XS-
tore is potentially slow. The goal of all other components of
the Socrates architecture is to add performance and avail-
ability. In other words, XStore plays in Socrates the same
role as hard disks and tape in a traditional database system.
The main-memory and SSD caches (RBPEX) of Compute
nodes and Page Servers play in Socrates the same role as
main memory in a traditional system.

Once these analogies are understood, it is straightforward
to see how Socrates does checkpointing, recovery, backup,
and restore. For checkpointing, a Page Server regularly ships
modified pages to XStore. Backups are implemented using
XStore’s snapshot feature which allows to create a backup in
constant time by simply recording a timestamp [10]. When a
user requests a Point-In-Time-Restore operation (PITR), the
restore workflow identifies (i) the complete set of snapshots
that have been taken just before the time of the PITR, and
(ii) the log range required to bring this set of snapshots from
their time to the requested time. These snapshots are then
copied to new blobs and a restore operation starts in which
each blob is attached to a new Page Server instance, a new
XLOG process is bootstrapped on the copied log blobs and
the log applied to bring the database all the way to the PITR
requested time.

This Socrates PITR process is much more efficient than in
HADR today. Like taking a snapshot, restoring a snapshot
in XStore is a short, meta-data operation that is executed in
constant time (independent of the size of the data). Further-
more, the database becomes available almost instantaneously
because the new Page Servers can start serving pages of the
restored database instantaneously. However, performance
will degrade until the caches of the Page Servers are restored
because pages need to be fetched and recovered from XStore
first. This example demonstrates again the importance to
leverage existing cloud services (Section 4.1.4).

5 SOCRATES AT WORK

The GetPage@LSN protocol described in Sections 4.4 to 4.6
is a nice example of how Socrates implements distributed
protocols. The design principles are always the same: The
Socrates mini-services like Primary, Secondaries, XLOG, and
Page Servers are autonomous and decoupled and commu-
nication is asynchronous whenever possible. For scalability,
mini-services do not need to know about other mini-services;
for instance, the Primary need not know how many Page
Servers exist, possibly hundreds (Section 6). Synchronization
is done by time travel whenever possible and by waiting if a
mini-service is behind.

Socrates implements all distributed algorithms following
these principles. Other examples, omitted for brevity, are
distributed checkpointing (across all Page Servers), fail-over

P. Antonopoulos et al.

of the Primary, scaling up and down (i.e., serverless), creating
anew Secondary, management of leases for log consumption,
and creating new Page Servers.

6 DISCUSSION & SOCRATES
DEPLOYMENTS

The Socrates architecture has many advantages. Separating
Compute and Storage (Page Servers in Socrates) has been
studied extensively in the literature [5, 8, 16, 17, 20]: It helps
to build scalable database systems that grow beyond the
storage capabilities of a single machine. Furthermore, this
principle helps to establish a more fine-grained pay-as-you-
go model in the cloud in which customers pay only for the
storage that they need and independently for the compute
that they consume. Socrates inherits all the advantages of
this separating compute and storage principle. It also inherits
the disadvantages in that reads can become more expensive
as they may need to access remote servers; Socrates remedies
this disadvantage by aggressively caching data in Compute
nodes in main memory and disk, and Section 4 described the
many innovations we did to get caching right.

A novel feature of the Socrates architecture is that it sepa-
rates availability from durability. In Socrates, XLOG and XS-
tore are the tiers that are responsible for durability whereas
the Compute and Page Server tiers are only there for avail-
ability: If they fail, no data is lost, but the service becomes
unavailable until they are restored. The big advantage of
this separation is that it provides flexibility and fine-grained
control to navigate the availability / performance / cost trade-
off. This way a Socrates deployment can be tailored to the
specific needs of an application.

XLOG and XStore are needed in all Socrates deployments
for durability. So, the simplest Socrates deployment con-
sists of a single Compute node (the Primary Compute node,
no Secondaries) and one Page Server that handles page re-
quests for the entire database. This deployment is the most
cost-effective deployment; its performance depends on the
hardware used to run the Primary and the Page Server. The
downside of this minimum deployment is availability: If,
say, the Primary Compute node fails, a new Compute node
needs to be spun up to become the new Primary, resulting
in downtime. Once the new Primary node is up, the system
is available, but peak performance is only achieved after the
cache of the new Primary is hot.

To achieve higher availability and avoid performance jit-
ter after failures, any number of Secondaries can be added,
at higher cost and better performance because the Secon-
daries can be used for read-only transactions. Increasing the
number of Page Servers also increases cost, performance,
and availability. Interestingly, there are two ways in Socrates

Socrates: The New SQL Server in the Cloud

to add Page Servers with subtly different availability im-
pact. One way to add a Page Server is to make the sharding
of the database more fine-grained. This way, availability is
improved because the partitions are smaller and, thus, the
mean-time-to-recovery is smaller as it is faster to spin up a
new Page Server for a partition. According to [14], a lower
mean-time-to-recovery implies higher availability. Further-
more, this approach improves performance by increasing the
degree of parallelism when bulk operations (e.g., large table
scans or bulkloads) are pushed down to Page Servers [12].
With today’s network and hardware parameters, we calcu-
lated that a good partition size for a Page Server is 128GB.
So, a Socrates database with hundreds of TB will result in a
deployment with thousands of Page Servers.

A second way to add a Page Server is to create a replica of
an existing Page Server. This approach increases availability
as the replica is ready (and hot) when the Page Server fails.

Geo-replication is an important way to increase both avail-
ability and performance. Socrates allows to deploy Secon-
daries and Page Servers in different data centers and availabil-
ity zones. This approach improves performance, for instance,
because the database can be queried by local Secondaries
around the world. But, of course, geo-replication also comes
at a cost of shipping the log across data centers.

Finally, an important advantage of the Socrates architec-
ture is that it makes best use of other, existing cloud services.
The Azure XStore service is used to do efficient backups
(for point in time recovery) and to implement durability in a
scalable and cheap way. The XLOG tier depends on Azure
Premium Storage. As we will see in Section 7, Socrates nat-
urally benefits from innovations in these existing services.
The Compute and Page Server tiers implement native data-
base functionality only and do not replicate any functionality
provided by other, more general cloud services.

7 PERFORMANCE EXPERIMENTS AND
RESULTS

This section presents experimental results that assess the
effectiveness of the Socrates design. As a baseline, we use
the HADR architecture (Section 2).

7.1 Software and Services Used

We implemented Socrates as part of the SQL DB Hyperscale
service in Azure. At the time of writing this paper, this service
was in preview and we used this preview version for all
experiments reported in this paper. We experimented with
two different deployments:

e Production: This is the same version of SQL DB Hy-
perscale that Azure customers get. It allowed us to do
an apples-to-apples comparison of Socrates with the

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

CPU % | Write TPS | Read TPS | Total TPS
HADR 99.1 347 1055 1402
Socrates 96.4 330 1005 1335

Table 2: CDB Throughput: HADR vs. Socrates (1TB)

HADR-based SQL DB service. It uses Azure Premium
Storage (XIO) to implement the Socrates LZ.

e Test: We also deployed Socrates in a test cluster to
study the impact of a new, improved premium storage
service to implement the LZ.

The experiments with the Test system are presented in Ap-
pendix A.

We used Azure VMs of different T-shirt sizes. For the
experiments in the Test cluster, we used VMs with 64 cores,
432 GB of main memory, and 32 disks. In the Production
deployment, we used VMs with 8 and 16 cores for both
Socrates and HADR.

We used the CDB benchmark [1] which is Microsoft’s
Cloud Database Benchmark (also known as the DTU bench-
mark) and has been used to test the performance of all Mi-
crosoft DBaa$ offerings in Azure. CDB is based on a syn-
thetic database with six tables and a scaling factor to generate
databases of different sizes. If not stated otherwise, we used
a 1TB CDB database which is a size that is comfortably sup-
ported by HADR. We also did experiments that demonstrate
the scalability of Socrates to much larger sizes (not supported
by HADR).

CDB defines a set of transaction types covering a wide
range of operations from simple point lookups to complex
bulk updates. Furthermore, CDB specifies workload mixes
that test system characteristics for specific workloads; e.g.,
read-only.

7.2 Experiment 1: CDB Default Mix,
Throughput, Production Cluster

Table 2 shows the throughput of Socrates and HADR in
production on an eight core VM with 64 concurrent client
threads to generate the workload. For these experiments we
used the default workload mix of CDB which executes all
transaction types of the benchmark. The size of the database
was 1TB.

Table 2 shows that Socrates throughput is about 5% lower
than the throughput of HADR. This result is not unex-
pected for a service in preview, especially considering that
HADR has been tuned over the years for this benchmark.
It is interesting to understand how Socrates loses this 5%.
HADR achieves 99.1% CPU utilization which is almost per-
fect. Socrates has a lower CPU utilization as it needs to wait
longer for remote I/Os. This lower CPU utilization explains
half of the deficit. Recall that remote I/O is fundamental to

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Data | Scale | Memory | RBPEX | Local cache
Size | Factor Size Size hit %
1TB 20000 56GB 168GB 52

Table 3: Socrates Cache Hit Rate (CDB)

Data | Customers | Memory | RBPEX | Local cache
Size Size Size hit %
30TB 3.1M 88GB 320GB 32

Table 4: Socrates Cache Hit Rate (TPC-E)

any DBaa$ architecture that scales database sizes beyond
what can fit into a single machine. From performance pro-
files, it seems that the other 2.5% performance gap come
from a higher CPU cost of writing the log to a remote service
(XLOG). We believe that Socrates can catch up and become
even better than HADR with larger caches and further tuning
of the I/O and network protocols.

7.3 Experiment 2: Caching Behavior

Table 3 shows the cache hit rate of Socrates for a 1TB CDB
database and an RBPEX with 56GB of main memory buffers,
and 168 GB of SSD storage space. (Obviously, the hit rate
is 100% in HADR because HADR stores a full copy of the
database in every Compute node.)

For this experiment, we again used the default workload
mix of CDB. This workload randomly touches pages scat-
tered across the entire database. Thus, this workload is a bad
case for caching. Nevertheless, we achieve a 50% hit rate for
a cache that is only 15% of the size of the database. To study
a more realistic scenario, we ran Socrates on a 30TB TPC-E
database using the TPC-E benchmark. For this experiment,
we increased the buffer pool of the Socrates Primary (88 GB
of main memory and 320 GB of SSD). Table 4 shows that
even though the cache is only about 1% of the size of the
database, Socrates had a 32% hit rate.

These results indicate that a smart local SSD cache can be
extremely effective. We believe that similar improvements
can be made in other operational areas, too, thereby exploit-
ing the flexible, decomposed Socrates architecture; e.g., to
reduce the cost of recovery, impact on database engine up-
grade, and peak-to-peak performance after a machine restart.

7.4 Experiment 3: Update-heavy CDB, Log
Throughput

The goal of this experiment was to evaluate the ability to sus-

tain high update throughputs. Specifically, this experiment

studied the logging throughput of Socrates and HADR using

a special workload mix of CDB that produces the maximum

P. Antonopoulos et al.

SF Log MB/s | CPU %
HADR 30000 56.9 46.2
Socrates | 30000 89.8 73.2

Table 5: CDB Log Throughput: HADR vs. Socrates

amount of log data. In this experiment, the log is the bot-
tleneck for both HADR and Socrates and the performance
of the system is determined by the logging bandwidth. For
these experiments, we used VMs with 16 cores and 256 client
threads to generate the transactional workload to make sure
that indeed the logging component is saturated.

Table 5 shows that Socrates beats HADR in this experi-
ment. The low CPU utilization indicates that in both systems
indeed the logging component is the bottleneck.

Why is Socrates better in this experiment? What deter-
mines the logging bandwidth? To answer these questions,
we need to look at the entire logging pipeline. HADR needs
to drive log and database backup from the Compute nodes in
parallel with the user workload. Log production is restricted
to the level at which the log backup egress can be safely
handled by the Azure Storage tier (XStore) underneath. In
contrast, Socrates can leverage XStore’s snapshot feature for
backup which results in a much higher log production rate
upstream at the Socrates Primary.

This result is a good example of how pushing storage func-
tions (such as backup in this case) down into a dedicated
storage tier is an extremely powerful concept. Such optimiza-
tions in lower tiers of the system can significantly impact
the performance of customer-facing Compute nodes as there
are complex performance dependencies even in a loosely
coupled system like Socrates.

8 CONCLUSION

This paper presented Socrates, a new architecture for DBaaS
offerings in the cloud. Socrates powers Microsoft’s new SQL
database service in Azure, called SQL DB Hyperscale. Socrates
relies on the well established principle of separating Compute
and Storage to achieve better availability and elasticity. Fur-
thermore, Socrates separates durability and availability. This
approach is novel and has not been studied in the literature
before. The big advantage of this separation is that it allows
to flexibly meet customer requirements regarding the cost /
performance / availability tradeoff.

Socrates is a novel architecture, and we are still in the
early days of understanding and exploiting its full potential.
We are currently implementing bulk operations in parallel
in Socrates Page Servers. Further avenues for future work
include exploring multi-master variants for Socrates, better
HTAP support in Socrates, and making use of the log for
other services such as audit and security.

Socrates: The New SQL Server in the Cloud

Acknowledgments. Socrates and SQL DB Hyperscale is the
result of a large collaborative effort across the Microsoft SQL
organization and Microsoft Research. We would like to thank
Elias Yousefi Amin Abadi, Ruokun An, Wayne Chen, Chris-
tian Damianidis, Paul Larson, Justin Lewandoski, Alexandru
Nedelcu, Shweta Raje, Brendan Rowan, Swati Roy, Sridha-
ran Sakthivelu (Intel) and Weidan Yan for their invaluable
contributions to the design and implementation of Socrates.

REFERENCES

[1] 2018. CDB/DTU benchmark. https://docs.microsoft.com/en-us/azure/
sql-database/sql-database-service-tiers-dtu.

[2] 2018. Microsoft SQL Hyperscale. https://docs.microsoft.com/en-us/
azure/sql-database/sql-database-service-tier-hyperscale.

[3] 2018. Oracle Cloud Database. https://cloud.oracle.com/database/.

[4] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,
and Patrick O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. In
SIGMOD 1995.

[5] Philip A. Bernstein, Colin W. Reid, and Sudipto Das. 2011. Hyder - A
Transactional Record Manager for Shared Flash. In CIDR 2011.

[6] Dhruba Borthakur. 2017. The Birth of RocksDB-Cloud. http://rocksdb.
blogspot.com/2017/05/the-birth-of-rocksdb-cloud.html.

[7] Peter Braam, Sean Roberts, Matthew O’Keefe, and David Bonnie. 2016.
The Limits of Open Source in Extreme-scale Storage Systems Design.
https://docplayer.net/62056362- The-limits-of-open-source-in-extreme\
-scale-storage-systems-design.html.

[8] Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann,
and Tim Kraska. 2008. Building a Database on S3. In SIGMOD 2008.

[9] Alain Bui and Hacéne Fouchal (Eds.). 2002. OPODIS 2002. Studia
Informatica Universalis, Vol. 3.

[10] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng
Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal
Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-
basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq,
Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin
McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas.
2011. Windows Azure Storage: a highly available cloud storage service
with strong consistency. In SOSP 2011.

[11] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, J] Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene
Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Dale Woodford,
Yasushi Saito, Christopher Taylor, Michal Szymaniak, and Ruth Wang.
2012. Spanner: Google’s Globally-Distributed Database. In OSDI 2012.

[12] Michael J. Franklin, Bjérn Por Jonsson, and Donald Kossmann. 1996.
Performance Tradeoffs for Client-Server Query Processing. In SIGMOD
1996.

[13] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis E. Shasha. 1996.
The Dangers of Replication and a Solution. In SIGMOD 1996.

[14] Jim Gray and Andreas Reuter. 1990. Transaction Processing: Concepts
and Techniques.

[15] Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman,
Jignesh M. Patel, and Mike Zwilling. 2011. High-Performance Concur-
rency Control Mechanisms for Main-Memory Databases. PVLDB 5, 4
(2011).

[16] Simon Loesing, Markus Pilman, Thomas Etter, and Donald Kossmann.
2015. On the Design and Scalability of Distributed Shared-Data
Databases. In SIGMOD 2015.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

[17] David B. Lomet, Alan Fekete, Gerhard Weikum, and Michael J. Zwilling.
2009. Unbundling Transaction Services in the Cloud. In CIDR 2009.

[18] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter
Schwarz. 1992. ARIES: A Transaction Recovery Method Supporting
Fine-granularity Locking and Partial Rollbacks Using Write-ahead
Logging. TODS 17, 1 (1992).

[19] Mendel Rosenblum and John K. Ousterhout. 1992. The Design and
Implementation of a Log-Structured File System. TOCS 10, 1 (1992).

[20] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmade-
sam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Mau-
rice, Tengiz Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora:
Design Considerations for High Throughput Cloud-Native Relational
Databases. In SIGMOD 2017.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tiers-dtu
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tier-hyperscale
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-service-tier-hyperscale
https://cloud.oracle.com/database/
http://rocksdb.blogspot.com/2017/05/the-birth-of-rocksdb-cloud.html
http://rocksdb.blogspot.com/2017/05/the-birth-of-rocksdb-cloud.html
https://docplayer.net/62056362-The-limits-of-open-source-in-extreme\ -scale-storage-systems-design.html
https://docplayer.net/62056362-The-limits-of-open-source-in-extreme\ -scale-storage-systems-design.html

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

STDEV | Min (us) | Median (us) | Max (us)
XIO 431 2518 3300 36864
DD 167 484 800 39857

Table 6: CDB UpdateLite Latency: XIO vs. DD

A EXPERIMENT 4: TEST CLUSTER, XIO
VS. DIRECTDRIVE

The last set of experiments studied the impact of the storage
service used to implement the LZ. Azure constantly improves
its storage services and Socrates allows SQL DB Hyperscale
to take advantage of these innovations.

For this experiment, we ran Socrates in a Test cluster in
two different configurations with identical hardware and
running the same workload on the same database. The only
difference was the implementation of the LZ: We compared
an implementation based on XIO (as in all previous experi-
ments) and another implementation based on a new Azure
service called DirectDrive (DD for short). When we did these
experiments, DD was also in preview. DD aggressively ex-
ploits new technology trends such as RDMA. DD uses Win32
and the Windows I/O stack. For this experiment, we used a
CDB workload mix with mostly small updates and no read
transactions. We reduced the number of clients and measured
the latency of committing a transaction. In this workload the
CPU utilization is low because the clients did not generate
enough work to saturate it.

Table 6 shows that DD has significantly better min and
median latency. Only for the max latency are XIO and DD
the same.

Update Lite, Throughput

4000
2 EXIO DD
£ 3000
=
5 2000
o
ey
% 1000 I
: [
1 2 4 8

Number of Client Threads

Figure 4: Socrates UpdateLite Throughput vs. Threads

The results of Table 6 were obtained with a single client
thread. Figure 4 depicts the throughput with a growing num-
ber of concurrent client threads. Obviously, lower latency
translates into higher throughput as long as the CPU of the
Primary is under-utilized. This rule is workload-dependent

P. Antonopoulos et al.

Threads | Log MB/s | CPU %
XIO 128 69 30
DD 16 70 9

Table 7: CDB UpdateLite Log Throughput: XIO vs. DD

and depends, in particular, on the read/write ratio. Neverthe-
less, DD is the clear winner indicating that Socrates benefits
nicely from such innovations as DD.

Finally, Table 7 shows the CPU utilization. In this exper-
iment, we varied the number of client threads such that
Socrates with both XIO and DD has roughly the same log
throughput of 70 MB per second. Table 7 shows that XIO
needs 8x the load to achieve the same log throughput as DD,
thereby consuming three times as much CPU in the Primary
(and eight times as much CPU in the clients). This way, DD
can significantly reduce the cost of Socrates databases as
CPU dominates the cost of running a DBaaS offering. Here,
one factor is that XIO requires expensive REST calls whereas
DD requests go through cheaper Win32 calls. We hope that
leveraging DD will also help Socrates to close the perfor-
mance gap to SQL DB discussed in Experiment 1.

In summary, all these experiments make a simple point:
Socrates can leverage storage innovations in ways that tradi-
tional, more monolithic DBaaS architectures cannot. These
improvements were achieved without changing a single line
of code. In the long run, we believe that these improvements
outweigh the performance penalties due to reading data from
remote servers.

	Abstract
	1 Introduction
	2 State of the Art
	3 Important SQL Server Features
	3.1 Page Version Store
	3.2 Accelerated Database Recovery
	3.3 Resilient Buffer Pool Extension
	3.4 RBIO protocol
	3.5 Snapshot Backup/Restore
	3.6 I/O Stack Virtualization

	4 Socrates Architecture
	4.1 Design Goals and Principles
	4.2 Socrates Architecture Overview
	4.3 XLOG Service
	4.4 Primary Compute Node and GetPage@LSN
	4.5 Secondary Compute Node
	4.6 Page Servers
	4.7 XStore for Durability and Backup/Restore

	5 Socrates at Work
	6 Discussion & Socrates Deployments
	7 Performance Experiments and Results
	7.1 Software and Services Used
	7.2 Experiment 1: CDB Default Mix, Throughput, Production Cluster
	7.3 Experiment 2: Caching Behavior
	7.4 Experiment 3: Update-heavy CDB, Log Throughput

	8 Conclusion
	References
	A Experiment 4: Test Cluster, XIO vs. DirectDrive

