
PHOTOREALISTIC IMAGE SYNTHESIS FOR OBJECT INSTANCE DETECTION

Tomáš Hodaň1,2 Vibhav Vineet2 Ran Gal2 Emanuel Shalev2 Jon Hanzelka2

Treb Connell2 Pedro Urbina2 Sudipta N. Sinha2 Brian Guenter2

1FEE, Czech Technical University in Prague 2Microsoft Research

ABSTRACT
We present an approach to synthesize highly photorealistic
images of 3D object models, which we use to train a convolu-
tional neural network for detecting the objects in real images.
The proposed approach has three key ingredients: (1) 3D ob-
ject models are rendered in 3D models of complete scenes
with realistic materials and lighting, (2) plausible geometric
configuration of objects and cameras in a scene is generated
using physics simulation, and (3) high photorealism of the
synthesized images is achieved by physically based render-
ing. When trained on images synthesized by the proposed ap-
proach, the Faster R-CNN object detector [1] achieves a 24%
absolute improvement of mAP@.75IoU on Rutgers APC [2]
and 11% on LineMod-Occluded [3] datasets, compared to a
baseline where the training images are synthesized by render-
ing object models on top of random photographs. This work is
a step towards being able to effectively train object detectors
without capturing or annotating any real images. A dataset
of 600K synthetic images with ground truth annotations for
various computer vision tasks will be released on the project
website: thodan.github.io/objectsynth.

1. INTRODUCTION

Object instance detection is a computer vision task which in-
volves recognizing specific objects in an image and estimat-
ing their 2D bounding boxes. Convolutional neural networks
(CNN’s) have become the standard approach for tackling this
task. However, training CNN models requires large amounts
of real annotated images which are expensive to acquire.

Computer graphics has been used to synthesize training
images for various computer vision tasks. This approach
scales well as only minimal human effort, which may in-
clude 3D modeling, is required. Nevertheless, despite train-
ing CNN’s on massive datasets of diverse synthetic images,
a large drop of performance has been observed when models
trained only on synthetic images were tested on real im-
ages [4, 5, 6]. The domain gap between the synthetic and real
images can be reduced by domain adaptation techniques that
aim to learn domain invariant representations or to transfer
trained models from one domain to another [7]. A different
line of work, presumably complementary to domain adapta-
tion, has recently tried to reduce the domain gap by synthe-

Photorealistic images synthesized by the proposed approach

Real images from LineMod [14] and Rutgers APC [2] datasets

Fig. 1. Faster R-CNN object detector [1] achieves 11–24%
higher mAP@.75IoU on real test images when trained on
photorealistic synthetic images than when trained on images
of objects rendered on top of random photographs.

sizing training images with a higher degree of visual realism.
The use of physically based rendering has been considered
with this motivation and shown promising results [8, 9].

Physically based rendering techniques, e.g. Arnold [10],
accurately simulate the flow of light energy in the scene by
ray tracing. This naturally accounts for complex illumination
effects such as scattering, refraction and reflection, including
diffuse and specular interreflection between the objects and
the scene and between the objects themselves. The rendered
images are very realistic and often difficult to differentiate
from real photographs [11]. Rendering techniques based on
rasterization, e.g. OpenGL [12], can approximate the com-
plex effects in an ad hoc way through custom shaders, but
the approximations cause physically incorrect artifacts that
are difficult to eliminate [13]. Physically based rendering has
been historically noticeably slower than rasterization, how-
ever, the recently introduced Nvidia RTX ray tracing GPU
promises a substantial reduction of the rendering time.

ar
X

iv
:1

90
2.

03
33

4v
1 

 [
cs

.C
V

] 
 9

 F
eb

 2
01

9



In this work, we investigate the use of highly photorealis-
tic synthetic images for training Faster R-CNN, a CNN-based
object detector [1]. To synthesize the images, we present an
approach with three key ingredients. First, 3D models of ob-
jects are not rendered in isolation but inside 3D models of
complete scenes. For this purpose, we have created models of
six indoor scenes with realistic materials and lighting. Sec-
ond, plausible geometric configuration of objects and cameras
in a scene is generated using physics simulation. Finally, a
high degree of visual realism is achieved by physically based
rendering (see Fig. 1 and the supplementary material).

The experiments show that Faster R-CNN trained on the
photorealistic synthetic images achieves a 24% absolute im-
provement of mAP@.75IoU on real test images from Rut-
gers APC [2], and 11% on real test images from LineMod-
Occluded [3, 14]. The improvement is relative to a base-
line where the training images are synthesized by rendering
object models on top of random photographs – similar im-
ages are commonly used for training methods for tasks such
as object instance detection [15], object instance segmenta-
tion [16], and 6D object pose estimation [17, 18].

2. RELATED WORK

Synthetic images have been used for benchmarking and train-
ing models for various computer vision tasks. Here we review
approaches to generate synthetic images and approaches to
reduce the gap between the synthetic and real domains.

Rendering Objects. Su et al. [5] synthesized images of
3D object models for viewpoint estimation, Hinterstoisser et
al. [16] for object instance detection and segmentation, and
Dosovitskiy et al. [19] for optical flow estimation. They used
a fixed OpenGL pipeline and pasted the rendered pixels over
randomly selected real photographs. Rad et al. [18], Tekin
et al. [20] and Dwibedi et al. [15] similarly pasted segments
of objects from real images on other real images for object
detection and pose estimation. Dvornik et al. [21] showed the
importance of selecting suitable background images. While
these approaches are easy to implement, the resulting images
are not realistic, objects often have inconsistent shading with
respect to the background scene, interreflections and shadows
are missing and the object pose and context are usually not
natural. Attias et al. [22] rendered photorealistic images of
3D car models placed within 3D scene models and showed
the benefit over naive rendering methods, whereas Tremblay
et al. [23] rendered objects in physically plausible poses in
diverse scenes, but did not use physically based rendering.

Rendering Scenes. Another line of work explored render-
ing of complete scenes and generating corresponding ground
truth maps. Richter et al. [24, 4] leveraged existing commer-
cial game engines to acquire ground truth for several tasks.
However, such game engines cannot be customized to insert
new 3D object models. Synthia [25] and Virtual KITTI [26]

datasets were generated using virtual cities modeled from
scratch. Handa et al. [27] and Zhang [9] modeled 3D scenes
for semantic scene understanding. Finally, SceneNet [28] was
created by synthesizing RGB-D video frames from simulated
cameras moving realistically within static scenes.

Domain Adaptation. Popular approaches to bridge the gap
between the synthetic and real domains include re-training the
model in the real domain, learning domain invariant features,
or learning a mapping between the two domains [29, 7]. In
contrast, domain randomization methods reduce the gap by
randomizing the rendering parameters and have been used in
object localization and pose estimation [29, 30, 31].

PBR based approaches. Physically based rendering (PBR)
techniques can synthesize images with a high degree of vi-
sual realism which promises to reduce the domain gap. Li and
Snavely [8] used PBR images to train models for intrinsic im-
age decomposition and Zhang et al. [9] for semantic segmen-
tation, normal estimation and boundary detection. However,
they focus on scene understanding not object understanding
tasks. Wood et al. [32] used PBR images of eyes for training
gaze estimation models. Other ways to generate photorealis-
tic images have been also proposed [33, 34].

3. PROPOSED APPROACH

To achieve a high degree of visual realism in computer gener-
ated imagery, one needs to focus on (1) modeling the scene to
a high level of detail in terms of geometry, textures and mate-
rials, and (2) simulating the lighting, including soft shadows,
reflections, refractions and indirect light bounces [10]. This
section describes the proposed approach to synthesize highly
photorealistic images of objects in indoor scenes, which in-
cludes modeling of the objects and the scenes (Fig. 2), arrang-
ing the object models in the scene models, generating camera
poses, and rendering images of the object arrangements.

3.1. Scene and Object Modeling

3D Object Models. We worked with 3D models of 15 objects
from LineMod (LM) [14] and 14 objects from Rutgers APC
(RU-APC) [2]. We used the refined models from BOP [35],
provided as colored meshes with surface normals, and manu-
ally assigned them material properties. A Lambertian mate-
rial was used for the RU-APC models as the objects are made
mostly of cardboard. The LM models were assigned material
properties which match their appearance in real images. The
specular, metallic and roughness parameters of the Arnold
renderer [10] were used to control the material properties.

3D Scene Models. The object models were arranged and ren-
dered within 3D models of six furnished scenes. Scenes 1–5
represent work and household environments and include fine
details and typical objects, e.g. the kitchen scene (Scene 5)



contains dishes in a sink or a bowl of cherries. Scene 6 con-
tains a shelf from the Amazon Picking Challenge 2015 [36].

The scene models were created using standard 3D tools,
primarily Autodesk Maya. Scenes 1 and 2 are reconstruc-
tions of real-world environments obtained using LiDAR and
photogrammetry 3D scans which served as a guide for an
artist. Materials were recreated using photographic reference,
PBR material scanning [37], and color swatch samples [38].
Scenes 3–5 were purchased online [39], their geometry and
materials were refined, and clutter and chaos was added to
mimic a real environment. A 3D geometry model of the shelf
in Scene 6 was provided in the Amazon Picking Challenge
2015 [36]. Reference imagery of the shelf was used to create
textures and materials that match its appearance.

Exterior light was modeled with Arnold Physical Sky [10]
which can accurately depict atmospheric effects and time-of-
day variation. Interior lights were modeled with standard light
sources such as area and point lights.

3.2. Scene and Object Composition

Stages for Objects. In each scene, we manually selected mul-
tiple stages to arrange the objects on. A stage is defined by
a polygon and is typically located on tables, chairs and other
places with distinct structure, texture or illumination. Placing
objects on such locations maximizes the diversity of the ren-
dered images. One stage per shelf bin was added in Scene 6.

Object Arrangements. An arrangement of a set of objects
was generated in two steps: (1) poses of the 3D object models
were instantiated above one of the stages, and (2) physically
plausible arrangements were reached using physics simula-
tion where the objects fell on the stages under gravity and
underwent mutual collisions. The poses were initialized us-
ing FLARE [40], a rule-based system for generation of object
layouts for AR applications. The initial height above the stage
was randomly sampled from 5 to 50cm. For LM objects, we
staged one instance per object model and initialized it with the
canonical orientation, i.e. the cup was up-right, the cat was
standing on her legs, etc. For RU-APC objects, we staged up
to five instances per object model and initialized their orienta-
tion randomly. Physics was simulated using NVIDIA PhysX.

Camera Positioning. Multiple cameras were positioned
around each object arrangement. Instead of fitting all the
objects within the camera frustum, we point the camera at a
randomly selected object. This allows for a better control of
scale of the rendered objects. The azimuth and elevation of
the camera was generated randomly and the distance of the
camera from the focused object was sampled from a specified
range. Before rendering the RGB image, which is computa-
tionally expensive, we first rendered a mask of the focused
object and a mask of its visible part. We then calculated the
visible fraction of the focused object and rendered the full
RGB image only if the object was at least 30% visible.

Scene 1 Scene 2 Scene 3

Scene 4 Scene 5 Scene 6

Fig. 2. 3D object models from LineMod [14] (first row) and
Rutgers APC [2] (second row) were rendered in six scenes.

3.3. Physically Based Rendering (PBR)

Three images were rendered from each camera using the
Arnold physically based renderer [10] at low, medium and
high quality settings – the mapping between the quality set-
tings and Arnold parameters can be found in the supplemen-
tary material. Rendering was done on 16-core Intel Xeon
2.3GHz processors with 112GB RAM. GPUs were not used.
The average rendering time was 15s in low, 120s in medium,
and 720s in high quality settings. We used a CPU cluster with
400 nodes which allowed us to render 2.3M images in low,
288K in medium, or 48K in high quality within a day.

We rendered 1.9M object instances in 1K arrangements in
the six scenes, seen from 200K cameras. With the three qual-
ity settings, we obtained a total of 600K VGA resolution im-
ages. LM objects were rendered in Scenes 1–5 and RU-APC
objects in Scenes 3 and 6. Each object instance is annotated
with a 2D bounding box, a segmentation mask and a 6D pose.

4. EXPERIMENTS

The experiments evaluate the effectiveness of PBR images for
training the Faster R-CNN object detector [1]. Specifically,
the experiments focus on three aspects: (1) importance of the
PBR images over the commonly used images of objects ren-
dered on top of random photographs, (2) importance of the
high PBR quality, and (3) importance of scene context.



Datasets. The experiments were conducted on two datasets,
LineMod-Occluded (LM-O) [3, 14] and Rutgers APC (RU-
APC) [2]. We used their reduced versions from BOP [35].
The datasets include 3D object models and real test RGB-D
images of VGA resolution (only RGB channels were used).
The images are annotated with ground-truth 6D object poses
from which we calculated 2D bounding boxes used for eval-
uation of the 2D object detection task. LM-O contains 200
images with ground truth annotations for 8 LM objects cap-
tured with various levels of occlusion. RU-APC contains 14
object models and 1380 images which show the objects in a
cluttered warehouse shelf. Example test images are in Fig. 1.

Baseline Training Images (BL). We followed the synthetic
data generation pipeline presented in [16] and used OpenGL
to render 3D object models on top of randomly selected real
photographs pulled from NYU Depth Dataset V2 [41]. For a
more direct comparison, the BL images were rendered from
the same cameras as the PBR images, i.e. the objects appear in
the same poses in both types of images. Generation of one BL
image took 3s on average. Examples are in the supplement.

Object Instance Detection. We experimented with two
underlying network architectures of Faster R-CNN: ResNet-
101 [42] and Inception-ResNet-v2 [43]. The networks were
pre-trained on Microsoft COCO [44] and fine-tuned on syn-
thetic images for 100K iterations. The learning rate was set to
0.001 and multiplied by 0.96 every 1K iterations. To virtually
increase diversity of the training set, the images were aug-
mented by randomly adjusting brightness, contrast, hue, and
saturation, and by applying random Gaussian noise and blur.
Although the presented results were obtained with this data
augmentation, we found its effect negligible. Implementation
from Tensorflow Object Detection API [45] was used.

Evaluation Metric. The performance was measured by
mAP@.75IoU, i.e. the mean average precision with a strict
IoU threshold of 0.75 [44]. For each test image, detections of
object classes annotated in the image were considered.

4.1. Importance of PBR Images for Training

On RU-APC, Faster R-CNN with Inception-ResNet-v2 trained
on high quality PBR images achieves a significant 24% ab-
solute improvement of mAP@.75IoU over the same model
trained on BL images (Tab. 1, PBR-h vs. BL). It is notewor-
thy that PBR images yield almost 35% or higher absolute
improvement on five object classes, and overall achieve a
better performance on 12 out of 14 object classes (see the
supplement for the per-class scores). This is achieved when
the objects are rendered in Scene 6. When the objects are
rendered in Scene 3 (PBR-ho vs. BL), we still observe a large
improvement of 11% (scene context is discussed in Sec. 4.3).
Improvements, although not so dramatic, can be observed
also with ResNet-101. On LM-O, PBR images win by almost
11%, with a large improvement on 7 out of 8 object classes.

Dataset Architecture PBR-h PBR-l PBR-ho BL

LM-O Inc.-ResNet-v2 55.9 49.8 – 44.7
ResNet-101 49.9 44.6 – 45.1

RU-APC Inc.-ResNet-v2 71.9 72.9 58.7 48.0
ResNet-101 68.4 65.1 51.6 52.7

Table 1. Performance (mAP@.75IoU) of Faster R-CNN
trained on high and low quality PBR images (PBR-h, PBR-l),
high quality PBR images of out-of-context objects (PBR-ho),
and images of objects on top of random photographs (BL).

4.2. Importance of PBR Quality

On LM-O, we observe that Faster R-CNN with Inception-
ResNet-v2 trained on high quality PBR images achieves an
improvement of almost 6% over low quality PBR images
(Tab. 1, PBR-h vs. PBR-l). This suggests that a higher PBR
quality helps. We do not observe a similar improvement on
RU-APC when training on PBR images rendered in Scene 6.
The illumination in this scene is simpler, there is no incoming
outdoor light and the materials are mainly Lambertian. There
are therefore no complex reflections and the low quality PBR
images from this scene are cleaner than, e.g., when rendered
in Scenes 3–5. This suggests that the low quality is sufficient
for scenes with simpler illumination and materials. Example
images of the two qualities are in the supplement.

4.3. Importance of Scene Context

Finally, we analyze the importance of accurately modeling the
scene context. We rendered RU-APC objects in two setups:
1) in-context in Scene 6, and 2) out-of-context in Scene 3 (ex-
amples are in the supplement). Following the taxonomy of
contextual information from [46], the in-context setup faith-
fully model the gist, geometric, semantic, and illumination
contextual aspects of the test scene. The out-of-context setup
exhibit discrepancies in all of these aspects. Training images
of in-context objects yield an absolute improvement of 13%
with Inception-ResNet-v2 and 16% with ResNet-101 over the
images of out-of-context objects. This shows the benefit of
accurately modeling context of the test scene.

5. CONCLUSION

We have proposed an approach to synthesize highly photo-
realistic images of 3D object models and demonstrated their
benefit for training the Faster R-CNN object detector. In the
future, we will explore the use of photorealistic rendering for
training models for other vision tasks. A dataset of 600K pho-
torealistic images will be released on the project website.

We acknowledge K. Bekris and C. Mitash for help with the RU-APC dataset.
This work was supported by V3C – Visual Computing Competence Center
(program TE01020415 funded by Technology Agency of the Czech Repub-
lic), Software Competence Center Hagenberg, and Research Center for In-
formatics (project CZ.02.1.01/0.0/0.0/16 019/0000765 funded by OP VVV).



6. REFERENCES

[1] Ren, et al., “Faster R-CNN: towards real-time object detection
with region proposal networks,” TPAMI, 2017. 1, 2, 3

[2] Rennie, et al., “A dataset for improved RGBD-based object
detection and pose estimation for warehouse pick-and-place,”
Robotics and Automation Letters, 2016. 1, 2, 3, 4

[3] Brachmann, et al., “Learning 6D object pose estimation using
3D object coordinates,” in ECCV, 2014. 1, 2, 4

[4] Richter, et al., “Playing for data: Ground truth from computer
games,” in ECCV, 2016. 1, 2

[5] Su, et al., “Render for CNN: viewpoint estimation in images
using CNNs trained with rendered 3D model views,” in ICCV,
2015. 1, 2

[6] Rozantsev, et al., “Beyond sharing weights for deep domain
adaptation,” TPAMI, 2018. 1

[7] Csurka, “A comprehensive survey on domain adaptation for
visual applications,” in Domain Adaptation in Computer Vision
Applications. 2017. 1, 2

[8] Li and Snavely, “CGIntrinsics: Better intrinsic image decom-
position through physically-based rendering,” in ECCV, 2018.
1, 2

[9] Zhang, et al., “Physically-based rendering for indoor scene
understanding using convolutional neural networks,” in CVPR,
2017. 1, 2

[10] Georgiev, et al., “Arnold: A brute-force production path
tracer,” TOG, 2018. 1, 2, 3

[11] Pharr, et al., Physically based rendering: From theory to im-
plementation, Morgan Kaufmann, 2016. 1

[12] Shreiner, OpenGL programming guide: the official guide to
learning OpenGL, versions 3.0 and 3.1, Pearson Education,
2009. 1

[13] Marschner and Shirley, Fundamentals of computer graphics,
CRC Press, 2015. 1

[14] Hinterstoisser, et al., “Model based training, detection and
pose estimation of texture-less 3D objects in heavily cluttered
scenes,” in ACCV, 2012. 1, 2, 3, 4

[15] Dwibedi, et al., “Cut, paste and learn: Surprisingly easy syn-
thesis for instance detection,” in ICCV, 2017. 2

[16] Hinterstoisser, et al., “On pre-trained image features and syn-
thetic images for deep learning,” in ECCVW, 2018. 2, 4

[17] Kehl, et al., “SSD-6D: Making RGB-based 3D detection and
6D pose estimation great again,” in ICCV, 2017. 2

[18] Rad and Lepetit, “BB8: a scalable, accurate, robust to partial
occlusion method for predicting the 3D poses of challenging
objects without using depth,” in ICCV, 2017. 2

[19] Dosovitskiy, et al., “Flownet: Learning optical flow with con-
volutional networks,” in ICCV, 2015. 2

[20] Tekin, et al., “Real-time seamless single shot 6d object pose
prediction,” in CVPR, 2018. 2

[21] Dvornik, et al., “Modeling visual context is key to augmenting
object detection datasets,” in ECCV, 2018. 2

[22] Movshovitz-Attias, et al., “How useful is photo-realistic ren-
dering for visual learning?,” in ECCV, 2016. 2

[23] Tremblay, et al., “Deep object pose estimation for semantic
robotic grasping of household objects,” in CoRL, 2018. 2

[24] Richter, et al., “Playing for benchmarks,” in ICCV, 2017. 2

[25] Ros, et al., “The SYNTHIA dataset: A large collection of
synthetic images for semantic segmentation of urban scenes,”
in CVPR, 2016. 2

[26] Gaidon, et al., “Virtual worlds as proxy for multi-object track-
ing analysis,” in CVPR, 2016. 2

[27] Handa, et al., “Understanding real world indoor scenes with
synthetic data,” in CVPR, 2016. 2

[28] McCormac, et al., “SceneNet RGB-D: Can 5M synthetic im-
ages beat generic imagenet pre-training on indoor segmenta-
tion?,” in ICCV, 2017. 2

[29] Tobin, et al., “Domain randomization for transferring deep
neural networks from simulation to the real world,” in IROS,
2017. 2

[30] Tremblay, et al., “Training deep networks with synthetic data:
Bridging the reality gap by domain randomization,” arXiv
preprint arXiv:1804.06516, 2018. 2

[31] Sundermeyer, et al., “Implicit 3D orientation learning for 6D
object detection from RGB images,” in ECCV, 2018. 2

[32] Wood, et al., “Rendering of eyes for eye-shape registration and
gaze estimation,” in ICCV, 2015. 2

[33] Wood, et al., “Learning an appearance-based gaze estimator
from one million synthesised images,” in Proceedings of the
Ninth Biennial ACM Symposium on Eye Tracking Research &
Applications, 2016. 2

[34] Shrivastava, et al., “Learning from simulated and unsupervised
images through adversarial training.,” in CVPR, 2017. 2

[35] Hodan, et al., “BOP: Benchmark for 6D object pose estima-
tion,” in ECCV, 2018. 2, 4

[36] Yu, et al., “A summary of team MIT’s approach to the Amazon
Picking Challenge 2015,” arXiv preprint arXiv:1604.03639,
2016. 3

[37] “Mura,” www.muravision.com. 3

[38] “NIX Color Sensor,” www.nixsensor.com. 3

[39] “Evermotion,” www.evermotion.org. 3

[40] Gal, et al., “FLARE: fast layout for augmented reality applica-
tions,” in ISMAR 2014, 2014. 3

[41] Silberman, et al., “Indoor segmentation and support inference
from rgbd images,” in ECCV, 2012. 4

[42] He, et al., “Deep residual learning for image recognition,” in
CVPR, 2016. 4

[43] Szegedy, et al., “Inception-v4, inception-resnet and the impact
of residual connections on learning.,” in AAAI, 2017. 4

[44] Lin, et al., “Microsoft COCO: Common objects in context,” in
ECCV, 2014. 4

[45] Huang, et al., “Speed/accuracy trade-offs for modern convolu-
tional object detectors,” in CVPR, 2017. 4

[46] Divvala, et al., “An empirical study of context in object detec-
tion,” in CVPR, 2009. 4



PHOTOREALISTIC IMAGE SYNTHESIS FOR OBJECT INSTANCE DETECTION
SUPPLEMENTARY MATERIAL

Tomáš Hodaň1,2 Vibhav Vineet2 Ran Gal2 Emanuel Shalev2 Jon Hanzelka2

Treb Connell2 Pedro Urbina2 Sudipta N. Sinha2 Brian Guenter2

1FEE, Czech Technical University in Prague 2Microsoft Research

This supplement provides examples of the baseline training
images in Fig. 1, a visualization of the object pose generation
process in Fig. 2, images of out-of-context RU-APC objects in
Fig. 3, examples of high quality PBR images in Fig. 4, a com-
parison of low/high PBR quality in Fig. 5, example results of
the Faster R-CNN object detector [1] trained on high quality
PBR images in Fig. 6, per-class detection scores in Tab. 2 and
Tab. 3, and a description of the PBR quality settings below.

PBR Quality Settings. Tab. 1 shows the mapping between
the used quality settings and the Arnold parameters [2]. In-
creasing the number of rays traced per image pixel (AA) re-
duces aliasing artifacts caused by insufficient sampling of ge-
ometry and noise caused by insufficient sampling of illumina-
tion. Increasing the number of diffuse rays traced when a ray
hits a diffuse surface (D rays) and the number of rays traced
when the ray hits a specular surface (S rays) reduces illumi-
nation noise. Increasing the number of diffuse and specular
reflections (D depth and S depth) improves the accuracy of
the illumination integral by gathering more of the light energy
bounced around in the scene. This is especially important in
the case when photons must bounce multiple times from the
light source to reach an object visible to the camera.

1. REFERENCES

[1] Ren, et al., “Faster R-CNN: towards real-time object detection
with region proposal networks,” TPAMI, 2017. 1, 3

[2] Georgiev, et al., “Arnold: A brute-force production path tracer,”
TOG, 2018. 1

[3] Gal, et al., “FLARE: fast layout for augmented reality applica-
tions,” in ISMAR 2014, 2014. 1

[4] Hinterstoisser, et al., “Model based training, detection and
pose estimation of texture-less 3D objects in heavily cluttered
scenes,” in ACCV, 2012. 2

[5] Rennie, et al., “A dataset for improved RGBD-based object
detection and pose estimation for warehouse pick-and-place,”
Robotics and Automation Letters, 2016. 2, 3

[6] Brachmann, et al., “Learning 6D object pose estimation using
3D object coordinates,” in ECCV, 2014. 3

[7] Hodan, et al., “BOP: Benchmark for 6D object pose estimation,”
in ECCV, 2018. 4

Fig. 1. Examples of baseline training images generated by
rendering 3D object models on top of random photographs.

Fig. 2. Initial object poses generated using FLARE [3] (left),
and final poses calculated by NVIDIA PhysX (right).

Fig. 3. Training images of out-of-context RU-APC objects.

Setting AA D rays S rays D depth S depth Max depth
low 1 1 1 1 1 2

medium 9 36 36 3 2 3
high 25 225 100 3 3 4

Table 1. Arnold parameters [2] for different quality settings.

ar
X

iv
:1

90
2.

03
33

4v
1 

 [
cs

.C
V

] 
 9

 F
eb

 2
01

9



Fig. 4. Examples of high quality PBR images of objects from the LineMod dataset [4] in Scenes 1–5 (top five rows), and
images of objects from the Rutgers APC dataset [5] in Scene 6 (bottom row). The images were automatically annotated with
2D bounding boxes, masks and 6D poses of visible object instances.



Fig. 5. The same images rendered in high (top) and low (bottom) PBR quality.

Fig. 6. Example results of the Faster R-CNN object detector [1] trained on high quality PBR images and evaluated on real test
images from the LineMod-Occluded dataset [6] (top two rows) and the Rutgers APC dataset [5] (bottom two rows).



Data/Obj. ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mAP

Inception-ResNet-v2
PBR-h 57.1 93.3 88.0 61.2 80.4 62.5 99.0 98.1 73.2 44.8 65.4 70.9 86.8 26.4 71.9
PBR-l 57.6 96.3 84.6 62.2 81.3 60.5 98.7 98.6 73.1 44.8 79.3 67.2 90.5 25.6 72.9

PBR-ho 46.2 61.9 56.0 55.8 54.4 69.8 89.0 89.3 81.6 21.5 72.7 58.3 43.3 21.7 58.7
BL 33.5 47.5 71.5 32.7 42.4 13.5 44.9 73.0 57.4 44.5 47.6 35.8 87.6 40.6 48.0

ResNet-101
PBR-h 30.6 93.7 91.6 68.2 72.1 56.7 93.4 93.6 75.2 42.6 84.5 60.9 73.2 21.4 68.4
PBR-l 26.8 87.6 87.3 64.0 79.8 27.8 95.2 90.4 66.2 37.5 83.1 61.4 79.3 25.3 65.1

PBR-ho 35.2 64.4 58.4 52.9 46.7 53.0 71.5 73.8 69.3 32.2 66.2 51.8 28.3 19.3 51.6
BL 29.1 38.5 82.0 59.2 52.4 59.1 79.5 75.0 36.4 36.8 75.1 50.6 48.5 14.8 52.7

Table 2. Object detection scores on RU-APC: Per-class average precision (AP@.75IoU) and the mean average precision
(mAP@.75IoU) of Faster R-CNN trained on (i) high/low quality PBR images of in-context objects rendered in Scene 6 (PBR-
h, PBR-l), (ii) high quality PBR images of out-of-context objects rendered in Scene 3 (PBR-ho), and (iii) images of objects
rendered on top of random photographs (BL). The object identifiers follow the BOP convention [7].

Data/Obj. ID 1 5 6 8 9 10 11 12 mAP

Inception-ResNet-v2
PBR-h 60.3 44.5 56.7 53.4 81.8 48.6 9.6 92.3 55.9
PBR-l 57.3 35.8 53.3 52.6 77.8 23.8 3.1 94.5 49.8

BL 30.7 45.4 42.5 32.4 77.1 33.4 19.6 76.7 44.7

ResNet-101
PBR-h 46.3 40.3 48.5 58.0 76.4 39.5 4.7 85.5 49.9
PBR-l 44.1 26.6 41.6 53.7 73.7 24.5 1.1 91.6 44.6

BL 35.5 45.3 37.1 44.6 75.0 33.6 12.7 76.8 45.1

Table 3. Object detection scores on LM-O: Per-class average precision (AP@.75IoU) and the mean average precision
(mAP@.75IoU) of Faster R-CNN trained on (i) high/low PBR images of objects rendered in Scenes 1–5 (PBR-h, PBR-l), and
(ii) images of objects rendered on top of random photographs (BL). The object identifiers follow the BOP convention [7].


