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ABSTRACT
DNN training is extremely time-consuming, necessitating efficient
multi-accelerator parallelization. Current approaches to paralleliz-
ing training primarily use intra-batch parallelization, where a single
iteration of training is split over the available workers, but suffer
from diminishing returns at higher worker counts. We present
PipeDream, a system that adds inter-batch pipelining to intra-batch
parallelism to further improve parallel training throughput, help-
ing to better overlap computation with communication and reduce
the amount of communication when possible. Unlike traditional
pipelining, DNN training is bi-directional, where a forward pass
through the computation graph is followed by a backward pass that
uses state and intermediate data computed during the forward pass.
Naïve pipelining can thus result in mismatches in state versions
used in the forward and backward passes, or excessive pipeline
flushes and lower hardware efficiency. To address these challenges,
PipeDream versions model parameters for numerically correct gra-
dient computations, and schedules forward and backward passes
of different minibatches concurrently on different workers with
minimal pipeline stalls. PipeDream also automatically partitions
DNN layers among workers to balance work and minimize com-
munication. Extensive experimentation with a range of DNN tasks,
models, and hardware configurations shows that PipeDream trains
models to high accuracy up to 5.3× faster than commonly used
intra-batch parallelism techniques.

1 INTRODUCTION
DeepNeural Networks (DNNs) have facilitated tremendous progress
across a range of applications, including image classification [26,
37, 48], translation [55], language modeling [40], and video caption-
ing [54]. As DNNs have become more widely deployed, they have
also become more computationally expensive to train, thus requir-
ing parallel execution across multiple accelerators (e.g., GPUs).

DNN training proceeds in iterations of forward and backward
pass computations. In each iteration, the training loop processes a
minibatch of input data and performs an update to the model pa-
rameters. Current approaches focus on parallelizing each iteration
of the optimization algorithm across a set of workers. For exam-
ple, data parallelism partitions the input data across workers [37],
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model parallelism partitions operators across workers [16, 21], and
hybrid schemes partition both [33, 34, 36]. Unfortunately, intra-
batch parallelization can suffer from high communication costs at
large scale. For example, Figure 1 shows the communication over-
head for data parallelism across five different DNN models on three
different types of multi-GPU servers. Over 32 GPUs, the communi-
cation overhead for some models, computed as the percentage of
total time spent on communication stalls, is as high as 90% due to
expensive cross-server all_reduce communication. Communica-
tion overheads are high even on servers where GPUs within the
server are connected by dedicated interconnects like NVLink [4].
Moreover, rapid increases in GPU compute capacity over time will
further shift the bottleneck of training towards communication for
all models.

In this paper, we propose PipeDream, a system that uses pipeline
parallelism to enable faster DNN training by combining intra-batch
parallelism with inter-batch parallelization. PipeDream divides the
model among available workers, assigning a group of consecutive
operators (called layers in DNN terminology) in the operator graph
to each of them, and then overlaps the computation and commu-
nication of different inputs in a pipelined fashion. This process
can greatly reduce inter-worker communication because it limits
the communication to layer inputs and outputs (activations in the
forward pass and gradients in the backward pass) solely across
consecutive layers assigned to different workers, which for many
models aremuch smaller than the size of the entiremodel. Moreover,
this communication is peer-to-peer, as opposed to all-to-all.

While pipelining is a simple idea, DNN training poses an impor-
tant challenge not present in traditional pipelining: DNN training
is bi-directional—the forward pass is followed by a backward pass
through the same layers in reverse order, using state and interme-
diate results from the forward pass. To keep the pipeline full and
thus achieve high hardware efficiency, a naïve scheduling mech-
anism might inject all minibatches in an epoch into the pipeline,
first completing forward passes for all input minibatches followed
by backward passes. However, this approach suffers from low sta-
tistical efficiency [18], increasing the number of passes through
the dataset needed to produce a high-quality model. Furthermore,
this strategy could prevent the model from reaching the desired
target accuracy, since gradients are averaged over all training sam-
ples [10, 39]. To improve statistical efficiency, one could inject only
a subset ofm minibatches into the pipeline, and apply weight up-
dates every m minibatches, as recently proposed by GPipe [28].
However, this reduces hardware efficiency due to more frequent
pipeline flushes. Traditional model parallel training corresponds to
an extreme case of this (m = 1).

PipeDream takes a more nuanced approach to pipelining that
outperforms other solutions – it achieves high hardware efficiency
with no pipeline stalls in steady state, and high statistical efficiency
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(a) Instances with 8 1080Tis (private cluster).
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(b) Instances with 4 V100s (Azure).
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(c) Instances with 8 V100s and NVLink (EC2).

Figure 1: Communication overhead of data-parallel training using different multi-GPU server instances using PyTorch 1.1,
NCCL [3], and fp32 precision. We use the largest per-GPU minibatch size that fits in GPU memory, and keep the per-GPU
minibatch size constant as the number of GPUs are scaled up (weak scaling).

comparable to data parallelism using the same number of workers.
Given a pipeline of groups of consecutive layers executed on differ-
ent workers (called a stage), PipeDream uses a scheduling algorithm
called 1F1B to keep hardware well utilized while achieving seman-
tics similar to data parallelism. In 1F1B’s steady state, each worker
strictly alternates between forward and backward passes for its
stage, ensuring high resource utilization (negligible pipeline stalls,
no pipeline flushes) even in the common case where the backward
pass takes longer than the forward pass. 1F1B also uses different
versions of model weights to maintain statistical efficiency com-
parable to data parallelism. Each backward pass in a stage results
in weight updates; the next forward pass uses the latest version
of weights available, and “stashes" a copy of these weights to use
during the corresponding backward pass. Although the forward
pass will not see updates from incomplete in-flight mini-batches,
learning is still effective because model weights change relatively
slowly and bounded staleness has been found effective in improv-
ing training speeds [19, 43]. However, for the backward pass to
compute numerically correct gradients, the same weight version
used during the forward pass must be used. PipeDream limits the
number of “in-pipeline” minibatches to the minimum needed to
keep the pipeline full, reducing memory overhead.

Operating the pipeline at peak throughput also requires that
all stages in the pipeline take roughly the same amount of time,
since the throughput of a pipeline is bottlenecked by the slowest
stage. PipeDream automatically determines how to partition the
operators of the DNN based on a short profiling run performed on
a single GPU, balancing computational load among the different
stages while minimizing communication for the target platform.
PipeDream effectively load balances even in the presence of model
diversity (computation and communication) and platform diversity
(interconnect topologies and hierarchical bandwidths). As DNNs do
not always divide evenly among available workers, PipeDream may
decide to use data parallelism for some stages—multiple workers
can be assigned to a given stage, processing different minibatches
in parallel. Note that vanilla data parallelism corresponds to the
pipeline having a single replicated stage. PipeDream extends 1F1B
to incorporate round-robin scheduling across data-parallel stages,
while making sure that gradients in a backward pass are routed to
the corresponding worker from the forward pass since the same
weight version and intermediate outputs need to be used for a cor-
rect gradient computation. The combined scheduling algorithm,

1F1B-RR, produces a static schedule of operators that each worker
runs repeatedly, keeping utilization high across all workers. Thus,
pipeline-parallel training can be thought of as a principled combi-
nation of inter-batch pipelining with intra-batch parallelism.

Our evaluation, encompassing many combinations of DNN mod-
els, datasets, and hardware configurations, confirms the training
time benefits of PipeDream’s pipeline parallelism. Compared to
data-parallel training, PipeDream reaches a high target accuracy
on multi-GPU machines up to 5.3× faster for image classification
tasks, up to 3.1× faster for machine translation tasks, 4.3× faster for
language modeling tasks, and 3× faster for video captioning models.
PipeDream is also 2.6× – 15× faster than model parallelism, up to
1.9× faster than hybrid parallelism, and 1.7× faster than simpler
approaches to pipelining such as GPipe’s approach.

2 BACKGROUND AND RELATEDWORK
A DNNmodel is composed of many operators organized into layers.
When parallelizing DNN training, these layers may be partitioned
over the available workers in different ways. In this section, we
cover two broad classes of parallel DNN training: intra- and inter-
batch. We also highlight the challenges posed by DNN model and
hardware diversity for effective parallelization.

2.1 Intra-batch Parallelism
The most common way to train DNN models today is intra-batch
parallelization, where a single iteration of training is split across
available workers.
Data Parallelism. In data parallelism, inputs are partitioned across
workers. Each worker maintains a local copy of the model weights
and trains on its own partition of inputs while periodically synchro-
nizing weights with other workers, using either collective commu-
nication primitives like all_reduce [24] or parameter servers [38].
The amount of data communicated is proportional to the number of
model weights and the number of workers participating in training.

The most commonly used form of data parallelism, referred to
as bulk synchronous parallel or BSP [52]1, requires each worker to
wait for gradients from other workers. Despite optimizations such
as Wait-free Backpropagation [57], where weight gradients are sent
as soon as they are available (common in modern frameworks),
communication stalls are sometimes inevitable for large models

1In this paper, we use DP to refer to data-parallelism with BSP.



PipeDream: Generalized Pipeline Parallelism for DNN Training SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Worker 1

Worker 2

Worker 3

1

1

1 1

1

2

Worker 4 1 1

2

Time
Backward 
Pass

Forward 
Pass Idle

1

1

2

2

1

1 1

Figure 2: Model parallel training with 4 workers. Numbers
indicate batch ID, and backward passes takes twice as long as
forward passes. For simplicity, we assume that communicat-
ing activations/gradients across workers has no overhead.

where the time needed to synchronize gradients across workers
can dominate computation time.

Figure 1 quantitatively shows the fraction of training time spent
in communication stalls with data parallelism for different classes of
DNNs using three types of servers: 8-1080Ti GPU instances linked
over PCIe within servers and 25Gbps interconnects across servers,
4-V100 GPU instances without NVLink and 10Gbps interconnects
across servers, and 8-V100 GPU instances with NVLink intercon-
nects within servers and 25Gbps interconnects across servers.

We focus on four key takeaways. First, the communication over-
head for many of these models is high despite using multi-GPU
servers and state-of-the-art communication libraries like NCCL.
Data parallelism scales well for models like ResNet-50, which have
a large number of convolutional layers with compact weight rep-
resentations, but scales less well for other models with LSTM or
fully-connected layers, which have more dense weight represen-
tations. Second, applications distributed across multi-GPU servers
are bottlenecked by slower inter-server links, as evidenced by com-
munication overheads spiking and then plateauing when training
scales out to multiple servers. Data parallelism for such hierarchical
networks can be a poor fit, since the same number of bytes are
sent over both high- and low- bandwidth channels. Third, as the
number of data-parallel workers increases, communication over-
heads increase for all models, even if training is performed on a
multi-GPU instance with NVLink. Coleman et al. [17] showed sim-
ilar results. Fourth, as GPU compute speeds increase (1080Tis to
V100s), communication overheads also increase for all models.
Other DP Optimizations. Asynchronous parallel training (ASP)
allows each worker to proceed with the next input minibatch be-
fore receiving the gradients from the previous minibatch. This
approach improves hardware efficiency (time needed per iteration)
over BSP by overlapping computation with communication, but
also introduces staleness and reduces statistical efficiency (number
of iterations needed to reach a particular target accuracy) [12, 20].

Seide et al. [45, 46] looked at quantizing gradients to decrease
the amount of data needed to be communicated over the network.
This approximation strategy is effective for limited scenarios but
lacks generality; it does not hurt convergence for some speech
models [47], but has not been shown to be effective for other types
of models. Others have explored techniques from the HPC litera-
ture to reduce the overhead of communication [9, 24, 50, 51], often
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Figure 3: GPipe’s inter-batch parallelism approach. Fre-
quent pipeline flushes lead to increased idle time.

using highly specialized networking hardware. Our work is com-
plementary to these techniques and focuses mainly on improving
the performance of parallel DNN training when using commodity
accelerators and interconnects available in public clouds.

Recent work has demonstrated that using large minibatches is
effective for training ResNet-50, especially when combined with
Layer-wise Adaptive Rate Scaling (LARS) [24, 31, 56]. Large mini-
batches reduce the communication overhead by exchanging pa-
rameters less frequently; however, our experiments show that such
techniques lack generality beyond ResNet-50 and pipeline paral-
lelism can outperform the fastest LARS data-parallel option.
Model Parallelism.Model parallelism is an intra-batch parallelism
approach where the operators in a DNN model are partitioned
across the available workers, with each worker evaluating and
performing updates for only a subset of the model’s parameters
for all inputs. The amount of data communicated is the size of
intermediate outputs (and corresponding gradients) that need to
be sent across workers.

Although model parallelism enables training of very large mod-
els, vanilla model parallelism is rarely used to accelerate DNN
training because it suffers from two major limitations. First, model-
parallel training results in under-utilization of compute resources,
as illustrated in Figure 2. Each worker is responsible for a group of
consecutive layers; in this regime, the intermediate outputs (activa-
tions and gradients) between these groups are the only data that
need to be communicated across workers.2

The second limitation for model-parallel training is that the
burden of partitioning a model across multiple GPUs is left to
the programmer [36], resulting in point solutions. Recent work
explores the use of Reinforcement Learning to automatically deter-
mine device placement for model parallelism [42]. However, these
techniques are time- and resource- intensive, and do not leverage
the fact that DNN training can be thought of as a computational
pipeline consisting of groups of consecutive layers – these assump-
tions make the optimization problem more tractable, allowing for
exact solutions in polynomial time as we show in § 3.1.
Hybrid Intra-batch Parallelism. Recent work has proposed split-
ting a single iteration of the optimization algorithm amongmultiple
dimensions. OWT [36] split the then-popular AlexNet model by
hand, using data parallelism for convolutional layers that have
a small number of weight parameters and large outputs, while
2While other partitioning schemes are possible, this is the most common, and the one
we will use in this paper.
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Figure 4: An example PipeDream pipeline with 4 workers,
showing startup and steady states. In this example, the back-
ward pass takes twice as long as the forward pass.

choosing to not replicate fully connected layers that have a large
number of weight parameters and small outputs. OWT does not
use pipelining. FlexFlow [33] proposed splitting a single iteration
along samples, operators, attributes, and parameters, and describes
an algorithm to determine how to perform this splitting in an auto-
mated way. However, FlexFlow does not perform pipelining, and
we show in our experiments (§ 5.3) that this leaves as much as 90%
of performance on the table.

2.2 Inter-batch Parallelism
Chen et al. [15] briefly explored the potential benefits of pipelin-
ing minibatches in model-parallel training, but do not address the
conditions for good statistical efficiency, scale, and generality as
applicable to large real-world models. Huo et al. [29] explored par-
allelizing the backward pass during training. Our proposed solution
parallelizes both the forward and backward pass.

GPipe (concurrent work with an earlier PipeDream preprint [25])
uses pipelining in the context of model-parallel training for very
large models [28]. GPipe does not specify an algorithm for parti-
tioning a model, but assumes a partitioned model as input. GPipe
further splits a minibatch intom microbatches, and performs for-
ward passes followed by backward passes for thesem microbatches
(see Figure 3,m = 4). With a focus on training a large model like
AmoebaNet, GPipe optimizes for memory efficiency; it uses existing
techniques such as weight gradient aggregation and trades com-
putation for memory by discarding activation stashes between the
forward and the backward pass, instead opting to re-compute them
when needed in the backward pass [14]. As a result, it can suffer
from reduced hardware efficiency due to re-computation overheads
and frequent pipeline flushes ifm is small (§ 5.4).

In comparison, PipeDream addresses key issues ignored in prior
work, offering a general solution that keeps workers well utilized,
combining pipelining with intra-batch parallelism in a principled
way, while also automating the partitioning of the model across
the available workers.

2.3 DNN Model and Hardware Diversity
DNN models are diverse, with convolutional layers, LSTMs [55],
attention layers [53], and fully-connected layers commonly used.
These different types of models exhibit vastly different performance
characteristics with different parallelization strategies, making the
optimal parallelization strategy highly model-dependent.

Time
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Figure 5: An example pipeline-parallel assignment with
four GPUs and an example timeline at one of the GPUs
(worker 3), highlighting the temporal overlap of computa-
tion and activation / gradient communication.

Picking an optimal parallelization scheme is challenging because
the efficacy of such a scheme depends on the characteristics of
the target deployment hardware as well; GPUs, ASICs, and FPGAs
have very different compute capabilities. Moreover, interconnects
linking these accelerators have different topologies and capacities;
cloud servers are linked by tens to 100Gbps networks, accelera-
tors within servers might be connected over shared PCIe trees (10
to 15GBps), and specialized expensive servers, such as the DGX-
1 [23], use NVLink with point-to-point 30GBps bandwidth capabili-
ties. This diversity in models and deployments makes it extremely
hard to manually come up with an optimal parallelization strategy.
PipeDream automates this process, as we discuss in § 3.1.

3 PIPELINE PARALLELISM
PipeDream uses pipeline parallelism (PP), a new parallelization
strategy that combines intra-batch parallelism with inter-batch
parallelism. Pipeline-parallel computation involves partitioning
the layers of a DNN model into multiple stages, where each stage
consists of a consecutive set of layers in the model. Each stage is
mapped to a separate GPU that performs the forward pass (and
backward pass) for all layers in that stage.3

In the simplest case, only one minibatch is active in the system,
as in traditional model-parallel training (Figure 2); in this setup, at
most one GPU is active at a time. Ideally, we would like all GPUs to
be active. With this in mind, we inject multiple minibatches into the
pipeline one after the other. On completing its forward pass for a
minibatch, each stage asynchronously sends the output activations
3We use GPUs as a concrete instance of accelerators and use the terms “GPU” and
“worker” interchangeably.
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Figure 6: PipeDream’s automated mechanism to partition
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DNN, to get estimates for each layer’s compute time and out-
put size. Using these estimates, PipeDream’s optimizer par-
titions layers across available machines, which is then exe-
cuted by PipeDream’s runtime.

to the next stage, while simultaneously starting to process another
minibatch. The last stage starts the backward pass on a minibatch
immediately after the forward pass completes. On completing its
backward pass, each stage asynchronously sends the gradient to the
previous stage while starting computation for the next minibatch
(Figure 4).

Pipeline parallelism can outperform intra-batch parallelismmeth-
ods for two reasons:
Pipelining communicates less. PP often can communicate far
less than DP. Instead of having to aggregate gradients for all param-
eters and send the result to all workers, as is done in data-parallel
approaches (using either collective communication or a parameter
server), each worker in a PP execution has to communicate only
subsets of the gradients and output activations, to only a single
other worker. This can result in large reductions in communication
for some models (e.g., >85% reduction for VGG-16, AWD LM).
Pipelining overlaps computation and communication. Asyn-
chronous communication of forward activations and backward
gradients across stages results in significant overlap of communica-
tion with the computation of a subsequent minibatch, as shown in
Figure 5. This computation and communication are completely inde-
pendent with no dependency edges, since they operate on different
inputs, leading to easier parallelization.

However, to realize the opportunity of PP, PipeDream must over-
come three challenges. In discussing PipeDream’s solutions to these
challenges, we will refer to Figure 6, which shows PipeDream’s
high-level workflow.

3.1 Challenge 1: Work Partitioning
PipeDream treats model training as a computation pipeline, with
each worker executing a subset of the model as a stage. Like with
any pipeline, the steady state throughput of the resulting pipeline
is the throughput of the slowest stage. Having each stage process
minibatches at vastly different throughputs can lead to bubbles in

the pipeline, starving faster stages of minibatches to work on and
resulting in resource under-utilization. Excessive communication
between workers can also lower the throughput of the training
pipeline. Moreover, the allocation of stages to workers needs to
be model- and hardware-aware to be effective, and there may be
cases where no simple partitioning across the GPUs achieves both
limited communication and perfect load balance.

Solution: PipeDream’s optimizer outputs a balanced pipeline.
Its algorithm partitions DNN layers into stages such that each stage
completes at roughly the same rate, while trying to minimize com-
munication across workers in a topology-aware way (for example,
large outputs should be sent over higher bandwidth links if possi-
ble). To further improve load balancing, PipeDream goes beyond
straight pipelines, allowing a stage to be replicated (i.e., data paral-
lelism is used on the stage). This partitioning problem is equivalent
to minimizing the time taken by the slowest stage of the pipeline,
and has the optimal sub-problem property: a pipeline that maximizes
throughput given a worker count is composed of sub-pipelines that
maximize throughput for smaller worker counts. Consequently, we
use dynamic programming to find the optimal solution.

PipeDream exploits the fact that DNN training shows little vari-
ance in computation time across inputs. PipeDream records the
computation time taken by the forward and backward pass, the size
of the layer outputs, and the size of the associated parameters for
each layer as part of an initial profiling step; this profile is used as
the input to the optimizer’s partitioning algorithm (Figure 6). The
partitioning algorithm also takes into account other constraints
such as hardware topology and bandwidth, number of workers, and
memory capacity of the compute devices.
Profiler. PipeDream records three quantities for each layer l , using
a short (few minutes) profiling run of 1000 minibatches on a single
GPU: 1) Tl , the total computation time across the forward and
backward passes for layer l on the target GPU, 2) al , the size of the
output activations of layer l (and the size of input gradients in the
backward pass) in bytes, and 3)wl , the size of weight parameters
for layer l in bytes.

PipeDream estimates the communication time by dividing the
amount of data that needs to be transferred by the network band-
width of the communication link. Assuming efficient all_reduce
collective communication, in data-parallel configurations withm
workers, each worker sends (m−1m · |wl |) bytes to other workers,
and receives the same amount; this is used to estimate the time
for weight synchronization for layer l when using data parallelism
withm workers.
Partitioning Algorithm. Our partitioning algorithm takes the
output of the profiling step, and computes: 1) a partitioning of
layers into stages, 2) the replication factor (number of workers) for
each stage, and 3) optimal number of in-flight minibatches to keep
the training pipeline busy.

PipeDream’s optimizer assumes that the machine topology is
hierarchical and can be organized into levels, as shown in Figure 7.
Bandwidths within a level are the same, while bandwidths across
levels are different. We assume that level k is comprised of mk
components of level (k − 1), connected by links of bandwidth Bk .
In Figure 7,m2 = 2 andm1 = 4. In addition, we definem0 to be 1;
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Figure 7: An example 2-level hardware topology. Solid green
boxes represent GPUs. Each server (dashed yellow boxes)
has 4 GPUs connected internally by links of bandwidth B1;
each server is connected by links of bandwidth B2. In real
systems, B1 > B2. Figure best seen in color.

m0 represents the number of compute devices within the first level
(solid green boxes in Figure 7).

PipeDream’s optimizer solves dynamic programming problems
progressively from the lowest to the highest level. Intuitively, this
process finds the optimal partitioning within a server and then uses
these partitions to split a model optimally across servers.

Notation. LetAk (i → j,m) denote the time taken by the slowest
stage in the optimal pipeline between layers i and j usingm workers
at level k . The goal of our algorithm is to find AL (0→ N ,mL ), and
the corresponding partitioning, where L is the highest level and N
is the total number of layers in the model.

Let T k (i → j,m) denote the total time taken by a single stage
spanning layers i through j for both forward and backward passes,
replicated overm workers using bandwidth Bk .

Formulation. For all k from 1 to L,

T k (i → j,m) =
1
m

max



Ak−1 (i → j,mk−1)

2(m − 1)∑j
l=i |wl |

Bk

where the first term inside the max is the total computation time
for all the layers in the stage using level k − 1 as the computation
substrate, and the second term is the time for data-parallel com-
munication among all layers in the stage. The result of the max
expression above gives the effective time spent processingm in-
puts while performing compute and communication concurrently;
thus, the effective time spent processing a single input is this term
divided bym.

The optimal pipeline can now be broken into an optimal sub-
pipeline consisting of layers from 1 through s withm −m′ workers
followed by a single stage with layers s + 1 through j replicated
overm′ workers. Then, using the optimal sub-problem property,
we have:

Ak (i → j,m) = min
i≤s<j

min
1≤m′<m

max



Ak (i → s,m −m′)

2as/Bk
T k (s + 1→ j,m′)

where the first term inside the max is the time taken by the slowest
stage of the optimal sub-pipeline between layers i and s withm−m′
workers, the second term is the time taken to communicate the
activations and gradients of size as between layers s and s + 1, and
the third term is the time taken by the single stage containing layers
s + 1 to j in a data-parallel configuration ofm′ workers.

When solving for level k , we use Ak−1 (i → j,mk−1), which is
the optimal total computation time for layers i through j using
all workers available in a single component at level (k − 1) (in
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Figure 8: An example PipeDream pipeline with 3 workers
and 2 stages. We assume that forward and backward passes
in the first stage take two time units, while forward and
backward passes in the second stage take only a single time
unit. Thefirst stage in this pipeline is replicated twice so that
each stage sustains roughly the same throughput. Here, we
assume that forward and backward passes take equal time,
but this is not a requirement of our approach.

the expression T k (i → j,m)). In Figure 7, this would represent
determining how best to partition intermediate layers of the model
using all workers in a yellow server.

Initialization. Level 0 uses the profiled computation times:
A0 (i → j,m0) =

∑j
l=i Tl . For k > 0, optimal compute times with

all compute devices in the previous level are used: Ak (i → j, 1) =
Ak−1 (i → j,mk−1).

Runtime Analysis. For a given level k , the total number of
sub-problems is O (N 2mk ). Time complexity per sub-problem is
O (Nmk ), leading to a total time complexity ofO (N 3m2

k ) for level k .
Total time complexity is ∑L

k=1O (N 3m2
k ). In our experiments, the

running time is under 8 seconds.

3.2 Challenge 2: Work Scheduling
Unlike traditional uni-directional pipelines, training in PipeDream
involves a bi-directional pipeline, where an input minibatch pro-
ceeds through the computation pipeline first forward and then
backward. Each active minibatch in the pipeline may be in a dif-
ferent stage, either in the forward pass or backward pass. As a
result, each worker in the system needs to determine whether it
should i) perform its stage’s forward pass for a minibatch, pushing
the minibatch to downstream workers, or ii) perform its stage’s
backward pass for a different minibatch, pushing the minibatch to
upstream workers. In addition, how should minibatches be routed
with replicated stages?

Solution: In the startup phase, the input stage admits enough
minibatches to keep the pipeline full in steady state. Based on the
partitioning generated by our algorithm, the optimal number of
minibatches admitted per input stage replica to keep the pipeline
full in steady state is given by:

NUM_OPT_ACTIVE_MINIBATCHES (NOAM ) =
⌈ (# workers) / (# of replicas in the input stage) ⌉.

Once in steady state, each stage alternates between performing
its forward pass for a minibatch and its backward pass for an earlier
minibatch. We call this the one-forward-one-backward (1F1B) sched-
ule. 1F1B ensures that every GPU is occupied with a minibatch in a
balanced pipeline, with each stage producing outputs in aggregate
at roughly the same rate. It also ensures backward passes from
inputs are applied at regular intervals of time.
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Figure 4 shows the corresponding compute timeline for a pipeline
with 4 stages. The NOAM for this configuration is 4. In the startup
phase, the input stage admits exactly four minibatches that prop-
agate their way to the output stage. As soon as the output stage
completes its forward pass for the first minibatch, it performs its
backward pass for the same minibatch, and then starts alternating
between forward and backward passes for subsequent minibatches.
As the backward pass starts propagating to earlier stages in the
pipeline, every stage starts alternating between its forward and
backward passes for different minibatches. As shown in the figure,
every worker is performing either a forward or backward pass for
some minibatch in steady state.

When a stage is run in a data-parallel configuration (replicated
across multiple GPUs), we use deterministic round-robin load bal-
ancing based on a minibatch identifier to spread work across the
replicas. Such deterministic load-balancing ensures that each mini-
batch is routed to the same worker for both the forward and back-
ward passes of the stage, which is important since parameters and
intermediate outputs from the forward pass are needed for the
backward pass. This mechanism, which we call one-forward-one-
backward-round-robin (1F1B-RR), is a static policy that is executed
without expensive distributed coordination. Figure 8 shows this
mechanism in action for a simple 2-1 configuration, with the first
stage replicated twice, and the second stage un-replicated. In the
first stage, all inputs with even minibatch IDs are processed by
worker 1, while inputs with odd minibatch IDs are processed by
worker 2. Worker 3 in the second stage processes all inputs. All
workers perform a forward pass followed by a backward pass on a
different input minibatch.

For 1F1B-RR to be effective, it is not necessary for the forward
pass to take as long as the backward pass. In fact, we observe that
the backward pass is always larger than the forward pass in practice.
1F1B-RR remains an effective schedulingmechanism, as highlighted
in Figure 4.4

3.3 Challenge 3: Effective Learning
In a naively pipelined system, each stage’s forward pass for a mini-
batch is performed using one version of parameters and its back-
ward pass is performed using a different version of parameters.
Figure 4 illustrates this using a partitioning with four workers and
no stage replication. In stage 1, the forward pass for minibatch 5 is
performed after the updates from minibatch 1 are applied, whereas
the backward pass for minibatch 5 is performed after updates from
minibatches 2, 3, and 4 are applied. As a result, in the backward
pass for minibatch 5 on stage 1, the gradient is computed using a
different set of weights than the ones used in the corresponding
forward pass; this discrepancy in weight versions results in invalid
gradients and can prevent model convergence.

Solution: PipeDream uses a technique called weight stashing
to avoid a fundamental mismatch between the version of weights
used in the forward and backward pas. Weight stashing maintains
multiple versions of the weights, one for each active minibatch.
Each stage processes a minibatch using the latest version of weights
available in the forward pass. After completing the forward pass,

41F1B-RR produces a full steady state pipeline even for cases where the ratio of
backward- to forward-pass time is not an integer (e.g., 3 to 2).
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Figure 9: Weight stashing as minibatch 5 flows across stages.
Arrows point to weight versions used for forward and back-
ward passes for minibatch 5 at the first and third stages.

PipeDream stores the weights used for that minibatch. The same
weight version is then used used to compute the weight update and
upstream weight gradient in the minibatch’s backward pass.

Weight stashing ensures that within a stage, the same version
of model parameters are used for the forward and backward pass
of a given minibatch. For example, in Figure 9, minibatch 5 uses
parameter updates from minibatch 1 on machine 1 and from 2 on
machine 2. Weight stashing does not guarantee the consistency of
parameter versions used for a given minibatch across stages.
Vertical Sync. Vertical sync is an optional technique in PipeDream
that eliminates the potential inconsistency across stages. For exam-
ple, in Figure 4, minibatch 5 uses parameters updated by minibatch
1 on all workers for both its forward and backward passes when
using vertical sync. Each minibatch (bi ) that enters the pipeline is
associated with the latest weight version (w (i−x ) ) seen at the input
stage. This information is propagated along with the activations
and gradients as the minibatch bi flows through the pipeline in
the forward direction. Across all stages, the forward pass for bi
uses the stashed weights w (i−x ) as opposed to the latest weight
update. After performing the backward pass for bi (using stashed
weightsw (i−x ) ), each stage independently applies weight updates
to create the latest weights (w (i ) ), and can then deletew (i−x ) . This
coordination across stages is asynchronous.

The semantics of vertical sync are different from GPipe (and data
parallelism). In particular, gradients are not aggregated over all
in-flight minibatches in the system – vertical sync merely ensures
that the same weight versions are used to compute gradients across
different workers (but the weight versions to which gradients are
applied are different from those used to compute the corresponding
gradients).
Staleness. We can now formalize the degree of staleness of weight
updates for each of these techniques. For this discussion, we assume
a straight pipeline (i.e., no stage replication) with the model split
into n stages; the weights in each stage are represented asw1,w2,
and so on. In addition, we denote w (t )

l as the weights wl after t
minibatches.

Now, after every minibatch, we compute ▽f (w1,w2, . . . ,wn ),
which is the gradient averaged over all samples in the minibatch.
Vanilla minibatch SGD (f is the loss function, ν is the learning rate)
has the following gradient update:
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w (t+1) = w (t ) − ν · ▽f (w
(t )
1 ,w

(t )
2 , . . . ,w

(t )
n )

With weight stashing, gradients in stage 1 are computed with
weights that are n steps delayed, gradients for stage 2 are computed
with weights that are n − 1 steps delayed, etc. Mathematically, this
means the weight update looks like:

w (t+1) = w (t ) − ν · ▽f (w
(t−n+1)
1 ,w

(t−n+2)
2 , . . . ,w

(t )
n )

Without weight stashing, the weight update is not a valid gradi-
ent of the loss function f for any vectorw1, . . . ,wn .

Adding vertical sync alters the weight update to:

w (t+1) = w (t ) − ν · ▽f (w
(t−n+1)
1 ,w

(t−n+1)
2 , . . . ,w

(t−n+1)
n )

This is semantically similar to data parallelism with BSP synchro-
nization on n workers (with the same per-worker minibatch size),
with the same staleness (but gradients averaged over a minibatch
of size B instead of nB).
Memory Overhead. Pipelining does not significantly increase per-
worker memory usage relative to data parallelism, even with weight
stashing. Consider a straight pipeline (no data-parallel stages),
where a model is divided across n workers, with each worker hold-
ing 1/n of the weights. With non-pipelined model-parallel training,
each worker would need 1/n of the memory compared to data par-
allel training. Admitting n inputs into the pipeline, as PipeDream
does, increases this by at most a factor of n, because a version of
<weights, activations> is needed for each in-flight minibatch. Thus,
PipeDream’s peak per-worker memory usage is on par with data
parallelism.

PipeDream’s memory footprint can be further reduced by using
existing techniques: efficient encoding or compression of inter-
mediate data [30], gradient aggregation where weight gradients
are added to a single buffer at a stage for m minibatches before
performing a weight update, and trading computation time for
activation-stash memory by discarding them in the forward pass
and recomputing them as needed during the backward pass [14].

PipeDream’s default semantics exclude vertical sync as it re-
quires more metadata to be stored at every stage in the pipeline.
PipeDream’s default semantics (weight stashing but no vertical
sync) are between regular minibatched SGD on a single worker,
and data parallelism with BSP synchronization [19, 27]. Our evalu-
ation demonstrates its effectiveness across models, datasets, and
hardware configurations.

4 IMPLEMENTATION
The interface to PipeDream is implemented as a standalone Python
library of ∼3000 LOC that manages device memory, schedules work,
and handles communication. PipeDream uses PyTorch [5] for auto-
differentiation and to execute operators; however, PipeDream is
extensible and can work with other ML frameworks such as Ten-
sorflow [8], MXNet [13], and CNTK [45]. As a proof of concept, we
also integrated PipeDream with Caffe [32].

PipeDream first profiles the model on a single GPU with a subset
of inputs from the training dataset (Figure 6). It then runs the
optimization algorithm described in § 3.1 to partition the DNN
model into stages, with some stages possibly replicated.

PipeDream’s optimizer returns an annotated operator graph,
with each model layer mapped to a stage ID. PipeDream performs
a BFS traversal of this graph and generates code for each stage
as a separate torch.nn.Module, ordering operators in each stage
to make sure their input-output dependencies from the original
PyTorch model graph are respected. The PipeDream runtime then
assigns each stage (including replicas for replicated stages) to a
single worker according to its 1F1B-RR schedule.
Parameter State. PipeDream maintains all parameters associated
with the layers assigned to the stage directly in GPU memory.
PipeDream applies updates to the most recent parameter version
when the weight update becomes available if the stage is not repli-
cated. The weight updates are synchronized across replicas prior to
being applied if the stage is replicated. When a newer version of the
parameters becomes available, the prior version is not immediately
discarded. Parameters are discarded only once a backward pass that
uses fresher parameters is performed.
Intermediate State. Each stage’s input and output data is assigned
a unique blob ID. Upon receiving intermediate data from the prior
stage (or from disk in the case of the input stage), PipeDream copies
the intermediate data to GPU memory and places a pointer to the
associated buffer in a work queue. Intermediate data from the for-
ward pass is not discarded until the associated minibatch completes
that stage’s backward pass. Intermediate data from the backward
pass is freed as soon as the worker finishes using it, and if necessary,
after it is sent to the next stage.
Stage Replication. PipeDream uses PyTorch’s Distributed-
DataParallel library [6] to synchronize parameters for layers of
data-parallel stages. Using wait-free back propagation, weight gra-
dients are communicated to servers as soon as they are computed,
rather than waiting for computation to finish for all layers. Since
we support replication of individual stages, data-parallel training
is effectively a special case in our framework – we represent this
as a single stage that contains all the layers of the DNN model,
and replicate the stage across all available GPUs. We use the NCCL
communication backend [3] for data-parallel baselines as we find it
to be faster than Gloo [1] for the large tensors exchanged in DP. We
also find that Gloo is faster than NCCL for small tensors that are
exchanged across the pipeline, such as activations and gradients.
PipeDream defaults to using Gloo for all inter-GPU communication
when performing pipeline-parallel training because we are unable
to use both Gloo (across the pipeline) and NCCL (across replicated
stages) at the same time in a stage.
Checkpointing. PipeDream supports periodic checkpointing of
model parameters for fault tolerance, with default checkpoints
made across stages at the end of every epoch. Checkpoints don’t
require expensive global coordination. Each stage dumps its model
parameters locally when it performs the backward pass for the
last minibatch in an epoch. Restarting a run due to failures entails
starting from the last successfully created checkpoint for all stages.

5 EVALUATION
This section evaluates the effectiveness of PipeDream for seven
different DNNs on three different clusters. The results of our ex-
periments support a number of important findings: 1) PipeDream
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Task Model Dataset Accuracy # Servers × # GPUs PipeDream Speedup over DP
Threshold per server (Cluster) Config

Epoch time TTA

Image
Classification

VGG-16 [48] ImageNet [44] 68% top-1 4x4 (A) 15-1 5.28× 5.28×
2x8 (B) 15-1 2.98× 2.46×

ResNet-50 [26] ImageNet [44] 75.9% top-1 4x4 (A) 16 1× 1×
2x8 (B) 16 1× 1×

AlexNet [37] Synthetic Data N/A 4x4 (A) 15-1 4.92× N/A
2x8 (B) 15-1 2.04× N/A

Translation

GNMT-16 [55] WMT16 EN-De 21.8 BLEU
1x4 (A) Straight 1.46× 2.2×
4x4 (A) Straight 2.34× 2.92×
2x8 (B) Straight 3.14× 3.14×

GNMT-8 [55] WMT16 EN-De 21.8 BLEU
1x4 (A) Straight 1.5× 1.5×
3x4 (A) Straight 2.95× 2.95×
2x8 (B) 16 1× 1×

Language Model AWD LM [40] Penn Treebank [41] 98 perplexity 1x4 (A) Straight 4.25× 4.25×
Video Captioning S2VT [54] MSVD [11] 0.294 METEOR 4x1 (C) 2-1-1 3.01× 3.01×

Table 1: Summary of results comparing PipeDream with data parallelism (DP) when training models to advertised final accu-
racy. A PipeDream config of “2-1-1” means the model is split into three stages with the first stage replicated across 2 workers,
and a “straight“ configuration is a pipeline with no replicated stages—e.g., “1-1-1-1” on 4 workers. Batch sizes used to train
these models are reported in § 5.1.

Cluster Server SKU GPUs per Interconnects
name server Intra-, Inter-server

Cluster-A Azure NC24 v3 4x V100 PCIe, 10 Gbps
Cluster-B AWS p3.16xlarge 8x V100 NVLink, 25 Gbps
Cluster-C Private Cluster 1 Titan X N/A, 40 Gbps

Table 2: Characteristics of servers used in experiments.

achieves significant speedups in time-to-target-accuracy across a
wide range of different learning tasks on different hardware deploy-
ments, 2) PipeDream is more efficient than other recently proposed
inter-batch approaches, 3) PipeDream greatly reduces overheads of
communication and does not significantly increase memory foot-
print compared to data-parallel training, and 4) combining pipelin-
ing, model parallelism, and data parallelism outperforms model-,
data-, or hybrid-parallelism in isolation.

5.1 Experimental Setup
Tasks and Datasets. We use four tasks and four datasets in our
experiments: 1) Image Classification, using the ImageNet-1K
(ILSVRC12) [44] dataset; 2) Translation, using the WMT16 English
to German dataset for training, and the “newstest2014” dataset
for validation; 3) Language Modeling, using the Penn Treebank
(PTB) [41] dataset; and 4) Video Captioning (S2VT), using the Mi-
crosoft Video description corpus (MSVD) [11].
Clusters. We use three different clusters in our experiments, sum-
marized in Table 2. Cluster-A has servers with 4NVIDIA V100 GPUs
each (Microsoft Azure NCv3 instances), with 16 GB of GPU device

memory, and a 10 Gbps Ethernet interface. Cluster-B has servers
with 8 V100s each (AWS EC2 p3.16xlarge instances), with 16 GB
of GPU device memory, and a 25 Gbps Ethernet interface. GPUs
within servers are connected via a shared PCIe interconnect on
Cluster-A, and via point-to-point NVLink on Cluster-B. All servers
run 64-bit Ubuntu 16.04 with CUDA toolkit 10.0 and cuDNN v7.4.
Cluster-C has servers with 1 NVIDIA Titan X GPU and 12 GB of
GPU device memory, connected via 40 Gbps Ethernet. Unless oth-
erwise stated, all our experiments are run on multi-GPU servers
(Cluster-A and Cluster-B).
Models. We use seven different DNN models in our experiments
across the four applications: 1) VGG-16 [48], 2) ResNet-50 [26],
3) AlexNet [37], 4) Google Neural server Translation (GNMT) with 8
LSTM layers [55], 5) GNMTwith 16 LSTM layers, 6) AWD Language
Model (LM) [40], and 7) the S2VT [54] sequence-to-sequence model
for video transcription.
Batch Sizes and Training Methodology.We use the largest per-
GPU minibatch that fits in one GPU’s memory – anything larger
yields out-of-memory exceptions. This ensures that we hit peak
achievable FLOPs on a single device. Unless otherwise stated, we
report per-GPU minibatch sizes (G); for data-parallel runs with n
workers, the global minibatch size (BS) isn×G . The global minibatch
sizes we use are consistent with those used by the ML community
and reported in the literature for these models. We use a per-GPU
minibatch size of 64 per GPU for VGG-16, 256 for AlexNet, 128
for ResNet-50 (e.g., BS = 1024 for 8 GPUs), 64 for GNMT, 80 for
S2VT, and batch size of 80 for LM. We train the VGG-16, ResNet-50,
Language Modeling, and S2VT models using SGD with an initial
learning rate of 0.01, 0.1, 30.0, and 0.01 respectively. For GNMT, we
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Figure 10: Accuracy vs. time for VGG-16 using 16 GPUs.
Each circle or triangle represents two epochs of training.

use the Adam optimizer [35] with an initial learning rate of 0.0003.
We use full (fp32) precision in all our experiments.

For all experiments (other than AlexNet), we measure the time
taken to train to a target validation accuracy: top-1 accuracy of
68% for VGG-16 [7], top-1 accuracy of 75.9% for ResNet-50, BLEU
score of 21.8 for GNMT, a validation perplexity of 98 for LM, and a
METEOR [22] score of 0.294 for S2VT. Guided by prior work, we
adjust the learning rate during training to converge to the desired
result faster [35, 49] and utilize learning rate warm-up for large
global batch sizes [24]. We use the same learning rate schedules
for PipeDream and data-parallel training. For AlexNet we use syn-
thetic data (otherwise, data loading is the bottleneck) and measure
throughput.

5.2 Comparison to Data Parallelism
Table 1 summarizes results comparing PipeDreamwith data-parallel
training (DP). The table shows PipeDream’s auto-generated con-
figurations and their speedups in training time-to-accuracy over
corresponding data-parallel training configurations.5

PipeDream Configurations. As described in § 3.1, given a DNN
model and a set of servers, PipeDream’s optimizer automatically
chooses to partition the model into stages, while also deciding the
optimal replication factor for each stage. Although most prior re-
search has focused on improving data-parallel training, our results
indicate that the best configurations for many models is not data
parallelism, despite the use of many important optimizations such
as wait-free back propagation. In all but one of our experiments, the
best PipeDream configuration combines model parallelism, pipelin-
ing, and sometimes data parallelism; each of these configurations
outperforms data-parallel training, highlighting the importance
of combining inter-batch pipelining with intra-batch parallelism.
PipeDream’s optimizer recommends data parallelism for ResNet-
50 because its weight representations are small and its outputs
5A configuration indicates how layers are partitioned into stages amongst workers.
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Figure 11: Accuracy vs. epoch using 16 GPUs on Cluster-B.

are large. PipeDream’s optimizer, besides determining the optimal
configuration, also automatically decides where to partition the
DNN training graph; these partitioning decisions are not shown in
Table 1.
Image Classification. We compare PipeDream and DP time-to-
accuracy for VGG-16 using 4 servers in Cluster-A (4x4 (A) in Table 1.
PipeDream reaches target accuracy 5.28× faster than DP on a single
server, due to a reduction in inter-server communication. Figure 10
(a) shows this comparison as the DNN is trained over time. In the
4-server configuration, PipeDream’s optimizer (§ 3.1) recommends
a 15-1 configuration – in this case, VGG-16’s convolutional layers
are replicated, while the large fully connected layers are not, reduc-
ing communication overhead. Moreover, pipelining across the two
stages helps keep all workers busy.

Compared to Cluster-A, which has 4 GPUs per server connected
via PCIe, Cluster-B has 8 GPUs per server connected over faster
peer-to-peer NVLink interconnects. On 2 servers on Cluster-B (16
GPUs total), PipeDream reaches target accuracy 2.98× faster than
DP when training VGG-16. Due to the faster interconnects on
Cluster-B, both PipeDream and DP reach target accuracy faster
than on Cluster-A (see Figure 10).

For training ResNet-50 on Cluster-A, PipeDream’s partitioning
algorithm recommends data parallelism as the optimal configura-
tion (no pipelining or model parallelism). Later, in § 5.5, we show the
reason for this recommendation: non data-parallel configurations
incur higher communication overheads than DP for ResNet-50,
since ResNet-50 is composed of convolutional layers which have
compact weight representations but large output activations. For
AlexNet, we compare throughput of PipeDream on Cluster-A and
Cluster-B. On Cluster-A, PipeDream achieves a time-per-epoch
speedup of 4.92×with 4 servers. On Cluster-B, PipeDream achieves
a speedup of 2.04× when using 16 GPUs.
Translation. We show results for the GNMT model with 8 LSTM
layers (GNMT-8) and 16 LSTM layers (GNMT-16) in Table 1). Using
1 server on Cluster-A, PipeDream reaches target accuracy ∼ 1.5×
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Model Scale (# V100s) Cluster-B /
official MLPerf v0.5

GNMT-8 256 1.94×
SSD 64 3.29×

Mask R-CNN 64 2.32×

Table 3: Increase in per-epoch times for data-parallel train-
ing when moving from dedicated clusters used in official
MLPerf v0.5 entries to public clouds like Cluster-B. The
same code is used for both sets of runs.
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Figure 12: Communication overhead of data-parallel train-
ing using different server instances using PyTorch 1.1 and
NCCL [3] for a GNMT-8model with fp16 and fp32 precision.

faster than DP for GNMT-8 and GNMT-16. When using 4 servers
(16 GPUs) on Cluster-A, PipeDream reaches target accuracy 2.92×
(GNMT-8) and 2.95× (GNMT-16) faster than DP. We show in § 5.5
that PipeDream significantly reduces communication compared to
DP, thus reducing its time to target accuracy.

On 2 servers (16 GPUs) of Cluster-B, PipeDream reaches target
accuracy 3.14× faster than DP for GNMT-16, choosing a “straight”
configuration (no stage replication). For GNMT-8, PipeDream falls
back to data parallelism, since the smaller model has lower com-
munication overhead on servers with fast NVLink interconnects
between GPUs on the same server, and GNMT-8 does not have
enough layers for a 16-deep straight pipeline.
Language Modeling. This model is made up of six LSTM lay-
ers that contain a large number of model parameters (0.41GB),
making data-parallel training inefficient. Using a single server on
Cluster-A, PipeDream reaches target accuracy 4.25× faster than
DP. PipeDream chooses a “straight” configuration that reduces
communication by 88% compared to DP.
Video Captioning. PipeDream chooses to use a 2-1-1 configura-
tion for the S2VT on Cluster-C, reducing communication by 85%
compared to DP, which in turn allows it to reach target accuracy
3.01× faster than DP.
Comparison to MLPerf v0.5. For ResNet-50 and GNMT-8, we ob-
serve that our data-parallel baseline on a single server with 8 GPUs
in Cluster-B is comparable to the MLPerf v0.5 entry that uses a sim-
ilar hardware configuration. However, we observe that per-epoch
times on public cloud servers are slower than official MLPerf v0.5 en-
tries for multi-server DP deployments, since slower communication
links on public cloud servers (compared to dedicated clusters used
in the MLPerf entries) make all_reduce communication slower.
We cannot measure this difference in time-to-accuracy at the scales
used by the MLPerf entries as it is cost prohibitive, but Table 3 com-
pares the advertised training throughput of official MLPerf v0.5 [2]
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Figure 13: Statistical efficiency (accuracy vs. epoch) using
LARS (VGG-16, 8 GPUs).

entries with data-parallel runs on p3.16xlarge instances using the
same code. Coleman et al. observed similar results [17], both for
official DAWNBench and MLPerf entries.

Furthermore, with 8 GPUs, for GNMT-8, while full precision
is slower than the entry using mixed precision, we use a fp32
baseline to be consistent with the rest of the evaluation in this
paper. Figure 12 shows that communication overheads for data
parallelism with mixed precision are higher than with full precision,
and thus the speedups we highlight with pipeline parallelism should
carryover (or improve) with mixed precision training.
Comparison to DP with large minibatches. Recent work has
demonstrated that using large minibatches is effective for training
ResNet-50 and AlexNet models, especially when combined with
Layer-wise Adaptive Rate Scaling (LARS). [24, 31, 56]. LARS uses
different learning rates for each layer based on the ratio of the
weight norm to the gradient norm. Large minibatches decrease
the frequency of communication, reducing the communication
overhead for data parallelism. Figure 13 shows 8-server results for
data-parallel training of VGG-16 using LARS and large minibatches
on Cluster-C. Minibatches of 1024 had the fastest time-to-target-
accuracy, while minibatches of 4096 and 8192 failed to reach target
accuracy, highlighting the lack of generality of such approaches.
PipeDream still reaches target accuracy over 2.4× faster than the
fastest data-parallel option (1024 with LARS).
Comparison to Asynchronous Parallelism (ASP). ASP can re-
duce communication overhead in data-parallel training. Unlike
BSP, which synchronizes parameters after every minibatch, ASP
has no synchronization overheads, and workers use the most recent
parameter data available. The result is often poor statistical effi-
ciency. For example, when training VGG-16 on 4 Cluster-B servers,
ASP data-parallel takes 7.4× longer than PipeDream to reach a 48%
accuracy (when we terminate ASP for taking too long to converge),
even though ASP has minimal communication delays. Similar re-
sults have been shown by Chen et al. [12].
Statistical Efficiency. Figure 11 shows accuracy vs. epoch for
VGG-16 and GNMT-16 on Cluster-B. We do not show accuracy
vs. epoch graphs for other experiments due to space constraints.
However, we consistently observe that PipeDream reaches target
accuracy in a similar number of epochs as DP (as can be seen by
the fact that TTA and epoch time speedups are the same for many
rows in Table 1). This highlights the fact that PipeDream’s weight
stashing mechanism is able to achieve statistical efficiency compa-
rable to data parallelism, and that PipeDream’s speedups are due
to better system performance.
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Figure 14: Comparison of PipeDream (red) to non-DP intra-
batch techniques for 4-GPU configurations on Cluster-A.

5.3 Comparison to Other Intra-batch
Parallelism Schemes

This section compares PipeDream to other intra-batch paralleliza-
tion techniques besides data parallelism.
Model Parallelism. Figure 14a compares model parallelism (blue
bars), straight pipelineswithout replication (green bars), and pipelin-
ing with stage replication (red bars). For all four models, pipelining
alone increases throughput by 2× or more. For GNMT-8 and GNMT-
16, PipeDream’s optimizer chooses not to replicate any stages, re-
sulting in identical configurations for the green and red bars. For
VGG-16 and AlexNet, PipeDream replicates the first stage, leading
to speedups of 14.9× and 6.5× compared to model parallelism.
Hybrid Parallelism. Figure 14b shows that pipelining for a config-
uration that combines data and model parallelism (similar to those
proposed by Krizhevsky et al. [36] and FlexFlow [33, 34]) increases
throughput by as much as 80%. In running FlexFlow for AlexNet on
Cluster-B (not shown in Figure 14b), we observe that PipeDream
is 1.9× faster; a speedup due to pipelining over hybrid parallelism.
Note that the same number of bytes are being communicated across
workers with and without pipelining. Speedups are achieved by
overlapping compute and communication, and consequently better
utilization of compute resources.

5.4 Comparison to Inter-batch Parallelism
We compare training GNMT-16 using PipeDream and our imple-
mentation of GPipe using 16 GPUs on Cluster-A and Cluster-B.
GPipe does not provide an algorithm for partitioning work across
stages, so we use the same partitions as PipeDream. GPipe also does
not provide an algorithm for how many items should be permitted
into the “pipeline” (pipeline depth). When we set the pipeline depth
to be equivalent to “NOAM” in PipeDream (§ 3.2), GPipe experi-
ences 55% and 71% throughput slowdowns compared to PipeDream
on Cluster-A and Cluster-B, respectively. Setting the pipeline depth
for GPipe to the largest number that does not cause an out-of-
memory exception, leads to throughput slowdowns of 35% and 42%

0 1 2 3 4 5
Predicted throughput (epochs / hr)

0
1
2
3
4
5

R
ea

l t
hr

ou
gh

pu
t

(e
po

ch
s /

 h
r)

Figure 15: Real vs. optimizer’s predicted throughput for
VGG-16 with 16 workers. Each symbol represents a different
partition, including the triangle for vanilla data-parallelism
and the diamond for the optimizer’s selection.
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Figure 16: Memory footprint for various models using 4
GPUs. Per-GPU memory footprint is shown for data paral-
lelism, and is identical on all GPUs.

on Cluster-A and Cluster-B, respectively. These throughput slow-
downs are largely due to more frequent pipeline flushes compared
to PipeDream (Figures 3 and 4).

5.5 Microbenchmarks
We evaluate PipeDream’s optimizer, its communication overhead
and memory footprint, and the effect of pipeline depth on through-
put and memory footprint.
Optimizer. PipeDream’s optimizer is efficient, generating optimal
training configurations in under 8 seconds for all models and hard-
ware deployments evaluated. As one example, Figure 15 shows real
vs. predicted throughputs for various configurations for VGG-16
with 16 workers. Predicted and real throughputs are strongly lin-
early correlated, and the optimizer picks the best configuration
among those tested.
Memory Footprint. Figure 16 shows the per-stage memory foot-
print of PipeDream for 4-stage configurations for three different
models. PipeDream’s worst-case memory footprint is on par with
that of data parallelism, even though PipeDream stashes multi-
ple weight and activation versions. This is because each stage in
PipeDream is responsible for only a fraction of the total number
of weights and activations in the model. As PipeDream scales to
include more stages, the memory footprints remain consistent as
discussed in § 3.3.
Communication Overhead. Figure 17 shows the amount of com-
munication performed per training sample in the best non-DP con-
figuration compared to the amount of communication performed
in data-parallel training. For GNMT-8, GNMT-16, and VGG-16, the
communication overhead for the best non-DP configuration is far
less than the communication overhead for the DP configuration.
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Figure 18: Effect of pipeline depth on throughput andmem-
ory overhead for GNMT-8 on 4 V100s in Cluster-A.

For ResNet-50, the amount of communication for the best non-
data-parallel configuration is higher than the DP configuration,
thus explaining why PipeDream’s optimizer chooses to perform
ResNet-50 training using a data-parallel configuration.
Effect of Pipeline Depth. Figure 18 shows the effect of varying
pipeline depth on throughput and memory overhead for GNMT-8.
We make three observations: 1) Memory footprint with no pipelin-
ing is different across stages, since PipeDream’s optimizer tries
to load balance compute and communication, and not memory
footprint (working set still fits comfortably in GPU memory). 2)
As the pipeline depth increases from 2 to 7, memory footprint in-
creases because the number of weights and activations that need
to be stashed increases proportionally. 3) In our experiments, a
pipeline depths of 4 (NOAM) and 7 give the highest throughput.
While the working set of stages fits in GPU memory (16 GB), if
required, pipeline depth can be decreased to trade throughput for
reduced memory footprint. Throughput increases as pipeline depth
increases since communication can be more easily hidden as the
number of inputs in the pipeline increases, reducing pipeline stalls
and thus improving resource utilization.

6 CONCLUSION
Pipeline-parallel DNN training helps reduce the communication
overheads that can bottleneck intra-batch parallelism. PipeDream

automatically partitions DNN training across workers, combining
inter-batch pipelining with intra-batch parallelism to better overlap
computation with communication while minimizing the amount
of data communicated. Compared to state-of-the-art approaches,
PipeDream completes training up to 5.3× faster across a range of
DNNs and hardware configurations.
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