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Abstract

Image-based 3D reconstruction for Internet photo col-

lections has become a robust technology to produce impres-

sive virtual representations of real-world scenes. However,

several fundamental challenges remain for Structure-from-

Motion (SfM) pipelines, namely: the placement and recon-

struction of transient objects only observed in single views,

estimating the absolute scale of the scene, and (suprisingly

often) recovering ground surfaces in the scene. We propose

a method to jointly address these remaining open problems

of SfM. In particular, we focus on detecting people in indi-

vidual images and accurately placing them into an existing

3D model. As part of this placement, our method also es-

timates the absolute scale of the scene from object seman-

tics, which in this case constitutes the height distribution of

the population. Further, we obtain a smooth approxima-

tion of the ground surface and recover the gravity vector

of the scene directly from the individual person detections.

We demonstrate the results of our approach on a number of

unordered Internet photo collections, and we quantitatively

evaluate the obtained absolute scene scales.

1. Introduction

Over the last decade, a significant effort has grown to ac-

tively map the 3D world around us into the virtual realm.

In particular, virtual tourism applications [42] have become

immensely popular in allowing users to experience and ex-

plore places they may otherwise not be able to visit.1 These

applications use 3D reconstruction approaches to recover

models of actual places, typically starting from either a con-

trolled capture scenario (e.g. aerial imagery of a single city)

or, to visualize scenes from anywhere on Earth, publicly

available photographs downloaded from the Internet. From

this initial imagery, 3D models are obtained via Structure-

from-Motion (SfM) [39, 43, 50, 49, 1, 12, 19, 40] and dense

multi-view stereo (MVS) pipelines [41, 14, 13]. The ideal

1 For example, Google Earth VR (https://vr.google.com/

earth/) is a prominent virtual reality application that allows users to

view cities from overhead in 3D.

Figure 1. Result for our method for San Marco Square, Venice.

Top: Dense, but incomplete, 3D reconstruction of static scene ele-

ments using multi-view stereo. Bottom: The same view, but with

our textured ground surface added into the scene, and populated

with a subset of pedestrians observed in the input images of the

reconstruction. Our method jointly recovers the 3D position of the

people, the absolute scale of the scene, the gravity direction of the

scene, and the texture and geometry of the ground surface.

for virtual tourism is to present such reconstructions as nav-

igable environments that a user can explore (e.g. in virtual

reality) with a sense of “being” in the remote place.

The perception of a virtual environment, however, is

inherently tied to the completeness of the representation.

Modern SfM+MVS pipelines have fundamental limitations

in this respect. Ground reconstruction and transient ob-

ject modeling are two bugbears of large-scale reconstruc-

tion from crowd-sourced still imagery. Ground is notori-

ously difficult to reconstruct from such image collections

due to the relatively low number of matched ground points

[26]. Transient objects such as people and moving cars are

https://vr.google.com/earth/
https://vr.google.com/earth/


likewise difficult to reconstruct without the availability of

multiple synchronized views. In addition, automatically re-

covering the scene’s absolute scale (i.e. reconstruction units

per meter) is problematic unless a sufficient number of im-

ages have reliable world coordinate (e.g. GPS) information.

Besides GPS’ inherent unavailability for indoor scenes, the

problem of missing GPS data is increasingly relevant given

the recent trend of stripping out geo-location metadata from

images shared online due to privacy concerns. Recovering

these currently missing scene elements — transient objects,

ground, and scale — is a highly desired goal in general 3D

reconstruction, in addition to being a step forward for large-

scale virtual tourism experiences.

In this paper, we seek to automatically augment

SfM+MVS reconstructions with these fundamental scene

elements. To achieve this, we leverage semantics on the

transient objects in the scene. We specifically target large-

scale 3D reconstructions obtained from Internet photo-

collections, and we place people detected in the individual

images into the 3D space; in principle, our method could be

applied to other classes of transient objects, such as cars.

Our work provides a solution to an intriguing open prob-

lem in 3D reconstruction: How can moving objects be

placed into a scene given only single observations from

temporally disparate views? For large-scale SfM, the out-

put 3D models are formed from many unordered images

that effectively sample the behavior of people in the spatio-

temporal domain. While the spatial domain is typically

well-sampled because of the large number of images, the

temporal sampling of the scene is mostly non-overlapping,

e.g., on the order of a few (publicly shared) photos per hour

even for highly photographed scenes. As a result, we can

only assume that a single observation exists for any detec-

tion, which disallows the use of traditional triangulation ap-

proaches for 3D placement. To provide further context, we

performed a cursory analysis of the date/time EXIF tags for

several heavily photographed scenes in our experiments. In

these datasets, we empirically observe that a publicly shared

photo is taken approximately every 20 minutes.

To enable 3D placement, we leverage the fact that, given

a sufficient number of observations and sufficiently vis-

ited areas, there will exist potentially many instances where

multiple people in different images occupy the same loca-

tion in the scene. Combined with viewing ray constraints

and a known distribution of human height, this principle

forms a strong cue for measuring the accuracy of 3D place-

ment, which allows us to jointly recover scene scale, per-

son placements, and ground surfaces. In this manner, we

leverage object class semantics to “fill in” the parts of the

reconstruction missed by traditional static methods. Fig. 1

shows an example of our reconstructed ground surfaces and

3D placement of people.

2. Related Work

There has been a strong interest in automatically obtain-

ing 3D reconstructions from crowd-sourced images. The

seminal work of Snavely et al. [42, 43] demonstrated the

feasibility of reconstruction from Internet photos, and later

systems robustified the reconstruction methods and tack-

led increasingly larger scenes and photo-collections. To-

day, state-of-the-art systems are able to provide highly de-

tailed 3D models of thousands of sites around the world

from one-hundred million user-uploaded images [19, 41].

However, the resulting models are only reconstructed up to

an unknown scale factor and only represent the static parts

of the scenes. Transient objects such as humans are inher-

ently missing in such reconstructions.

A number of works have leveraged human detections for

single-view camera calibration, particularly for surveillance

cameras, and for crowd modeling in synchronized multi-

view systems. Lv et al. [31, 32] and others [25, 23, 27, 34]

extract head and foot positions for one or more walking hu-

mans in each frame of a video taken by a single stationary

camera. Under the assumption that people stand upright

and that the walking area is flat, these methods recover the

vertical vanishing point and a horizon line for the scene,

which can be further used to obtain camera intrinsics and

the ground plane relative to the camera. If the height of

one or more of the detected people is known, the absolute

height of the camera above the ground can also be recov-

ered. Notably, Liu et al. [29] used known human height

distributions to automatically determine focal length and

camera height. Other works [20, 46] explored increasing

robustness by additionally incorporating vanishing points

from the static scene. For general crowd modeling in multi-

view synchronized systems [47], a large number of methods

(e.g. [17, 10, 37, 11, 3]) exist to triangulate and track people

in the camera space, potentially without explicit correspon-

dences [30] or a knowledge of the system calibration [18].

Our work is set apart from these approaches in that we tar-

get the to-scale alignment of multiple camera spaces, which

prevents the direct use of single-view methods, and that we

cannot make use of a coherent scene configuration across

views (or even repeated observations from a single view) in

our temporally disjoint multi-view scenario.

Among other methods for reconstructing moving hu-

mans, trajectory triangulation for dynamic objects has been

well-researched for images with dense temporal sampling

[2, 38, 52, 22], but the topic has rarely been applied to

unordered photo collections [53] and, to our knowledge,

has not been applied in cases where hundreds or thousands

of object class instances are observed. Garg et al. [16]

explored detecting a single, manually specified individ-

ual among sets of Internet imagery, working under the as-

sumption that the individual is positioned in approximately

the same location across many images. Martin-Brualla
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Figure 2. The pipeline of our proposed reconstruction system.

et al. [33] pieced together separate crowd-sourced 3D re-

constructions by, in part, recovering the paths of photog-

raphers moving between them; this method does not re-

cover the behavior of non-photographers, however. Zheng

et al. [53] tackled the lack of temporal overlap by leverag-

ing single-instance detections to localize object class tra-

jectories. Their insight was that most object classes have

structured motion paths in the scene, and recovering this

path structure is complementary to recovering the object

trajectories. The problem is formulated as a generalized

minimum spanning tree (GMST), followed by a continu-

ous optimization to refine the trajectory. However, the ap-

proach does not generalize to unstructured or weakly struc-

tured object class motions, as is often encountered in open

scenes such as plazas or tourist sites. Additionally, their

method carries high computational cost due to solving the

NP-hard problem of computing the GMST [35]. In contrast,

our method dispenses with the requirement of structured ob-

ject class motion along a path. Moreover, it is significantly

more efficient in terms of computation, allowing us to scale

to large-scale photo-collections with thousands of images

per site. We achieve this by incorporating semantic infor-

mation and coarse object class triangulation.

Similar to our work, Bulbul and Dahyot [5] introduced a

method for obtaining representations of transient objects in

map representations such as OpenStreetMap (OSM) [36].

In contrast to our scenario, OSM provides both a to-scale,

geo-localized environment model and a coarse ground sur-

face representation. The authors used social media photos

with geo-localization metadata to place human avatars into

the map. To obtain the camera position of a social media im-

age, they registered the image to nearby Google StreetView

images2 based on its known geo-location. People in the im-

ages were placed onto the map’s ground surface at a dis-

tance from the camera estimated by the size of their face

in the image. In this paper, we seek to not only place peo-

ple into 3D models of places on Earth, but to actually com-

plete reconstructions in terms of scale, transient objects, and

ground, all without any external references.

2https://www.google.com/streetview/

3. Methods

In this section, we present our novel approach for plac-

ing people, estimating scale, and recovering ground surface

in a 3D scene. An overview of our pipeline is shown in

Fig. 2. Starting from an initial set of photos of a scene,

we first employ Structure-from-Motion (SfM) [39] to ob-

tain camera parameters and sparse structure. We then de-

tect 2D torso points for people in the images [48, 7] and

from these estimate the distances and rotations of individu-

als relative to each camera, as well as a global scene grav-

ity vector (Section 3.1). We next test out a range of possi-

ble scene scales for the reconstruction and rank them using

approximate semantic triangulation (Section 3.2). We then

refine the scale and the 3D placement of the people using

known human height statistics and encouraging a locally

planar ground surface (Section 3.3). In the last stage, we re-

cover the ground surface using Poisson surface reconstruc-

tion [24] (Section 3.4). For visualization, we place human

avatars into the 3D space with clothing colors sampled from

the input images; we also texture the ground using image

data and semantic pixel labelings [51] (Section 3.5).

3.1. Person Detection and Gravity Estimation

The input to our algorithm consists of a set of photos of

a scene, plus a sparse representation of the scene obtained

from these images via SfM [39]. Our first step is to de-

tect people in the images and obtain an initial estimate of

each person’s absolute position – that is, the real-world co-

ordinates (in meters) of the person in the reference frame

of the camera when the image was taken. These initial po-

sitions will subsequently be used for a coarse scene scale

estimation. The general approach we take here is to detect

torso points in each image and, for each detection, fit a pla-

nar torso model to the detected points. We assume that de-

tected torsos are aligned with the (initially unknown) grav-

ity vector for the scene, which is a generally valid assump-

tion given that most people stand upright [31, 25, 34]. We

jointly optimize 1) the global gravity vector, 2) the absolute

position of each person’s neck point, and 3) the 1-DoF head-

ing (rotation around the gravity vector) of the person. This

optimization is done by minimizing the reprojection error

of the posed torso models back into their original images.

Torso Detection: For detection, we use Convolutional

https://www.google.com/streetview/


Pose Machines (CPM) [48, 7], a state-of-the-art joint detec-

tor specifically designed for real-time, multi-person pose es-

timation. We define the 2D joints on the torso by taking the

CPM detections for the neck, shoulders, and hips. We only

consider joint detections having at least 30% confidence,

and we rule out individuals lacking confident detections in

the neck and at least one of the hips.

Torso Model Fitting: As a coarse initialization that will

later be refined, we fit a fixed-size planar torso model to

each detection. This model is centered at the neck point

with a width of 30cm and a height of 52cm (Fig. 3). Our

convention is that gravity points in the positive y direction,

so the model is defined in the xy plane.

We transform the torso model to match the detected 2D

joints for person i. Because we have obtained an initial SfM

reconstruction of the scene, we know the pose [Ri | ti] and

the intrinsics of the observing camera. The camera location

in the reconstruction space does not matter at this stage, but

it is necessary to know the orientation of the camera relative

to the gravity direction of the scene.

We apply the model-to-camera transformation in four

steps. First, we rotate the model around the y axis by an-

gle θi; denote the associated rotation as R(θi). This repre-

sents the direction the person is facing in the reconstruction

space. Second, we align the model to the scene gravity vec-

tor g ∈ R
3, with ||g|| = 1, by calculating the rotation of

the model gravity vector [0 1 0]T into g. This rotation can

be formulated as the unit quaternion qg = (v̂2, v̂3, 0,−v̂1),
where v̂ = v

||v|| with v = g + [0 1 0]T ; more generally,

we denote this model-to-world gravity alignment as R(g).
Third, we place this result in the coordinate frame of the ob-

serving camera by applying the extrinsic rotation matrix Ri.

Finally, we translate the model relative to the camera based

on the 3D position of the neck point Ni = zi[xi yi 1]T ,

where (xi, yi) is the 2D coordinate of the neck point in nor-

malized camera coordinates, and zi is the depth (in meters)

of the person relative to the camera. Note, we do not require

(xi, yi) to exactly lie at the neck point detected by CPM.

For 3D joint Jm in the original torso model, we thus ob-

tain a rotated, gravity-aligned, camera-aligned 3D joint:

Ji,m = RiR(g)R(θi)Jm +Ni. (1)

Optimization: We jointly optimize g and all individu-

als’ poses Θ = {(θi, xi, yi, zi)} by minimizing the repro-

jection errors of the torso model into the original images:

min
g,Θ

∑

i

φ

(

∑

m

ρ2i,m||πi(Ji,m)− ji,m||2
)

, (2)

where ji,m is the 2D pixel location of detected joint m,

πi(·) is the projection function for camera i that converts

3D points relative to the camera into 2D pixel projections

according to the camera intrinsics estimated in SfM, and

Figure 3. To accurately localize 2D ground points for detected

people, we first fit a planar torso model in 3D (left) to detected

2D neck, shoulder, and hip joints (middle-left). Right: Coordinate

axes for the planar model.

ρi,m is the joint detection confidence obtained from CPM.

φ(·) is a robust function that mitigates the effect of strong

outlier detections; in our implementation, we employ the

Huber loss function with a threshold of 4 pixels [21].

The gravity vector is initialized to the geometric median

of the individual camera down vectors. In order to obtain

good initialization for depth, we perform a preliminary op-

timization of depths {zi} and gravity only, followed by a

further optimization of all parameters. The depth/gravity

optimization works as follows: Neck locations {(xi, yi)}
are fixed to the initially detected 2D locations, and depths

are initialized to 1 meter. The rotation parameters {θi} are

ignored; instead, we sample a set of discrete rotations {θ̄k}
at intervals of 10◦. For each detection, the optimal rotation

is taken as the angle in this set that minimizes the reprojec-

tion error. A modified version of Eq. (2) is thus optimized:

min
g,{zi}

∑

i

φ

(

min
θ̄k

∑

m

ρ2i,m||πi(Ji,m(θ̄k))− ji,m||2
)

,

(3)

where Ji,m(θ̄k) = RiR(g)R(θ̄k)Jm +Ni.

After this first optimization, {θi} values are initialized

based on the value of θ̄k that minimizes the reprojection

error for each person. The full set of parameters (g,Θ)
is then optimized using Eq. (2). Finally, we re-orient the

3D reconstruction such that the estimated gravity vector is

aligned with the positive y axis.

3.2. Votingbased Scale Estimation

At this point, we have obtained an initial absolute depth

estimate for each person relative to the camera that observes

them. Next, we estimate an initial placement of the detec-

tions into the reconstruction space, while at the same time

obtaining an initial absolute scale estimate for the scene.

If the scene scale s (e.g. the length of 1 meter in the re-

construction space) were known, we could calculate the 3D

neck point of person i in the reconstruction space as

Pi(s) = sRT
i Ni + Ci, (4)



where Ni ∈ R
3 is the estimated 3D position of the neck

point relative to the observing camera, Ri ∈ R
3×3 is the

scene-to-camera rotation matrix, and Ci ∈ R
3 is the 3D

position of the camera in the reconstruction space.

In principle, s could be determined from a known ab-

solute distance between two points in the reconstruction

space, e.g., the width of a building or the distance between

two cameras. Lacking known distances, we propose to in-

stead leverage approximate semantic triangulation. The

idea here is that, given enough input images, and especially

in well-traveled areas, there is a high probability that at

least two individuals in different images will be observed in

nearby locations, and at similar heights above the ground.

Our method samples a range of scale hypotheses for the 3D

reconstruction and scores each based on the observed per-

son correspondences.

Pairwise Approximate Triangulation: More explicitly,

consider the 3D neck placements Pi(s) and Pj(s) (Eq. (4))

for two individuals at some scene scale s. Recall that,

by convention, the y axis defines the vertical span of the

scene, and the xz plane defines the horizontal space. We

denote two individuals as standing “nearby” if they are

within some fixed absolute distance τxz in the horizontal

space. In addition, we say that the individuals are stand-

ing at similar heights if their neck points are within some

fixed absolute distance τy in the vertical space. Taking

∆Pij(s) = Pi(s) − Pj(s), let Mij(s) denote the binary

indicator function that determines whether persons i and j
are approximately triangulated at scale s:

Mij(s) =
(

||∆P xz
ij (s)|| < sτxz

)

∧
(

|∆P y
ij(s)| < sτy

)

,
(5)

where ||∆P xz
ij (s)|| and |∆P y

ij(s)| denotes the horizontal

and vertical distances between the neck points, respectively.

We compute Mij(s) for all pairs of detected people in

separate images. We also only consider individuals satisfy-

ing visibility constraints (Vi(s), explained below). An indi-

vidual is successfully triangulated at scale s if any pairwise

approximate triangulation was successful:

Mi(s) = Vi(s)∧





∨

j

(Ii 6= Ij) ∧ Vj(s) ∧Mij(s)



 , (6)

where Ii denotes the image in which person i was detected.

Visibility Constraint: An important constraint in our

scale estimation is that the line segment from Ci to Pi(s)
should not intersect with structures such as walls. This con-

straint may be violated if s is too large, which pushes Pi(s)
further from the observing camera. Accordingly, Vi(s) is an

indicator function denoting whether the detection of person

i is possible at scale s given the free space of the static parts

of the scene. In practice, we compute Vi(s) by voxelizing

the SfM 3D point cloud with a fixed voxel size of one meter
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Figure 4. Scale scoring curve for our model of the Pantheon. The

peak is chosen as our initial scale estimate.

(s units in the reconstruction space). We then perform ray-

tracing from Ci along ray RT
i Ni and compute the first point

of intersection with a filled voxel. We denote the distance

from Ci to this voxel as vi(s). Vi(s) is then defined as

Vi(s) = s||Ni|| < vi(s). (7)

Scale Scoring: We score a hypothesized scale s by tak-

ing a weighted aggregate of all Mi(s):

S(s) =
∑

i

wiMi(s). (8)

Setting wi = 1 is equivalent to counting the successfully

triangulated individuals at scale s. We experimentally found

better performance by weighting individuals by the number

of detections in their associated image, i.e., wi = 1/NIi
,

where NIi
is the total number of detections in image Ii.

This weighting mitigates the ambiguity of person placement

in crowded areas, where incorrect scales can still yield valid

triangulations due to the overall person density.

Finally, we obtain an initial voting-based estimate of the

scene scale by sampling a range of possible scales and se-

lecting the scale hypothesis with the highest score S(s). In

our experiments, we generate this range by assuming that

the vertical span of the SfM point cloud is between 1 and

1000 meters. We start at the smallest possible scale and test

all scales in the range, stepping at 2% increments in s. At

this stage, we only consider individuals having all five torso

joints detected with at least 30% confidence. We use abso-

lute horizontal and vertical thresholds of τxz = 1.5m and

τy = 0.1m. An example scoring curve is shown in Fig. 4.

3.3. Scale Refinement, Height Estimation, and
Ground Surface Estimation

Having obtained an initial scale estimate s, we next

jointly refine this scale, estimate a height hi in meters for

each detected individual, and estimate a ground surface unit

normal ni ∈ S2 for the ground point at which each individ-

ual stands. As part of this optimization, we also estimate a

torso height ti = βihi for each person, where βi is the in-

dividual’s torso-to-height proportion. In the following, we

first formulate how to obtain a person’s 3D position in the

reconstruction space given s, hi, and βi. We then introduce

the three terms of our joint optimization function and finally

address the overall formulation.



Position as a Function of Height and Proportion:

While Eq. (4) is convenient for an initial neck point place-

ment, it relies on a fixed torso size. We generalize this for-

mula by allowing the torso height ti to vary as a fraction βi

of the person’s height hi. The end result is that an increase

or decrease in torso size accordingly affects the distance of

the neck point Ni in Eq. (4) to the camera.

Let ri = Ni/||Ni|| denote the ray from the origin

through the neck point of the fitted torso model in the ref-

erence frame of the camera. Moreover, let hi be the ray for

the hip midpoint of the model. For every 3D point falling on

ri, there is an associated point on hi that falls directly below

it along the gravity direction (y axis). Again assuming that

the torso aligns with the gravity vector, we can find such a

neck/hip point pair for any torso height ti. By similar tri-

angles, we can determine a new neck point Ni(ti) = ̺itiri
for any torso height, where ̺i is the the ratio between neck-

point-to-camera distance and torso height.

In practice, we explicitly encode an understanding of hu-

man proportions by expressing torso height as a percentage

of total height, i.e., ti = βihi. We can thus update Eq. (4)

to express a person’s 3D neck point in the reconstruction

space (at scale s) as a function of height and proportion:

Pi(s, hi, βi) = sRT
i Ni(ti) +Ci = ̺iβihiR

T
i ri +Ci, (9)

We also include photographers into the optimization in

Eq. (14). However, since we do not observe torsos for pho-

tographers, we must treat them slightly differently. Specif-

ically, we assume that the camera center is hc/8 meters

above the neck point for photographer c. Accordingly,

rc = [0 1 0], and we fix ̺c = 1 and βc = 1/8.

Ground Point Position: The ground point Gi(s, hi) lies

vertically below the neck point Pi(s, hi, βi). With the neck

height being a fraction η of the total height of the person,

the ground point in reconstruction space is given as

Gi(s, hi, βi) = Pi(s, hi, βi) + [0 sηhi 0]
T . (10)

We use a fixed value of η = 5/6, reasoning that the top of

the sternum (our assumed neck point) is slightly less than

two head lengths from the top of a person, and that human

head length is approximately one-eighth of total height [4].

Optimization Overview: As previously mentioned, we

optimize scale s along with the set {(hi, βi,ni)} of per-

person heights, proportions, and ground normals. Our ob-

jective function has three terms: 1) a prior on height, 2) a

local ground planarity term for pairs of nearby people, and

3) a visibility constraint.

Height Distribution Prior: We propose to leverage the

known distribution of human heights as a prior on the esti-

mated height hi for each person. Here, we employ a Gaus-

sian mixture model (GMM) for this distribution; in prin-

ciple, any GMM or otherwise appropriate probability dis-

tribution could be used. The GMM probability function is

given as the sum of probabilities for K separate Gaussians:

p(hi) =

K
∑

k=1

αk

σk

√
2π

exp

(

− (hi − µk)
2

2σ2
k

)

, (11)

Here, we use a general two-component GMM for male

and female adult heights, respectively: {(αk, µk, σk)} =
[(0.504, 1.768, 0.068), (0.496, 1.646, 0.060)], which we

aggregated from several sources [15, 44, 45]. In principle,

more detailed models could be used, such as a model that

captures factors of age or ethnicity.

Local Planarity Prior: Our second objective term en-

courages the ground surface between nearby people to be

relatively smooth (but not necessarily horizontal). We en-

force this by endowing each individual with a ground nor-

mal ni that defines a planar ground patch around the point

at which they stand. We penalize nearby ground points that

are far from this flat surface. For two individuals i and j,

the point-to-plane distance in meters between Gj(s, hj , βj)
and the patch for person i is given as

dij =
1

s

∣

∣

∣(Gj(s, hj , βj)−Gi(s, hi, βi))
T
ni

∣

∣

∣ . (12)

Visibility Constraint: We again seek to penalize scales

and heights that push neck points into or beyond static parts

of the scene. To do this, we repeat our earlier voxelization

at the initial scale s0 and compute vi(s0). These maximum

distances are then fixed in our optimization. Our penalty

term for this is close to zero for neck-to-camera distances

much less than vi and close to one for values much greater:

νi(s, hi, βi) =
1

π tan−1(2)
tan−1

(

2

τo

(

||Ni(ti)|| −
vi
s

)

)

,

(13)

where ||Ni(ti)|| = ̺iβihi is the neck-to-camera distance in

meters, and τo is a value in meters such that an “overshoot-

ing” of 3τo meters results in a penalty of approximately

0.95. In our experiments, we use τo = 0.2m.

Optimization: We combine Eqs. (11-13) into a single

objective function to be minimized:

E(s, {(hi, βi,ni)}) =− 1

D

D
∑

i=1

log pi(hi)+

1

4|N |λ2

∑

(i,j)∈N

(

d2ij + d2ji
)

+
1

D

D
∑

i=1

νi(s, hi, βi),

(14)

where D is the total number of detected people, N is a set

of person neighbors to which the local planarity prior is ap-

plied bidirectionally, and λ is a penalty term for the pla-

narity penalty. The first term was derived by taking the neg-

ative log-likelihood of the height probability. In our experi-

ments, we set λ = 0.02, which roughly reflects an expected



ground plane noise of 2cm. We define the neighborhood

structure N based on our initial person placements at s0.

We classify nearby initial placements as those having neck

points within 3m of each other in the horizontal space and

0.242m in the vertical space. Under our height model, the

vertical threshold is the point at which 95% of randomly

chosen height pairs are expected to fall within that value.

We constrain βi ∈ [0.25, 0.45], which reasonably cap-

tures the range of human torso proportions [4], and we ini-

tialize these values to 0.3 for optimization. We initialize

individual heights randomly by sampling from our height

distribution model. Normals are parameterized by spheri-

cal coordinates, which we initialize with small random per-

turbation. At this stage, we also include person detections

having at least four detected joints.

3.4. Ground Surface Reconstruction

Using the optimized 3D ground points and ground point

normals, we fit a ground surface using the Poisson sur-

face reconstruction (PSR) implementation of Kazhdan and

Hoppe [24]. PSR produces a high-quality mesh with adap-

tive resolution from an input set of oriented points, which in

our case is defined by { (Gi(s, hi, βi),ni) }. Prior to run-

ning PSR, we filter the input point cloud by removing indi-

viduals who are more than 40m from their observing camera

or who fail the visibility constraint at the optimized scale s,

and we also remove small, far-off groups of photographers.

3.5. Visualization

To demonstrate the potential of our method for scene

completion, we texture our recovered ground surface and

place a subset of all detected people into the reconstruc-

tion space. Our person visualization consists of a low-poly

model for each detection with the shirt and pants colored by

sampling the original image. Each person model is scaled

to match our estimated height for the detection. Due to

the large number of detections in many of our scenes, we

choose a subset of individuals by treating the selection as a

set cover problem and taking a greedy approach. Specifi-

cally, for each photographer c, we denote Oc as the set of

people observed in the image taken by that cameraperson,

and Vc ⊇ Oc as the set of all individuals (including photog-

raphers) placed within the viewing frustum of the photog-

rapher’s camera, up to some maximum depth. We select a

photographer and mark all individuals in Vc as “visited.” At

the same time, we place in the reconstruction all individu-

als in Oc who were not previously marked as visited; if any

such person exists, the photographer is also placed into the

scene. We randomly and iteratively select photographers in

this fashion until all people are marked as visited.

Additionally, we texture the ground surface obtained

from PSR, which has accurate geometry but lacks color.

For each vertex on the ground surface mesh, we project the

vertex into each individual image in our 3D reconstruction

and, if the projection lies within the image boundaries, sam-

ple the color value at the pixel in which it falls. We aggre-

gate the sampled colors over all images and take the median

color for each vertex. To avoid sampling non-ground pixels

(caused by, e.g., occluding scene geometry or pedestrians),

we leverage recent advances in dense pixel-wise semantic

labeling. For each image, we apply the convolutional neu-

ral network of [51], trained on the Cityscapes dataset [8], to

obtain a most-probable class labeling for each pixel. When

aggregating color values, we ignore sampled pixels that do

not receive class labels of ground, sidewalk, or terrain.

4. Results

We have tested our method on several large-scale im-

age photo-collections [28, 6, 49], as well as the well-known

Cornell Arts Quad dataset [9]. Evaluation in the context of

unordered Internet photo-collections is a challenging task

due to the lack of available ground truth. Hence, we man-

ually establish ground truth for the scale estimation of our

method by obtaining known distances of structures in the

scene, which are then compared to the same distance in our

model. The distance evaluation results are shown in Table

1. It can be seen that our proposed scale estimation via a

height distribution prior reliably determines the scene scale.

Effectively, our method uses object semantics to overcome

the inherent scale ambiguity of SfM reconstructions, which

has long been a goal of computer vision.

We additionally evaluated our gravity vector estimation

for the scenes from [49] and found an average error of

1.078◦ when compared to the implementation of automatic

Scene Error np nc

Cornell Quad -4.0% 550 4773

Dubrovnik -0.15% 5066 2714

Pantheon +4.3% 8656 3310

Campitelli +1.9% 15836 16834

San Marco -0.3% 15712 4916

Alamo +0.3% 1940 699

NYC Lib. -1.4% 466 480

Piccadilly -6.1% 7908 2453

Table 1. Quantitative results on our method for scale and place-

ment. “% Error” gives the amount that we over/under-estimated

the distance of one unit in the reconstruction. np and nc show the

number of placed detected people and photographers, respectively,

recovered by our method.

gravity vector estimation from scene vanishing points in

[39]. Given the lack of obtainable ground-truth for the

3D placement of people from a particular photo, we qual-

itatively evaluate the placement using randomly selected



Figure 5. Overhead views (left) and sample renderings with ground and person avatars (middle) for our method. Examples of real photos

are shown on the right. The green dots in the overhead views show person placements, with cameras as red dots and detected people as

green dots. Black dots show static structure. From top: Dubrovnik, Croatia; the Pantheon; San Marco Plaza, Venice; and the area around

the Colosseum and Roman Forum in Rome.

photos from the photo collection. Sample evaluations are

shown in Fig. 5 on four large-scale datasets: Dubrovnik, the

Pantheon, San Marco Plaza, and the Campitelli in Rome.

Additional results, including ablative analyses of the steps

of our method, are available in the supplementary material.

In summary, we demonstrated the reliable and accurate be-

havior of our proposed method for bringing scenes to life.

We provide evaluations that prove our solutions to the chal-

lenging open problems of obtaining accurate scaling for a

reconstructed scene, correctly placing transient objects, and

estimating ground surface from unordered Internet photo-

collections, which has not been previously solved at scale.

5. Conclusion

We have introduced a new approach for adding liv-

ing, transient elements to large-scale static 3D reconstruc-

tions. Specifically, our method leverages recent advances in

image-based person detection, along with population height

distribution priors, to jointly place detected people into the

scene, estimate the absolute scale of the reconstruction, re-

cover the gravity vector of the scene, and recover the un-

derlying ground surface. We have tested our method on

a large collection of real-world datasets and demonstrate

quantitative and qualitative results that verify the signifi-

cant advances of our approach in modeling hard-to-capture

scene elements. A key insight of our work is that knowl-

edge of object class properties, such as height distribution

in humans, can provide adequate constraints on 3D place-

ment even when exact correspondence is impossible. In the

future, we look to extend our work to areas such as crowd

simulation and integrated processing with online videos.
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