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Abstract
We consider the task of predicting various traits of
a person given an image of their face. We esti-
mate both objective traits, such as gender, ethnic-
ity and hair-color; as well as subjective traits, such
as the emotion a person expresses or whether he is
humorous or attractive. For sizeable experimenta-
tion, we contribute a new Face Attributes Dataset
(FAD), having roughly 200,000 attribute labels for
the above traits, for over 10,000 facial images.
Due to the recent surge of research on Deep Con-
volutional Neural Networks (CNNs), we begin by
using a CNN architecture for estimating facial at-
tributes and show that they indeed provide an im-
pressive baseline performance. To further improve
performance, we propose a novel approach that in-
corporates facial landmark information for input
images as an additional channel, helping the CNN
learn better attribute-specific features so that the
landmarks across various training images hold cor-
respondence. We empirically analyse the perfor-
mance of our method, showing consistent improve-
ment over the baseline across traits.

1 Introduction
Humans find it very easy to determine various traits of other
people, simply by looking at them. Without almost any con-
scious effort, a glimpse at another person’s face is sufficient
for us to ascertain their gender, age or ethnicity. We can eas-
ily decide whether they are attractive, look funny or are ap-
proachable, or determine the emotion they are displaying (for
example, whether they appear sad, happy or surprised). As
social creatures, making such inference is clearly important
to us. Imparting commensurate capabilities to machines is
bound to enable very interesting applications [Parikh et al.,
2012]. However, in contrast to the relative ease with which
humans infer such personal traits of an individual from their
facial image, training a machine to do the same is a challeng-
ing task.

Deep Convolutional Neural Networks (CNNs) [LeCun et
al., 1998; Behnke, 2003; Simard et al., 2003] are prominent
statistical learning models, which have recently been shown

to be very effective for image classification tasks [Krizhevsky
et al., 2012; Bengio et al., 2007; Deng et al., 2009; Szegedy et
al., 2014]. These networks employ several layers of neuron
collections in a feed-forward manner, where the individual
neurons are tiled in a way so that they respond to overlap-
ping regions in the visual field. As opposed to hand crafted
convolution kernel methods [Maini and Aggarwal, 2009], the
elements of each convolution kernel in CNNs are trained by
backpropagation, applied in conjunction with an optimization
technique such as Stochastic Gradient Descent (SGD) [Le-
Cun et al., 1998].

Analyzing facial images has been a key research area
in computer vision and artificial intelligence for quite a
long time. Researchers have proposed automated methods
for inferring personal traits of individuals from facial im-
ages [Lyons et al., 1999], including gender [Moghaddam and
Yang, 2002], age [Horng et al., 2001] and ethnicity [Lu and
Jain, 2004; Hosoi et al., 2004].

Earlier work has even uncovered methods for predicting
more subjective or social traits from facial images [Vincia-
relli et al., 2009], such as the expressed emotion [Padgett
and Cottrell, 1997; Fasel and Luettin, 2003] or attractiveness
[Kagian et al., 2006; Datta et al., 2008]. Very recently, Mi-
crosoft [2015] released mobile and web applications, which
were aimed at guessing the age of humans by just looking at
their facial images.

In addition to specific methods for predicting personal at-
tributes, earlier works have also examined reusable build-
ing blocks for facial image processing, for tasks such as
detecting faces, pose estimation, face segmentation and fa-
cial landmark localization [Huang et al., 2007; Segundo et
al., 2010; Zhu and Ramanan, 2012; Uřičář et al., 2012;
Zhang et al., 2014]. Such methods provide additional in-
formation about the face of a person, improving the accu-
racy of many facial classification tasks [Lu et al., 2005;
Uřičář et al., 2012].

Drawbacks in prior methods for face analysis: De-
spite the success of previously proposed methods in infer-
ring various personal traits from facial images, most solutions
are based upon hand-designed features, and typically suffer
from one or more of the following problems: (a) They are
specifically tailored to a single task at hand [Su et al., 2013;
Tian and Bolle, 2003; Tjahyadi et al., 2007; Hasan and Pal,
2014]; (b) They are not well scalable to real-world variations



in data such as multiple view-points [Dhall et al., 2011]; (c)
They make use of unautomated pre-processing methods such
as hand-labeling of key facial regions [Kumar et al., 2009].

Major advantages of deep learning: Since deep learning
based procedures can automatically learn a diverse set of low
and high-level representations for the input data, they circum-
vent the need for building hand-crafted features. Also, since
deep nets work directly on input images, there is seldom any
need to do unautomated or esoteric preprocessing.

Applying Deep Learning to a range of facial attributes:
Given the promise of deep learning and the nature of our
problem where we aim to predict attributes ranging from ob-
jective to subjective ones, from a diverse set of facial im-
ages, CNNs are an excellent fit for our needs. We thus ap-
ply CNNs for predicting the facial attributes. Previous pa-
pers on personal attribute prediction with deep nets have ei-
ther not focused on facial attributes [Shankar et al., 2015],
or have only considered a very restricted set of facial at-
tributes such as emotions [Lisetti and Rumelhart, 1998;
Liu et al., 2014]. Also, where researchers have tried to rank
facial attributes for better classification [Parikh et al., 2012;
Shankar et al., 2013], relative attributes and plausibly subjec-
tive supervision are required.

Augmenting CNNs with face alignment information:
While training, a CNN is inherently expected to learn features
in a way which can correctly tell us about the spatial regions
in the images most salient for the prediction of a class. For
maximum robustness, these spatial regions should be consis-
tent across all the training images of a given class. For in-
stance, the personal traits exhibited in faces generally corre-
spond to specific facial regions or a combination of them -
hair color is mostly captured in the hair region of the face;
happiness is specific to the region around lips; while old age
can be seen as a combination of features around the fore-
head, under-eyes and cheeks. Thus, for all training images
belonging to the class of hair-color, we would like that the
CNN learns features that correspond to the hair regions of
the image for prediction. If the CNN predicts white / blonde
hair-color by considering the white skin color of a person,
we would term that as erroneous. While a human can in-
nately and consistently figure out such structural accordances
in an image for a given class, the task is rather difficult for
CNNs, more so when the classes are attributes (as against the
objects). Noticing that the faces have a well-defined struc-
ture (forehead, eyes, noses, mouth, etc) which can be robustly
captured using state-of-the-art techniques like [Zhang et al.,
2014], we augment the input data with this structural infor-
mation to train a CNN. We thus expect it to learn more ro-
bust attribute-specific features, thereby ameliorating the pre-
diction accuracy.1

1.1 Our Contribution:
We contribute a new Face Attributes Dataset (FAD), compris-
ing of roughly 200,000 attribute labels for over 10,000 facial

1This can also be seen as a knowledge-transfer approach with
deep learning. (Though in a different sense from transfer learn-
ing and multi-task learning methods employed with some deep nets
[Zhou et al., 2014; Oquab et al., 2014; Zhang et al., 2015].)

images. Our dataset covers many traits of individuals, and
has labels regarding both objective and subjective personal at-
tributes. The dataset has been carefully crowd-sourced from
Amazon Mechanical Turk, establishing the veracity of the la-
bels obtained.

We apply deep learning for predicting a wide range of fa-
cial attributes. We corroborate that using a CNN architecture
for determining facial attributes provides an impressive base-
line performance. To further improve performance, we pro-
pose an augmentation approach that incorporates facial land-
mark information for input images as an additional channel,
helping the CNN learn better attribute-specific features so that
the landmarks across various training images hold correspon-
dence. We empirically show consistent improvement with our
proposed approach over the aforementioned baseline across
traits.

2 Face Attributes Dataset (FAD)
Our dataset consists of 10,000 facial images of celebrities
(public figures), where each image is tagged with various
traits of the individual. The images we used are a subset of
the PubFig dataset [Kumar et al., 2009].

The original PubFig dataset consisted of 60,000 images of
celebrities, where each celebrity is covered by multiple im-
ages under different poses, at different times, and with a dif-
ferent expression. Due to copyright issues, original images
were never provided for the PubFig Dataset, and only the re-
spective internet addresses (URLs) were given. Since the re-
lease of PubFig, many of those URLs have become invalid, so
we focused on the subset of images of the original data which
are still available online.

The resolution of the 10,000 images downloaded was not
constant. Since typically all the input images to a CNN are of
the same size, we scaled each image to a fixed resolution of
150× 150 pixels. We chose this resolution since most images
posted on social media sites do not contain faces bigger than
that (typically people pose with their torsos as well, if not
the full body). Our dataset has thus been curated keeping
practical applications in mind; so algorithms performing well
on our dataset should also perform well on other real-world
data.

2.1 Ground-Truth Annotations
As our target variables, we focused on multiple objective
and subjective traits; the objective traits include: gender,
ethnicity, age, make-up and hair color; the subjective traits
include emotional expression, attractiveness, humorousness
and chubbiness. The classes considered for each of these
traits / attributes are listed in Table 1 along with their level
of skewness. We emphasize that in this paper we consider the
prediction of classes for each trait to be a discrete classifica-
tion problem. (E.g. we only aim to know whether a person’s
gender is male or female and not the degree to which they
appear to be masculine or feminine.)

In order to get the images labelled for various traits, we
used Amazon’s Mechanical Turk (MTurk). This is a crowd-
sourcing platform, which allows people to post micro-tasks,
and lets participants fulfill these tasks for a fee. We sourced



Trait Data distribution
Gender Male (50.8%), Female (49.2%)

Ethnicity White (79.5%), Other (20.5%)
Hair Color Dark (60%), Bright (40.0%)

Makeup Wears (39.4%), Does not wear (60.6%)
Age Young (67.8%), Elder (32.2%)

Emotions Joy (64.2%), Other (35.8%)
Attractive Yes (65.9%), No (34.1%)
Humorous Yes (55.6%), No (44.4%)

Chubby Yes (57.3%), No (42.7%)

Table 1: Attributes / Traits in FAD: Personal traits in FAD
along with the corresponding classes are listed. For each trait,
the distribution of images across the corresponding classes is
given. As is evident, some traits have more skewness across
their classes as compared to others. For all our experiments,
our training and test sets contain a similar distribution.

a total of 1,500 raters from MTurk. All the participants were
sourced from the US and Canada. We let each of the par-
ticipants examine several images and provide labels for each
image for each of the traits listed in Table 1.

We offered each MTurk participant a payment of $6 for
filling in all the trait labels for 10 of our images. To account
for the fact that all participants on MTurk might not exert
enough effort (or be satisfactorily sincere) in the annotation
task, we made sure we have enough non-redundant labels, by
having each image labelled 3 times.

To further ensure the quality of the labels, we included
some very simple questions designed to identify partici-
pants who could be randomly clicking answers or not pay-
ing enough attention to the task.2 We removed the responses
of participants who failed to correctly answer these ques-
tions. Also, we excluded the responses of participants who
disagreed with their peers on over a third of the labels for
the objective traits (e.g. participants who did not agree with
their peers on the gender or ethnicity labels for a third of their
images).

Our goal is to use the annotations of the images in FAD
to train an automated system to infer personal traits from fa-
cial images. However, some traits are clearly more difficult
than others. When people find it easy to infer a certain prop-
erty from an image, we expect a high degree of agreement
between the raters. In contrast, when inferring a target vari-
able is difficult, we expect our annotators to often disagree
regarding the correct label for an image.

In cases where a trait exhibits a low degree of inter-rater
agreement in the dataset, even an excellent learning method
would find it difficult to achieve a high degree of accuracy in
the task. Table 2 presents the inter-rater agreement, as mea-
sured by Fleiss’ Kappa [Fleiss et al., 2013], for each of the
traits, evaluated on our dataset.

2For example, we asked simple mathematical questions for
which every participant is expected to know the answer, such as
“how much is 6+8?”

Trait Data distribution
Gender 0.9601 (APA)

Ethnicity 0.913 (APA)
Hair Color 0.719 (SA)

Makeup 0.697 (SA)
Age 0.563 (MA)

Emotions 0.688 (SA)
Attractive 0.29 (FA)
Humorous 0.171 (SLA)

Chubby 0.153 (SLA)

Table 2: Inter-rater agreement (Fleiss’ Kappa) measured
for each of the traits in FAD. A value of 1 indicates per-
fect agreement, while a value of 0 indicates no agreement.
APA stands for Almost perfect agreement; MA for Moderate
agreement; SA for Substantial agreement; FA for Fair agree-
ment; and SLA for Slight agreement.
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Figure 1: Block Illustration of AlexNet [Krizhevsky et al.,
2012]: a deep CNN architecture. The deep convolutional
neural net has eight layers (denoted as L1, . . . , L8) after the
input. The last fully connected layer is conventionally fol-
lowed by a softmax loss layer, but can also be replaced by the
likes of Sigmoid Cross Entropy Loss Layer [Jia et al., 2014].
We use this CNN architecture for all our experiments.

3 Prediction Algorithm
Our goal is to predict the various traits of a person from their
facial images. We consider FAD for all our experiments, and
use the traits and the corresponding classes as listed in Ta-
ble 1. Due to the various advantages offered by deep nets,
we begin by applying one of the most famous CNN architec-
tures [Krizhevsky et al., 2012] for our prediction task, widely
known as AlexNet. The block-level architecture of AlexNet
is shown in Figure 1.

Brief Overview of AlexNet: The fully-connected layers
have 4096 neurons each. Max-pooling is done to facilitate
local translation-invariance and dimension reduction. For the
fully connected layers, a drop-out [Srivastava et al., 2014]
probability of 0.5 is used to avoid overfitting. The final fully
connected layer takes the outputs of L7 as its input, produces
outputs equal to the number of classes through a fully con-
nected architecture, then passes these outputs through a soft-
max function, and finally applies the negative log likelihood
loss. With softmax loss layer, each input image is expected
to have only one label. When the softmax loss layer is re-
placed by a sigmoid cross-entropy loss layer, the outputs of
L8 are applied to a sigmoid function to produce predicted



Figure 2: Rotation of images in the training set: In order
to make the deep net training more robust to facial pose vari-
ation, for each training image (left most), we create 4 new
training images as its rotated versions (last four). The origi-
nal training image is rotated by {−40,−20, 20, 40} degrees.

probabilities, using which a cross-entropy loss is computed.
Here each input can have multiple label probabilities. We re-
fer the reader to [Krizhevsky et al., 2012] for complete details
of AlexNet.

Choice of the Loss Function: Softmax Loss and Sigmoid
Cross-Entropy Loss are the two most widely used loss func-
tions for classification tasks in deep learning. With the soft-
max loss layer, the training of the AlexNet is typically accom-
plished by minimizing the following cost or error function
(negative log-likelihood):

Ls = − 1

N

N∑
r=1

log(p̂r,yr ) + LR (1)

where r indexes N training images across all traits (r ∈
{1, . . . , N}), LR = λ||W ||2 is the L2 regularization on
weights W of the deep net, λ is a regularization parameter,
and the probability p̂r,yr is obtained by applying the softmax
function to the M outputs of layer L8, M being the number
of classes we wish to predict labels for. Letting lr,m denote
the mth output for rth image, we have

p̂r,m =
elr,m∑
m′ e

lr,m′
, m,m′ ∈ {1, . . . ,M}. (2)

In case one applies the sigmoid cross entropy loss, each image
is expected to be annotated with a vector of ground-truth label
probabilities pr, having length M , and the network is trained
by minimizing the following loss objective:

Le = − 1

NM

N∑
r=1

M∑
m=1

[pr log(p̂r) + (1− pr) log(1− p̂r)]+LR

(3)
where the probability vector p̂r is obtained by applying the
sigmoid function to each of the M outputs of layer L8.

A natural choice to approach our prediction task is to train
a single CNN for all our traits / attributes. Since an image can
have multiple traits, the sigmoid cross-entropy loss function
is best suited for our scenario. However, we find that for our
prediction task where for every given trait, we have mutually
exclusive attribute classes, training one net for each given trait
provides a higher accuracy. We thus establish our baseline
and perform all our experiments with the latter choice. For a
greater number of facial traits, one can combine the features
from these independently trained CNNs, to train some fully
connected layers.

Rotating images in the training set: In order to make
the deep net training more robust to facial pose variation,
for each training image, we create 4 new training images
as its rotated versions. Each training image is rotated by

{−40,−20, 20, 40} degrees. This also increases the size of
our training set by a factor of 5. Example of the rotated ver-
sions of an input image is shown in Figure 2.

3.1 Incorporating Facial Landmark Information
For each of the traits, we train the network on FAD using
labels for the classes of that trait, and evaluate its performance
as a baseline. The input to the network is a color image, in
a resolution of Dx ×Dy (we used Dx = Dy = 150 pixels);
each pixel is represented as a three “channel” RGB encoding.
Thus the input layer has 3 neurons, each neuron representing
a 2-D matrix of size Dx ×Dy .

We propose an improvement to the basic deep convolu-
tional neural network, by incorporating facial landmark infor-
mation in the input data. Localizing facial landmarks, some-
times referred to as “face alignment” is a key step in many
facial image analysis approaches.

Various recognition algorithms, including those dealing
with facial figures, require exact positioning of an object into
a canonical pose, to allow examining the position of features
relative to a fixed coordinate system. Inspired by such meth-
ods, we embed landmark information in deep nets for predict-
ing a wide range of facial attributes.

Facial landmark localization algorithms are designed to
find the location of several key “landmarks” in an image, such
as the location of the center of the eyes, parts of the nose or
the sides of the mouth. Consider a list L = (l1, . . . , lk) of
facial landmarks. Facial landmark localization algorithms re-
ceive a facial image I as an input, and output the coordinates
in the image for each of the landmarks CI = (cI1, . . . , c

I
k)

where cIj = (xIj , y
I
j ) are the coordinates of landmark lj in

the image I . An example of an image and the corresponding
facial landmarks is given in Figure 4.

Our improved approach uses a facial landmark localization
algorithm as a subroutine, so any such algorithm could be
used by our approach. It operates by associating each pixel
in the facial image with the closest facial landmark for that
image. We then add this association as an additional channel
to each input image.

We now formally describe our approach. In our baseline
approach, the pixel in coordinate (x, y) in the input image
I is encoded as three RGB channels (R(x,y), G(x,y), B(x,y)).
We add an additional channel, relating to the closest facial
landmark, denoted as A(x,y), thus increasing the number of
neurons in the input layer from 3 to 4. A(x,y) encodes the
identity of the nearest facial landmark to the pixel in coordi-
nates (x, y).

To computeA(x,y), we call the facial landmark localization
algorithm (FLL) as a subroutine, to obtain a list of landmark
coordinates, CI = (cI1, . . . , c

I
k) where cIj = (xIj , y

I
j ), and

compute the distance between pixel (x, y) to each of these
coordinates, to obtain dIj (x, y) = ||(xIj , yIj ), (x, y)||2.

We select the index of the facial landmark nearest to the
pixel as the value of the pixel in the additional channel.
Finally, we train the CNN on the set of augmented im-
ages, consisting of the original RGB channels and the new
channel encoding the nearest landmark associated with each



procedure AUGMENT-FLL
(I = (R(x,y), G(x,y), B(x,y)))
(cI1, . . . , c

I
k) = FLL(I) // Get facial landmarks

for x = 1 to Dx do
for y = 1 to Dy do

for j = 1 to k do
dIj (x, y) = ||(xIj , yIj ), (x, y)||2
// pixel-landmark distances

A(x,y) = argminj∈{1,...,k} d
I
j (x, y)

return I ′ = (R(x,y), G(x,y), B(x,y), A(x,y))

Figure 3: Creating A(x,y): Algorithm for encoding the iden-
tity of the nearest facial landmark to every pixel. This algo-
rithm is used to create the additional channel A(x,y) which
augments the input images.

Trait Baseline LACNN
Gender 98.46% 98.33%

Ethnicity 82.7% 83.35%
Hair Color 91% 91.69%

Makeup 92.5% 92.87%
Age 88.42% 88.83%

Emotions 88.93% 88.33%
Attractive 78.44% 78.85%
Humorous 66.8% 69.06%

Chubby 60.6% 61.38%

Table 3: Comparison of prediction accuracy: The accuracy
of the baseline CNN method and LACNN on FAD. For most
of the objective and subjective traits, LACNN improves the
prediction accuracy.

pixel. We refer to our approach as the Landmark Augmented
Convolutional Neural Network (LACNN) method.

The algorithm for generating the additional channel is
given in Figure 3. For facial landmark detection, we have
used the state-of-the-art TCDCN face alignment tool [Zhang
et al., 2014], which returns the locations of k = 68 key fa-
cial landmarks. In AUGMENT-FLL, TCDCN is thus used
for FLL. We find that TCDCN is fairly robust to facial view-
point variation. Instead of TCDCN, any other facial landmark
detection tool could also be used. An illustration of the aug-
mented input channel A(x,y) is shown in Figure 4.

4 Results
We now discuss the performance of the baseline CNN ap-
proach and LACNN. As mentioned before, we use FAD for
all our experiments.

For training and inference with CNNs, we have used the
Caffe Library [Jia et al., 2014]. For doing inference on a con-
siderable amount of test images, we create a 80/20 train/test
split with FAD, maintaining the same data distribution across
the training and test sets for all traits as given in Table 1. Such
a split evaluates our method on roughly 36,000 labels.

Table 3 shows the accuracy of the baseline CNN method
and LACNN on FAD. It is clear that CNN provides an overall

Figure 4: Using facial landmarks for an input image: (Top)
Example of an input image and the corresponding facial land-
marks detected using TCDCN [Zhang et al., 2014]. (Bottom)
An illustration of the augmented input channel A(x,y) com-
puted using AUGMENT-FLL. Each region in A(x,y) is coded
with a different value as per the index of the associated land-
mark. The figure shows the additional input channel being
fed into the subsequent parts of convolutional neural network,
along with the RGB image.

impressive baseline performance. Even for highly subjective
traits, where human raters tend to disagree regarding the cor-
rect label of an image (see Table 2), CNNs give a reasonable
performance. This indicates that CNN based approaches are
indeed flexible, and can handle many traits without resorting
to building ad-hoc systems relying on hand-crafted features.

The proposed LACNN shows consistent improvement
across most of the traits as compared to the CNN baseline.
Note that LACNN has the capability to improve performance
for both the objective as well as the subjective traits. This sub-
stantiates our intuition that face alignment information can be
useful in predicting facial attributes using deep nets.

To further validate our intuition that facial landmarks
should help the CNN learn more robust attribute-specific fea-
tures in a more consustent manner, we depict the visualiza-
tions of the output responses of the first convolutional layer
of AlexNet, trained with both baseline CNN and LACNN in
Figure 5.

Observing the filter activations of the first convolutional
layer shows that the responses generated using LACNN have
more detailed information as compared to the ones generated
with the baseline of a non-augmented CNN.

The output responses generated with LACNN have many
variations of prominent facial parts including the nose, eyes,
hairline, etc. Further, there is a higher number of neurons
exhibiting such valuable information in the case of LACNN.

The outputs with better discernible information can be at-
tributed to the fact that landmark augmentation helps the



(a) Input (b) Responses using baseline CNN (c) Responses using LACNN

Figure 5: Visualizing output of the first convolutional layer of AlexNet trained with baseline CNN and LACNN: For an
input image, figure shows the outputs responses of the first convolutional layer of AlexNet trained using the baseline CNN
method and our proposed LACNN. Both visualizations have been generated from nets trained on the same trait. The first
convolutional layer of AlexNet contains 96 neurons, whose outputs are shown here on a 10 × 10 grid. A careful observation
reveals that the responses generated using LACNN contain more detailed information as compared to the ones generated with
baseline CNN: neurons in LACNN contain more discernible information about key facial parts. Also, more neurons exhibit
valuable information in LACNN.

CNN to learn filters in a way such that similar regions across
a range of facial images hold correspondence to exhibit sim-
ilar responses. This is clearly important for facial attribute
prediction, since a given trait in any face is always associated
with the same combination of facial sub-parts.

5 Conclusions and Future Work
We have proposed a method for predicting personal attributes
from facial images, based on a CNN architecture augmented
with face alignment information. We have empirically evalu-
ated our approach by building a tagged facial images dataset
called FAD, showing that improved classification perfor-
mance can be achieved for a very wide range of traits using
our approach.

Observing the filter activations of the first convolutional
layer (Figure 5) shows that the responses generated using
LACNN have more detailed, which suggests our technique
would be more robust to image noise.future work could test
this hypothesis.

Several questions remain open for further research. First,
could one devise a method using facial landmarks to better
detect facial attributes, such that attribute-specific regions are
explicitly learned for faces? Could such a method be used for
ranking facial images according to attributes?

Further, could one detect more subjective attributes such
as more detailed emotions or traits such as being in shape
(muscle tone) or other health related traits or friendliness?
Could such an analysis be based on the information contained
in the nets trained for the basic objective attributes?

Finally, could one exploit graph-structured compositions
within the deep nets to better interpret facial traits? More gen-
erally, a key disadvantage of CNN based methods is that the
learned model is not “human interpretable” in the sense that it
is difficult to understand which sub-parts of the network drive
the prediction. Would it be possible to train multiple nets or a
single net for many traits and examine the correlation, so that
it would be possible to explain the predictions made by the
system in a way understandable by humans?
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