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Abstract

Discriminative methods for visual object category recog-
nition are typically non-probabilistic, predicting class la-
bels but not directly providing an estimate of uncertainty.
Gaussian Processes (GPs) are powerful regression tech-
niques with explicit uncertainty models; we show here
how Gaussian Processes with covariance functions defined
based on a Pyramid Match Kernel (PMK) can be used
for probabilistic object category recognition. The uncer-
tainty model provided by GPs offers confidence estimates
at test points, and naturally allows for an active learning
paradigm in which points are optimally selected for inter-
active labeling. We derive a novel active category learning
method based on our probabilistic regression model, and
show that a significant boost in classification performance
is possible, especially when the amount of training data for
a category is ultimately very small.

1. Introduction
Collecting training data for large-scale image category

models is a potentially expensive process. While certain
categories may have a large number of training images
available, many more will have relatively few. A number of
ingenious schemes have been developed to obtain labeled
data from people performing other tasks (e.g., [30, 29]), or
directly labeling objects in images [1]. To make the most of
scarce human labeling resources it is imperative to carefully
select points for user labeling. The paradigm of active learn-
ing has been introduced in the machine learning community
to address this issue [8, 26, 16, 18, 34]; with an active learn-
ing method, generally new test points are selected so as to
minimize the model entropy.

To develop an active learning method for object category
recognition, a probabilistic category estimation method is
needed. Current results on benchmark category recognition
tasks suggest that discriminative methods offer the best per-
formance, but most such methods are not explicitly prob-
abilistic and offer little guidance as to where estimates are
accurate or where a model may generalize poorly. Proba-

bilistic models are therefore desirable as they provide un-
certainty estimates as part of the inference process.

We introduce a new Gaussian Process (GP) regression
method for object category recognition using a local feature
correspondence kernel. Local feature based object recog-
nition has been shown to have several important advan-
tages, including invariance to various translational, rota-
tional, affine and photometric transformations and robust-
ness to partial occlusions. Our method is based on a GP
with a covariance function derived from a Pyramid Match
Kernel [9], which offers an efficient approximation to a
partial-match distance function and can therefore handle
outliers and occlusions.

GPs have received limited attention in the computer vi-
sion literature to date perhaps due to the fact that they are
conventionally limited to modest amounts of training data:
the learning complexity is O(n3), cubic in the number of
training examples. While recent advances in sparse GPs are
promising (e.g., [12, 21, 24]), we focus here on the case of
active learning with relatively small numbers of examples
(10-100), which is feasible with existing implementations.
In this realm, we show that active learning provides signif-
icantly more accurate estimates per labeled point than does
a conventional random selection of training points.

The two main contributions of this paper are 1) a prob-
abilistic discriminative category recognition scheme based
on a Gaussian Process prior with a covariance function
defined using the Pyramid Match Kernel, and 2) the in-
troduction of an active learning paradigm for object cate-
gory learning which optimally selects unlabeled test points
for interactive labeling. With active learning very small
amounts of interactively labeled data can provide very ac-
curate category recognition performance.

2. Previous Work
Object category recognition has been a topic of active in-

terest in the computer vision literature. Methods based on
local feature descriptors (c.f. [14, 17]) have been shown to
offer invariance across a range of geometric and photomet-
ric conditions. Early models captured appearance and shape
variation in a generative probabilistic framework [7], but
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more recent techniques have typically exploited methods
based on SVMs or Nearest Neighbors in a bag-of-visual-
words feature space [23, 19, 33, 5].

Several authors have explored correspondence-based
kernels [33, 31], where the distance between a set of lo-
cal feature descriptors—potentially including appearance
and shape/position—is computed based on associating pairs
of descriptors. However, the polynomial-time compu-
tational cost of correspondence-based distance measures
makes them unsuitable for domains where there are large
databases or large numbers of features per image. In [9]
the authors introduced the Pyramid Match Kernel (PMK),
an efficient linear-time approximation to a partial match
correspondence, and in [13] it was demonstrated that a
spatial variant—which efficiently represents the distinc-
tion between appearance and image location features—
outperformed many competing methods.

Semi-supervised or unsupervised visual category learn-
ing methods are related to active learning. Generative mod-
els which model visual words as arising from a set of un-
derlying objects or “topics” based on recently introduced
methods for Latent Dirichlet Allocation have been devel-
oped [22, 25] but as yet have not been applied to active
learning nor evaluated on purely supervised tasks. A semi-
supervised method using normalized cuts to cluster a graph
defined by Pyramid Match distances between examples was
presented in [11], but this method was not probabilistic and
did not provide for an active learning formalism.

In the machine learning literature active learning has
been a topic of recent interest, and numerous schemes have
been proposed for choosing unlabeled points for tagging.
For example, Freund et al. [8] propose disagreement among
the committee of classifiers as a criterion for active learning,
and show an application to image classification [2]. Tong
and Koller [26] explore the selection of unlabeled cases to
query based on minimizing the version space within the
SVM formulation. Chang et al. [3] use active learning with
SVMs for the task of image retrieval using color and tex-
ture.

Within the Gaussian Process framework, the method of
choice has been to look at the expected informativeness of
an unlabeled data point [12, 15]. Specifically, the idea is to
choose to query cases that are expected to maximally influ-
ence the posterior distribution over the set of possible clas-
sifiers. Additional studies have sought to combine active
learning with semi-supervised learning [16, 18, 34]. Our
work is significantly different as we focus on local feature
approaches for the task of object categorization. We explore
the GP models, which provide estimates for uncertainty in
prediction and can be easily extended to active learning.

Gaussian Processes have been recently introduced to the
computer vision literature. While they have been used in
[27, 28] for human motion modeling and in [32] for stereo
segmentation, we are unaware of any prior work on visual
object recognition in a Gaussian Process framework.
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Figure 1. The active learning framework.

3. Approach
Active learning tackles the problem of finding the most

crucial data in a set of unlabeled examples so that the classi-
fication system gains the most if it is given the label of that
example. Figure 1 shows the proposed framework for the
image categorization task. Given a pool of images of which
few are labeled, the system aims to actively seek labels for
unlabeled images by considering information from both the
labeled and unlabeled sets of images.

At the core of this system is the classification frame-
work, and in this work we explore classification using Gaus-
sian Process priors with covariance functions defined by
the Pyramid Match Kernel (GP-PMK). The next section re-
views classification using GP priors. We then present our
GP-PMK model which is directly suitable for supervised
learning. Finally, we derive an active learning variant that
can optimally select points for interactive labeling.

Note that in this paper we assume that there is one object
of interest in an image. Handling multiple objects in the
same image is an interesting and more challenging problem
and will be the focus of future work.

4. Background: Classification with Gaussian
Processes

Gaussian Process (GP) classification is related to kernel
machines such as Support Vector Machines (SVMs) [4] and
Regularized Least Square Classification (RLSC) and has
been well explored in machine learning. In contrast to these
methods GPs provide probabilistic prediction estimates and
thus are well suited for active learning. In this section we
briefly review regression and classification with Gaussian
Process priors.

Given a set of labeled data points XL = {x1, ..,xn},
with class labels tL = {t1, .., tn}, we are interested in
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Figure 2. Graphical models in plate notation for classification via
Gaussian Processes. The rounds and squares represent continu-
ous and discrete random variables, respectively. A filled (unfilled)
round/square denotes that the random variable is fully observed
(unobserved). X = {x1, ..,xn,xu} is the set of all images and
is observed for both labeled and unlabeled data points. The cor-
responding Y = {y1, ..yn, yu} is completely unobserved and
the labels {t1, .., tn} are observed only for the training images
{xi, ..xn} and unobserved for the unlabeled image xu.

classifying the unlabeled data xu. Under the Bayesian
paradigm, we are interested in the distribution p(tu|X, tL).
Here X = {XL,xu} and tu is the random variable denot-
ing the class label for the unlabeled point xu. For sake of
simplicity in discussion we limit ourselves to two-way clas-
sification, hence, the labels are, ti ∈ {−1, 1}.

With GP models, a discrete label t for a data point x
can be considered to be generated via a continuous hidden
random variable y. The soft-hidden label arises due to a
Gaussian Process, which in turn imposes a smoothness con-
straint on the possible solutions. A likelihood model p(t|y)
characterizes the relationship between the soft label y and
the observed annotation t. Thus, when we infer the label
tu for the unlabeled data xu, we probabilistically combine
the smoothness constraint and the information obtained by
observing the annotations t.

The smoothness constraint is imposed using a Gaussian
Process prior that defines the probabilistic relationship be-
tween the images X and the soft labels Y. The distribu-
tion p(Y|X) gives higher probability to the labelings that
respect the similarity between the data points. Intuitively,
the assumption is that similar data points should have the
same class assignments / regression values; the similar-
ity between two points xi and xj is defined via a kernel
k(xi,xj). Below we derive a novel GP based on local fea-
ture correspondences.

Probabilistic constraints are imposed on the collection
of soft labels Y = {y1, ..., yn, yu}. In particular, the

soft labels are assumed to be jointly Gaussian and the co-
variance between two outputs yi and yj is specified us-
ing the kernel function applied to xi and xj . Formally,
p(Y|X) ∼ N (0,K) where K is a (n + 1)-by-(n + 1) ker-
nel matrix with Kij = k(xi,xj), and n + 1 reflects the n
labeled examples and 1 unlabeled example.

The likelihood models the probabilistic relation between
the observed label t and the hidden label y. In this work we
assume that t and y are related via a Gaussian noise model.
Specifically,

p(t|y) =
1√

2πσ2
e−

(t−y)2

2σ2 . (1)

The Gaussian noise model is commonly used in GP regres-
sion, as it leads to closed form inference. While a range of
methods for GP classification have been proposed using ad-
ditional latent “squashing” variables, inference with these
methods is not possible in closed form [20]. For the ex-
periments reported below we simply use regression to label
variables.1 Exploration of non-Gaussian noise models for
our task such as the probit function or a sigmoid is a topic
of interest for future work.

Given the labeled and unlabeled data points, our goal is
then to infer p(tu|X, tL). Specifically:

p(tu|X, tL) ∝
∫
Y

p(tu|Y)p(Y|X, tL). (2)

For a Gaussian noise model we can compute this integral
using closed form expressions. Note that the key quantity to
compute is the posterior p(Y|X, tL), which can be written
as:

p(Y|X, tL) ∝ p(Y|X)p(tL|Y) = p(Y|X)

n∏
i=1

p(ti|yi). (3)

This equation probabilistically combines the smoothness
constraints p(Y|X) imposed via the GP prior and the infor-
mation provided in the labels (p(tL|Y)). The posterior as
shown in Equation 3 is simply a product of Gaussians. We
are interested in inferring the unknown label tu. The Gaus-
sian posterior over the soft label yu has a particularly simple
form. Specifically, p(yu|X, tL) ∼ N (ȳu, σ2

u), where:

ȳu = k(xu)T (σ2I + KLL)−1tL (4)

Σu = k(xu,xu)− k(xu)T (σ2I + KLL)−1k(xu). (5)

Here, k(xu) is the vector of kernel function evaluations
with n training points, and KLL is the training covariance.
Further, due to the Gaussian noise model that links tu to yu,
the predictive distribution over the unknown label tu is also
a Gaussian: p(tu|X, tL) ∼ N (ȳu,Σu + σ2).

1This method is referred to as least-squares classification in the litera-
ture (see Section 6.5 of [20]) and often demonstrates performance competi-
tive with more expensive GPC methods that require approximate inference.



Note that the posterior mean for both tu and yu is the
same; thus, the unlabeled point xu can be classified accord-
ing to the sign of yu. Unlike RLSC methods, we also get
the variance in prediction. As we will show in the next sec-
tion, we can exploit these measures of uncertainty to guide
an active learning procedure. The computationally costly
operation in GP inference is the inversion of (σ2I + KLL)
which is O(n3). In addition to reducing manual labeling
effort, an active learning formulation can help us reduce the
computational overhead in inference by reducing the num-
ber of needed training points.

5. Pyramid Match Kernel Gaussian Processes
(GP-PMK)

To use GPs for object categorization, we need to define
a suitable covariance function. We would like to exploit lo-
cal feature methods for object and image representations.
However, GP priors require covariance functions which are
positive semi-definite (a Mercer kernel) and traditional co-
variance functions (e.g., RBF) are not suitable for represen-
tations that are comprised of sets of features.

We wish to define a GP with a covariance function based
on a partial match distance function. The idea is to first rep-
resent an image as an unordered set of local features, and
then use a matching over these sets of features to compute
a smoothness prior between images. The optimal least-cost
partial matching takes two sets of features, possibly of vary-
ing sizes, and pairs each point in the smaller set to a unique
point in the larger one, such that the sum of the distances
between the matched points is minimized. The cubic cost
of the optimal matching makes it prohibitive for recognition
with a large number of local image features, yet rich image
descriptions comprised of densely sampled local features
are known to yield better recognition accuracy.

Therefore, rather than adopt a full partial match kernel
for the GP prior, we use the Pyramid Match [9]. The Pyra-
mid Match is a linear-time kernel function over unordered
feature sets that approximates the similarity measured by
the optimal partial matching, and it forms a Mercer kernel.
A multi-resolution partition (Pyramid) carves the feature
space into increasingly larger regions. At the finest reso-
lution level in the Pyramid, the partitions are very small;
at successive levels they continue to grow in size until a
single partition encompasses the entire feature space. The
insight of the Pyramid Match algorithm is to treat points
which share a bin in this Pyramid as being matched, and
to use the histograms to read off the number of possible
matches without explicitly searching for correspondences.
Histogram intersection (the sum of the minimum number of
points in a given histogram bin) is used to count the number
of new matches that occur at each resolution level.

The input space S contains sets of feature vectors drawn
from feature space F : S = {F|F = {f1, . . . , fm}}, where
each feature fi ∈ F ⊆ <d, and m = |F|. For example, F

might be the space of SIFT [14] descriptors (d = 128), or
image coordinate positions (d = 2), etc.; a set F contains a
collection of these descriptors extracted from a single image
or object. An L-level histogram Pyramid for input exam-
ple F ∈ S is defined as: Ψ(F) = [H0(F), . . . ,HL−1(F)],
where Hi(F) is a histogram vector formed over points in
F using multi-dimensional bins. The partitions within each
histogram Hi may be placed at uniform intervals to divide
the feature space into equally sized grid cells, as in [9, 13],
or they may be placed non-uniformly in a data-dependent
manner, as in [10].

The Pyramid Match Kernel (PMK) value between two
input sets F1, F2 ∈ S is defined as the weighted sum of
the number of feature matches found at each level of their
Pyramids [9]:

K∆ (Ψ(F1), Ψ(F2)) =

L−1∑
i=0

wi

(
I (Hi(F1), Hi(F2))− I(Hi−1(F1), Hi−1(F2))

)
where I denotes histogram intersection, and the differ-
ence in intersections across levels (I (Hi(F1),Hi(F2)) −
I(Hi−1(F1),Hi−1(F2)) serves to count the number of new
matches formed at level i, which were not already counted
at any finer resolution level. The weights are set to be in-
versely proportional to the size of the bins, in order to reflect
the maximal distance two matched points could be from one
another. As long as wi ≥ wi+1, the kernel is Mercer. A
variant of the PMK described in [13] first quantizes the ap-
pearance feature descriptors to form a bag-of-words repre-
sentation, and then sums over the PMK values for each word
in the space of image coordinates.

We thus define a Pyramid Match Gaussian Process
model (GP-PMK) using

p(Y|X) ∼ N (0,K∆). (6)

In contrast to previous GP priors, this prior is well suited for
visual category recognition as it naturally handles represen-
tations based on sets of local image features.

6. Active Learning for Object Categorization
In this section we assume that we have a pool of un-

labeled data XU = {xn+1, ..,xn+m}. The task in active
learning is to seek the label for one of these examples and
then update the classification model by incorporating it into
the existing training set. The goal is to select the sample that
would maximize the benefit in terms of the discriminatory
capability of the system.

With non-probabilistic classification schemes a popular
heuristic for establishing the confidence of estimates and
identifying points for active learning is to simply use the
distance from the classification boundary (margin). This
approach can also be used with GP classification models,
by inspecting the magnitude of the posterior mean ȳu: we
would then choose the next point x∗ as arg maxxu∈XU

ȳu.



Table 1. Active Learning Criteria
Method Criteria
Distance
from Boundary (SVM) x∗ = arg minxu∈XU

|ȳu|

Variance x∗ = arg maxxu∈XU
Σu

Uncertainty (GP) x∗ = arg minxu∈XU
|ȳu|√
Σu+σ2

However, GP classification provides us with both the
posterior mean as well as the posterior variance for the un-
known label tu. An alternative criteria could be to look
at the variances and select the point that has the maximum
variance, i.e. x∗ = arg maxxu∈XU

Σu. However such an
approach does not consider the mean ȳu at all! Further,
the expression for Σu does not consider labels from the an-
notated training data; this scheme uses only a very limited
amount of information.

We therefore propose an approach which considers both
the posterior mean as well as the posterior variance. Specif-
ically, we select the next point according to:

x∗ = arg min
xu∈XU

|ȳu|√
Σu + σ2

. (7)

This formulation considers uncertainty in the labeling xu as
±1. Note that the predictive distribution for tu is a Gaus-
sian; however, we are interested in the binary label decided
according to the sign of tu. To this end we should consider
the p(tu ≥ 0) = φ( ȳu√

Σu+σ2 ), where φ(·) denotes the cdf of
a standard normal distribution, to provide the hard label±1.
Further, we are interested in selecting those samples where
the uncertainty is maximum. The points where the clas-
sification model is most uncertain should have p(tu ≥ 0)
close to 0.5 - equivalently, |ȳu|√

Σu+σ2 lies very close to zero.
Thus, the criterion in Equation 7 chooses the unlabeled
point where the classification is the most uncertain.

We summarize the methods for identifying points to be
labeled in Table 1. Our active learning approach looks at
all the points before choosing the active points; thus it con-
siders the whole dataset instead of just looking at individ-
ual points. Further, this scheme considers both the distance
from the boundary as well as the variance in selecting the
points; this is only possible due to the availability of the
predictive distribution in GP regression.

Other active learning criteria such as information gain
score or differential entropy [12] are possible, and these
have been demonstrated to have advantages in online learn-
ing and sparsifying methods. We plan to investigate the
utility of these approaches for our active learning scheme
in future work.

7. Experiments and Results
We performed experiments to 1) demonstrate the effec-

tiveness of the GP-PMK classification framework, 2) com-
pare different discriminative models, and 3) demonstrate

Figure 3. Performance comparison of GP-PMK classification.

that active learning can guide the learning procedure to se-
lect critical examples. We show how active learning with
a GP-PMK yields classifiers which can learn object cate-
gories from relatively few examples.

We performed supervised and active learning experi-
ments on two different datasets that are considered stan-
dards for the object categorization task: the Caltech-4
dataset and the Caltech-101 dataset (which is a superset of
Caltech-4). We compute the similarity between all pairs of
images in each database using the PMK. LIBSVM was used
for SVM baseline tests. In our experiments we set the noise
model variance σ = 10−5 for the Gaussian process mod-
els and fix C = 10000 for SVM models. These parameter
values worked well; we experimented with other values but
found that both SVM and GP classification schemes were
fairly insensitive to the choice of these parameters.

The object categorization task is a multi-class problem
(nclass = 101 and nclass = 4 for the Caltech-101 and the
Caltech-4). To handle multiple classes we use one-vs-all
formulation, where we choose the label corresponding to
the class with maximum value of the soft label y. For multi-
class active learning in every round we select one example
from each of the one-vs-all classifiers, thus adding nclass

examples every time.
The Caltech-4 database contains 3188 images with four

object classes. There are 1155 rear views of cars, 800 im-
ages of airplanes, 435 images of frontal faces, and 798 im-
ages of motorcycles. The second data base is the Caltech-
101 database of 101 object categories [6]; there are 8677
images in this data set, with between 31 to 800 images for
each of the 101 categories.

For experiments described in this paper, we used the
PMK with SIFT descriptors extracted densely from the im-
ages (dense PMK), where we compute features at every 8th
pixel in the image, and concatenate each with their normal-
ized image positions. We used PCA to reduce the dimen-
sionality of the SIFT descriptors to 10. We also performed
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Caltech 101: Class-wise Breakdown of Gain in Accuracy (After Querying 5 Points)

Figure 4. Average gain in performance over random selection when choosing 5 points using active learning. The graph shows the mean
and the standard error for 100 runs for all the object classes in Caltech-101 database using GP-PMK.

experiments on two other flavors of PMK that included one
with data-dependent partitions [10] and the other where the
SIFT descriptors are extracted only at salient points de-
tected with a Harris-Affine interest operator [17]. We ob-
served similar trends in all the cases and due to space limi-
tations report results only on uniform-bin PMK with dense
features.

First, we compare GP-PMK classification with state-of-
the-art supervised visual category learning methods. We
follow the standard testing protocol, where a given num-
ber (say 15) of training images are taken from each class
at random, and the rest of the data is used for testing. The
mean recognition rate per class is used as a metric of per-
formance. Note that this metric makes sure that the recog-
nition accuracies are such that classes with large numbers
of examples are not favored. This process is repeated 10
times and the average correctness rate is reported. Figure
3 shows the performance of an SVM and the classification
with GP priors using the PMK along with the other state-
of-the-art methods using the same evaluation methodology.
The PMK was also earlier used by Grauman and Darrell [9]
with SVMs. We show in figure 3 that classification with GP
outperforms the SVM; thus, demonstrating the value in the
proposed approach. The other approaches by Zhang et al.
[33] and Lazebnik et al. [13] perform better; however, note
that those approaches have different feature representations
that may provide a significant advantage in the task. The
point we wish to make here is that GP classification can of-
ten provide comparable or slightly improved classification
performance when compared to SVMs; we do not have to
lose accuracy to gain the predictive uncertainty offered by
probabilistic recognition models.

Next, we show the value of active learning in selecting
examples to annotate. For these experiments, we test the
classification performance on a validation set that includes
10 examples from each class. We first consider the binary
problem of detecting an object class. Starting with one la-
beled example per class, the procedure chooses the next im-
age to query from the set of images not in the validation
set. We compare the active version of the GP classification
with a version that selects the points to query randomly. We
again use the mean classification rate per class to compare
the methods. We repeat this procedure for 100 different val-
idation sets. Figure 4 shows the gain in performance on all
the 101 binary problems, averaged over the 100 runs, made
by the active learning scheme on the validation set after 5
examples are chosen. We can clearly see that for most of
the categories there is a significant positive gain showing
the benefit of the active learning scheme. Further, figure 5
shows the performance on various binary problems as we
increase the size of the training set. The figure depicts that
the active learning scheme quickly exploits the uncertainty
in its estimates to select appropriate examples to seek the
annotation for. The random policy on the other hand per-
forms poorly. The fact that the Caltech-101 dataset has
unbalanced numbers of examples per category affects the
random sampling policy; it does not work well in these un-
balanced scenarios because the training set will usually be
skewed towards one class, resulting in poor accuracy. How-
ever, selecting points via active learning focuses on points
with maximum uncertainty, irrespective of their label, mak-
ing the procedure highly effective.

We also ran active learning experiments on the Caltech-
4 dataset and figure 6 compares different classification ap-



Figure 5. Performance comparison of GP classification with active learning and GP with random supervision for various object detection
problems (binary) in Caltech-101 Database.

proaches. Essentially, the plot shows mean classification
accuracy per class as we vary the total number of exam-
ples in the training data. The images not in the training set
are considered as test set to compute the classification per-
formance. We plot the performance of SVM and the GP
classification with and without active learning. We start
with zero labeled points and for SVM and supervised GP
without the active learning, we randomly select points as
we increase the size of the training set. The active learning
GP classification uses uncertainty to guide its sample selec-
tion process. This process was repeated 40 times and figure
6 shows the mean performance. The errorbars denote the
standard error and non-overlapping errorbars signify differ-
ence in performance levels with 95% confidence.

Figure 6 shows that GP classification performs compet-
itively with the SVM and using active learning further im-
proves the performance. In fact we can see that a mean ac-
curacy per class close to a 90% can be obtained with just 20
labeled examples, whereas the non-active learners achieve
around 85% accuracy for the same amount of labeled data.
This demonstrates that active learning can provide a signif-
icant boost in accuracy, and makes it possible for the learn-
ing algorithm to learn the object classes even with very few
labeled examples.

Table 2 shows the confusion matrix resulting after in-
corporating only 120 examples in the training set using the
active learning methodology. We obtain an accuracy of
98.48%, which demonstrates the effectiveness of the frame-
work. The completely supervised GP classification and
SVM achieved a mean classification accuracy per class of
95.6% and 95.19% respectively. This shows that our active
learning strategy allows us to learn object categories much
more effectively than plain supervised classification.

Figure 6. Active learning on Caltech-4 database using the Pyramid
Match Kernel.

8. Discussion
The experiments in this paper indicate that classification

using GP priors outperforms SVM on the Caltech-101 and
performs competitively on the Caltech-4 database. How-
ever, we would like to point out that these experiments are
not conclusive proof that classification using a GP prior is
inherently superior than other classification techniques. The
superior performance might be due to several reasons. For
instance, one of the key requirements for any classification
strategy to work well is that the underlying data supports the
assumptions made by the model. In this case fortunately the
underlying data density in the object categorization task for
the Caltech-4 and the Caltech-101 databases are favorable
to the assumptions of the classification model we are using.



Table 2. Confusion matrix obtained for Caltech-4 database using
active learning with the log information score. (120 labeled im-
ages, mean accuracy over all the classes = 98.48%).

Recognized Class

True Class Cars Faces Airplanes Motorbikes
Cars 1121 0 0 1
Faces 0 416 0 2
Airplanes 0 2 753 20
Motorbikes 10 0 10 733

The experiments in this paper strongly suggest that there
is a value in looking at GP classification models for object
categorization.

Another important aspect of our framework lies in its
seamless extension to active learning. The probabilistic
paradigm allows us to incorporate measures such as uncer-
tainty, variance, and expected information gain that could
be highly valuable in guiding a supervised learning proce-
dure. One of the challenges in computer vision is the ability
to learn object categories with a low number of examples.
Humans are able to learn object categories and generalize
from a very small number of examples. However, current
machine vision systems are far from achieving performance
akin to humans. One of the principal differences among hu-
mans and existing object classification systems is that hu-
mans have the ability to actively seek supervision from the
environment and other sources of information. We believe
that active learning might enable us to move towards vision
systems that require few examples to learn successfully.

9. Conclusion and Future Work

We have presented a discriminative probabilistic frame-
work based on Gaussian Process priors and the Pyramid
Match Kernel, and shown its utility for visual category
recognition. The GP-PMK provides direct estimates of pre-
diction uncertainty using a smoothness prior that captures a
correspondence-based notion of similarity between sets of
local image features. Further, we introduced an active learn-
ing method for visual category recognition based on the un-
certainty estimates provided by the GP-PMK, and showed
empirically that active learning can be used to achieve
recognition results using fewer training images than stan-
dard supervised learning approaches.

We plan to extend the framework to adopt non-Gaussian
noise models, and investigate other active learning formu-
lations such as value of information and/or criteria previ-
ously developed for sparsifying GPs [12]. By incorporating
decision-theoretic formulations we should be able to learn
object categories within a given budget. We also plan to
extend the model to handle multiple objects in the same
image, incorporate semi-supervised learning, and explore
sparse GP techniques for large training sets.
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