
Spectral Clustering and Transductive Learning with Multiple Views

Dengyong Zhou dengyong.zhou@microsoft.com
Christopher J.C. Burges cburges@microsoft.com

Microsoft Research, One Microsoft Way, Redmond, WA 98052

Abstract

We consider spectral clustering and transduc-
tive inference for data with multiple views.
A typical example is the web, which can be
described by either the hyperlinks between
web pages or the words occurring in web
pages. When each view is represented as a
graph, one may convexly combine the weight
matrices or the discrete Laplacians for each
graph, and then proceed with existing clus-
tering or classification techniques. Such a so-
lution might sound natural, but its underly-
ing principle is not clear. Unlike this kind of
methodology, we develop multiview spectral
clustering via generalizing the normalized cut
from a single view to multiple views. We fur-
ther build multiview transductive inference
on the basis of multiview spectral clustering.
Our framework leads to a mixture of Markov
chains defined on every graph. The exper-
imental evaluation on real-world web classi-
fication demonstrates promising results that
validate our method.

1. Introduction

In the general machine leaning problem setting, we of-
ten assume that the data are represented in a single
vector space or by a single graph. In many read-life
problems, however, the same instances may be rep-
resented in several different vector spaces, or by sev-
eral different graphs, or even as a mixture of vector
spaces and graphs. Hence, we consider learning from
instances which have multiple representations, and our
goal is to effectively explore and exploit multiple repre-
sentations simultaneously. This kind of machine learn-
ing issue is often called multiview learning (Rüping &
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Scheffer, 2005).

A typical example is web categorization in which the
web can be described by either hyperlinks between web
pages or the words occurring in web pages. In the for-
mer description, the web can be represented as a di-
rected graph where each vertex represents a web page,
and each directed edge a hyperlink. In the latter de-
scription, each web page is represented as a vector in
Euclidian space, and each element in the vector typ-
ically responds to the occurrences of some word. For
combing these two different representations, one can
consider weighting the hyperlink graph by using the
text vectors. Specifically, given a pair of linked web
pages, the hyperlink is weighted by the similarity mea-
sure based on the dot product between the text vectors
of those two given web pages. This methodology is
overly link-centered since the dot product based sim-
ilarity between two unlinked web pages are not taken
into account.

Multiview learning occurs in many other situations.
In scientific publication classification, we can build a
citation network over the articles, where each node
indicates an article, and each directed link a citation
from one article to another. Moreover, we can also
build a coauthor network over the articles, where there
is a link between two articles if they have an author in
common. In social network analysis, there are multiple
types of relationships among individuals. For example,
they can be email networks, organization hierarchy,
collaboration and so on. As in web categorization,
for clustering or classifying scientific publications or
individuals, we need to consider how to utilize several
networks together rather than a single network only.

A natural approach to multiview learning is to define
a kernel for each type of data representation, and then
convexly combine those kernels (Joachims et al., 2001;
Zhang et al., 2006). In web categorization, the kernel
for the link graph can be defined as the colink ma-
trix, in which two web pages have a colink if a third
web page points to both of them. In the kernel for
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Figure 1. Two directed graphs sharing the same set of ver-
tices. The large circle on each panel denotes the clustering
result with respect to each graph. Obviously, the clustering
is good for one graph while being bad for the other graph.
Thus we consider how to find a clustering which is close to
optimal for both graphs.

text, each entry can be given by the inner product
between the corresponding document vectors. If the
multiple views are represented by different graphs, the
inverse of the graph Laplacian can be regarded as a
kernel (Smola & Kondor, 2003), and, consequently,
one may convexly combine graph Laplacians (Tsuda
et al., 2005; Sindhwani et al., 2005; Argyriou et al.,
2006). The underlying principle of this methodology
is unclear however. It is well-known that the spectral
clustering approach for a single graph is derived from a
real-valued relaxation of the combinatorial normalized
cut which naturally leads to the graph Laplacian (Shi
& Malik, 2000), but we have not yet noticed any liter-
ature addressing the issue of which combinatorial cut
can lead to the convex combination of graph Lapla-
cians in the situation of multiple graphs.

Unlike the above methodology, we develop multiview
spectral clustering via generalizing the usual single
view normalized cut (Section 2) to the multiview case
(Section 3). The basic motivation behind the multi-
view normalized cut is that we try to find a cut which
is close to optimal on each graph (Figure 1). As in the
single view case, this multiview normalized cut can be
approximately optimized via a real-valued relaxation.
The relaxation does not lead to convex combination
of graph Laplacians. Instead, it results in a vertex-
wise mixture of Markov chains associated with differ-
ent graphs. In Section 5, the multiview spectral clus-
tering approach is extended to multiview transductive
classification via a regularization framework. The ex-
perimental results on web categorization are shown in
Section 6. We conclude the paper in Section 7.

It is worth mentioning a popular method for multi-
view learning called co-training. In this method, mul-
tiple learning algorithms are trained on each view, and
then each algorithm’s prediction on new unlabeled ex-
amples are used to enlarge the training sets of others

(Blum & Mitchel, 1998). This approach needs some-
what strong independence assumptions; a detailed dis-
cussion is beyond the scope of this paper, however.

2. Spectral Clustering with a Single
Graph

In this section, we review the spectral clustering ap-
proach for directed graphs (Zhou et al., 2005). This
approach naturally generalizes the spectral undirected
graph clustering scheme (Shi & Malik, 2000; Meila &
Shi, 2001; Ng et al., 2002). An undirected graph is
a special case of a directed graph, that is, an edge of
an undirected graph connecting vertex u to vertex v
represents two directed edges, one from u to v, and the
other from v to u.

The issue of spectral directed graph clustering has at-
tracted a lot of research interest, in particular, in the
web search engine community (Henzinger, 2003; Klein-
berg, 1999). Compared with other directed graph clus-
tering techniques, the key insight in the approach of
Zhou et al. (2005) is to regard a directed graph as a
Markov chain. In other words, their approach is built
on random walks over a directed graph rather than
directly manipulating the combinatorial structures of
the directed graph. It is worth noting that there are
a wide choice of random walks given a directed graph,
and different random walk choices generally lead to
different clustering results.

Given a directed graph G = (V, E,w) with vertex
set V, edge set E, and corresponding edge weights w,
assume a random walk defined on G with transition
probabilities p and stationary distribution π. Let S de-
note an arbitrary subset of V, and Sc the complement
of S. Define the volumes

volS =
∑

v∈S

π(v), and vol ∂S =
∑

u∈S,v∈Sc

π(u)p(u, v).

(1)
We can verify that volS + volSc = 1, and vol ∂S =
vol ∂Sc. Then a clustering can be obtained by

argmin
∅6=S⊂V

{
c(S) =

vol ∂S

volS volSc

}
. (2)

The intuition behind this cut is as follows. Assume a
random web surfer who browses web pages by follow-
ing hyperlinks and occasionally jumping to a randomly
chosen web page. Then the web surfer will regard a
set of hyperlinked web pages as a community if the
probability of leaving the web page set is small while
the stationary probability mass of the same subset is
large.

Note that, in the discrete optimization (2), the subset
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S and its complement Sc are not themselves required
to be connected. Hence, one may wonder if there exist
subsets satisfying (2) while they are not connected.
Although this question looks natural, it has not been
addressed since spectral clustering was developed. Let
us investigate this problem via showing the following
argument.

Theorem 2.1. Let G be a connected graph. Then for
any partition V = S∪Sc satisfying (2), both S and Sc

are connected.

Proof. Assume S to be the union of k ≥ 2 connected
components Si. Let τ = mini c(Si). Then

vol ∂S =
∑

i≤k

vol ∂Si ≥ τ
∑

i≤k

volSi volSc
i .

Note that volSc
i = 1− volSi. Then

vol ∂S ≥ τ
∑

i≤k

volSi − vol2 Si

= τ

(
volS −

∑

i≤k

vol2 Si

)
.

Hence

c(S) =
vol ∂S

volS volSc
=

vol ∂S

volS − vol2 S

≥ τ
volS −∑

i≤k vol2 Si

volS − vol2 S
.

Note that, for k ≥ 2,

vol2 S =
(∑

i≤k

volSi

)2 ≥
∑

i≤k

vol2 Si.

Therefore, c(S) > τ, which is in contradiction with our
initial assumption that S is a solution to (2).

The combinatorial optimization problem (2) can be
approximately solved by relaxing it into a real-valued
problem

argmin
f∈R|V |

{ ∑

u∈V,v∈V

π(u)p(u, v) (f(u)− f(v))2
}

(3)

subject to
∑

v∈V

f2(v)π(v) = 1,
∑

v∈V

f(v)π(v) = 0.

Let P denote the transition probability matrix with
its elements being p(u, v), and Π the diagonal matrix
with its diagonal elements being π(u). Define a matrix

L = Π− ΠP + PT Π
2

. (4)

Then the clustering which satisfies the cut criterion
can be approximately obtained via solving the gener-
alized eigenvector system

Lf = λΠf,

where λ is the second smallest eigenvalue.

It is easy to extend binary partition to k-partition.
Assume a k-partition to be V = V1 ∪ V2 ∪ · · · ∪ Vk,
where Vi ∩ Vj = ∅ for all 1 ≤ i, j ≤ k. Let Pk denote
a k-partition. Then we can obtain a k-partition by
minimizing

c(Pk) =
∑

1≤i≤k

vol ∂Vi

volVi
. (5)

We can check that Equation (2) is a special case of
Equation (5) with k = 2. Moreover, the solution of the
corresponding relaxed optimization problem of (5) can
be any orthonormal basis for the linear space spanned
by the generalized eigenvectors of L pertaining to the
k smallest eigenvalues.

3. Spectral Clustering with Multiple
Graphs

Assume two directed graphs Gi = (V, Ei, wi), i = 1, 2,
which share the same set of vertices while having dif-
ferent edges and weights. Suppose S to be a nonempty
subset of V. Define

mvolS = αvol1 S + (1− α)vol2 S, (6)

and

mvol ∂S = αvol1 ∂S + (1− α)vol2 ∂S, (7)

where α is a parameter in [0, 1]. Then we may cluster
the vertex set V into two subsets by

argmin
∅6=S⊂V

{
c(S) =

mvol ∂S

mvolS mvolSc

}
. (8)

Clearly, the case of α = 0 or 1 reduces to the cut for a
single graph.

The basic motivation of defining such a multiple graph
cut is that we want to obtain a cut which is good on
average while it may not be the best for a single graph
(Figure 1). The parameter α is used to specify the rel-
ative importance of each graph in clustering. It is not
hard to imagine that the relative importance measure
varies across different clustering goals. Let us consider
a somewhat extreme example to illustrate this point.
When we seek to cluster scientists into different groups
such that in each group scientists have some research
interest in common, then the co-author relationship
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will dominate over other kinds of relationships. How-
ever, if we hope the scientists in the same group share
the same political point of view, then the coauthor re-
lationship may not be helpful, and in fact, could be
misleading.

Algorithm 1 Spectral clustering with multiple graphs
Given k graphs Gi = (V,Ei, wi), 1 ≤ i ≤ k, which are
directed or undirected, and share the same vertex set
V, the vertices in V can be clustered into two subsets
as follows.

1. For each graph Gi, associate it with a random
walk which has a unique stationary distribution.
Denote by pi the transition probabilities, and πi

the stationary distribution satisfying
∑

u∈V

πi(u)pi(u, v) = πi(v).

2. Define a mixture of those random walks by

p(u, v) =
∑

i≤k

βi(u)pi(u, v),

where

βi(u) =
αiπi(u)∑

j≤k αjπj(u)
, and

∑

j≤k

αj = 1, αj ≥ 0.

The random walk mixture has a unique stationary
distribution given by

π(v) =
∑

i≤k

αiπi(v).

3. Denote by P the matrix with the elements p(u, v),
and Π the diagonal matrix with the diagonal ele-
ments π(u). Form the matrix

L = Π− ΠP + PT Π
2

.

4. Compute the generalized eigenvector satisfying

Lf = λΠf

where λ is the second smallest eigenvalue, and
cluster the vertex set V into the two parts S =
{v ∈ V |f(v) ≥ 0} and Sc = {v ∈ V |f(v) < 0}.

In what follows, we construct a Markov mixture model,
and explain the multiple graph cut in terms of a ran-

dom walk. Define functions

β1(u) =
απ1(u)

απ1(u) + (1− α)π2(u)
, (9)

and

β2(u) =
(1− α)π2(u)

απ1(u) + (1− α)π2(u)
. (10)

So that β1(u)+β2(u) = 1 and βi ≥ 0. Then define new
transition probabilities among vertices as

p(u, v) = β1(u)p1(u, v) + β2(u)p2(u, v). (11)

Note that β1 and β2 vary from vertex to vertex rather
than being a constant. Therefore the above formula
is not simply a linear combination of the transition
probability matrices on each graph.

From a straightforward computation, we can check
that the stationary distribution of the Markov mix-
ture model is

π(v) = απ1(v) + (1− α)π2(v). (12)

Consequently, we have

mvolS = α
∑

v∈S

π1(v) + (1− α)
∑

v∈S

π2(v)

=
∑

v∈S

π(v) = P (S).

Similarly, mvolSc = P (Sc). Moreover,

mvol ∂S = α
∑

(u,v)∈∂1S

π1(u)p1(u, v) +

(1− α)
∑

(u,v)∈∂2S

π2(u)p2(u, v)

=
∑

u∈S,v∈Sc

(απ1(u) + (1− α)π2(u)) ·
(

απ1(u)
απ1(u) + (1− α)π2(u)

p1(u, v)

+
(1− α)π2(u)

απ1(u) + (1− α)π2(u)
p2(u, v)

)

=
∑

u∈S,v∈Sc

π(u)p(u, v)

= P (S → Sc).

Similarly, mvol ∂Sc = P (Sc → S). It can be verified
that

P (Sc → S) = P (S → Sc).

Thus we have mvol ∂Sc = mvol ∂S. Hence

c(S) =
mvol ∂S(mvolS + mvolSc)

mvolS mvolSc

=
mvol ∂S

mvolS
+

mvol ∂Sc

mvolSc

= P (S → Sc|S) + P (Sc → S|Sc).
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Now the multiple graph cut can be understood as fol-
lows. Assume a random walk with the current position
being at a vertex in one graph. Then, in the next step,
the walker may continue his random walk in the same
graph with a certain probability, or jump to the other
graph with the remaining probability and continue his
random walk there. A subset of vertices is regarded
as a cluster if during the random walk the probabil-
ity of leaving this subset is small while the stationary
probability mass of the same subset is large. It is ob-
vious how to extend the above analysis to more than
two graphs. Finally, we summarize the multiple graph
spectral clustering in Algorithm 1.

4. Multiple Undirected Graphs

In this section, we discuss the special case of multi-
ple undirected graphs. Assume two undirected graphs
Gi = (V, Ei, wi), i = 1, 2. Given a vertex v ∈ V, de-
note by di(v) =

∑
u wi(u, v). With respect to each

graph Gi, define the boundary of S as ∂iS = {(u, v) ∈
Ei|u ∈ S, v ∈ Sc}, and the volume of S as voli S =∑

u∈S,v∈S wi(u, v) =
∑

v∈S di(v), and the volume of
∂S as voli ∂iS =

∑
(u,v)∈∂iS

wi(u, v). All of those defi-
nitions are taken from (Chung, 1997).

We then define the multiview boundary of S with re-
spect to both G1 and G2 by ∂S = ∂1S ∪ ∂2S, and the
multiview volume of S as

mvolS = α
vol1 S

vol1 V
+ (1− α)

vol2 S

vol2 V
,

and the multiview volume of ∂S as

mvol ∂S = α
vol1 ∂1S

vol1 V
+ (1− α)

vol2 ∂2S

vol2 V
.

It is easy to check that mvolS + mvolSc = 1.

Note the volume based normalization in the above def-
initions. The normalization is necessary because the
weights on different graphs can be measured in very
different scales. For instance, in web categorization,
we can form at least two undirected graphs. One is
the colink graph (Joachims et al., 2001), and the other
is a fully connected undirected graph weighted by the
textual kernel. In addition, the normalization leads to
the Markov mixture model. Let us consider the natu-
ral random walk on undirected graphs. The transition
probabilities are pi(u, v) = wi(u, v)/di(u), and the sta-
tionary probabilities πi(u) = di(u)/ voli V. Then

β1(u) =
αd1(u)/ vol1 V

αd1(u)/ vol1 V + (1− α)d2(u)/ vol2 V
,

and

β2(u) =
(1− α)d2(u)/ vol1 V

αd1(u)/ vol1 V + (1− α)d2(u)/ vol2 V
.

Thus

p(u, v) = β1(u)p1(u, v) + β2(u)p2(u, v)

=
αw1(u, v)/ vol1 V

αd1(u)/ vol1 V + (1− α)d2(u)/ vol2 V

+
(1− α)w2(u, v)/ vol1 V

αd1(u)/ vol1 V + (1− α)d2(u)/ vol2 V

and π(u) = αd1(u)/vol1 V + (1− α)d2(u)/vol2 V .

Introducing

w(u, v) = α
w1(u, v)
vol1 V

+ (1− α)
w2(u, v)
vol2 V

,

and d(u) = π(u), we then have p(u, v) = w(u, v)/d(u).
This means that, in the special case of multiple undi-
rected graphs, the Markov mixture model reduces to
a linear combination of adjacency matrices or a con-
vex combination of normalized adjacency matrices.
Hence, it is different from the approaches which con-
vexly combine undirected graph Laplacians via L =
αL1 + (1 − α)L2 without any stated reasons (Tsuda
et al., 2005; Sindhwani et al., 2005; Argyriou et al.,
2006). In that literature, the Laplacian matrix for
undirected graphs is defined to be Li = Di−Wi, where
Di is a diagonal matrix with its diagonal elements be-
ing di(u), and Wi is the weight matrix with its each
element being wi(u, v).

5. Classification with Multiple Graphs

In some sense, it is straightforward to build a transduc-
tive inference algorithm from a clustering approach.
Let us first consider classification on a single graph.
Assume we have a directed graph G = (V, E, w), and
a discrete label set L = {−1, 1}. The vertices in a sub-
set S ⊂ V have been classified as 1 or −1. Our task
is to predict the labels of the remaining unclassified
vertices.

Let f : V → S denote the classification function. De-
fine a function y with y(v) = 1 or −1 if v ∈ S, and 0
if v is unlabeled. Then we can choose a classification
function via

argmin
f∈R|V |

{ ∑

u∈V,v∈V

π(u)p(u, v) (f(u)− f(v))2

+C
∑

v∈V

π(v) (f(v)− y(v))2
}

. (13)

where C > 0. Note that the first term in the optimiza-
tion problem is the objective function for clustering
in Equation (3). Intuitively, the objective function
for classification forces the classification function to
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Figure 2. Classification with multiple graphs. There are
two directed graphs over the same set of vertices. Those
vertices belong to two different classes respectively denoted
by gray and white circles.

change as slowly as possible on densely connected sub-
graphs. The second term in the above objective func-
tion forces the classification function to fit the given
labels as well as possible. The tradeoff between these
two requirements is measured by the parameter C.

If each function in R|V | is scaled with a factor π−1/2,
then Equation (13) will be transformed into

argmin
f∈R|V |

{ ∑

u∈V,v∈V

π(u)p(u, v)
(

f(u)√
π(u)

− f(v)√
π(v)

)2

+C
∑

v∈V

(f(v)− y(v))2
}

. (14)

This is the classification approach proposed in (Zhou
et al., 2005). However, Equation (13) somehow looks
much more natural than Equation (14). For undi-
rected graphs, Equation (14) reduces to the approach
in (Zhou et al., 2004). There are several pieces of the-
oretic work around this approach (El-Yaniv & Pechy-
ony, 2006; Ando & Zhang, 2007; El-Yaniv & Pechyony,
2007). See also (Chapelle et al., 2003; Joachims, 2003;
Zhu et al., 2003; Smola & Kondor, 2003; Belkin et al.,
2004) which are closely related to (Zhou et al., 2004).

To solve the optimization problem (13), we differenti-
ate the objective function with respect to ϕ and obtain

(CΠ + L)f = CΠy,

This linear system has the closed-form solution

f = C(CΠ + L)−1Πy.

However, since this linear system is positive definite
and even diagonally dominant, we can avoid comput-
ing the inverse and instead use a fast solver such as
(Spielman & Teng, 2003).

Classification with multiple graphs can be formalized
as follows. Given a set of graphs Gi = (V, Ei, wi), 1 ≤
i ≤ k, with a vertex set V in common, and with the

Algorithm 2 Classification with multiple graphs
Given k graphs Gi = (V,Ei, wi), 1 ≤ i ≤ k, which are
directed or undirected, and which share the same ver-
tex set V, assume that the vertices in a subset S ⊂ V
have been labeled as 1 or −1. The remaining unlabeled
vertices can be classified as follows.

1. For each graph Gi, associate it with a random
walk which has a unique stationary distribution.
Denote by pi the transition probabilities, and πi

the stationary distribution.

2. Define a mixture of those random walks by

p(u, v) =
∑

i≤k

βi(u)pi(u, v),

where

βi(u) =
αiπi(u)∑

j≤k αjπj(u)
, and

∑

j≤k

αj = 1, αj ≥ 0.

The random walk mixture has a unique stationary
distribution given by

π(v) =
∑

i≤k

αiπi(v).

3. Denote by P the matrix with the elements p(u, v),
and Π the diagonal matrix with the diagonal ele-
ments π(u). Form the matrix

M = Π− γ
ΠP + PT Π

2
,

where γ is a parameter in (0, 1).

4. Define a function y on V with y(v) = 1 or −1 if
vertex v is labeled, and 0 if v is unlabeled. Solve
the linear system

Mf = Πy,

and classify each unlabeled vertex v as sign f(v).

vertices in a subset S ⊂ V labeled as 1 or −1, our
goal is to predict the labels of the remaining unla-
beled vertices in Sc (Figure 2). To extend the single
graph based transduction to multiple graphs, the only
thing we need to do is to construct the Markov mix-
ture model used in the multiview spectral clustering in
Section 3. For completeness, we summarize the mul-
tiview transduction in Algorithm 2. Note that in the
algorithm we use a parameter γ ∈ (0, 1) instead of
C ∈ (0,∞). The relationship between γ and C can be
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Table 1. Precisions for four different approaches: content features based transduction; link structure based transduction;
linearly combining graph Laplacians; and the Markov mixture model. The numbers in the fist line denote the proportion
of labeled instances. Each precision result is averaged over 100 trials.

Labeled instances (%) 0.15 0.20 0.25 0.30 0.35 0.40 0.45

recall = 50%

link 0.39 0.45 0.53 0.61 0.67 0.70 0.81
Content 0.37 0.43 0.45 0.50 0.62 0.72 0.86
Markov mixture 0.43 0.47 0.55 0.61 0.68 0.73 0.85
combining Laplacian 0.41 0.46 0.54 0.61 0.67 0.71 0.82

recall = 60%

link 0.33 0.37 0.43 0.48 0.57 0.60 0.67
Content 0.31 0.35 0.37 0.40 0.47 0.51 0.59
Markov mixture 0.36 0.41 0.45 0.50 0.57 0.62 0.68
combining Laplacian 0.36 0.39 0.44 0.49 0.57 0.61 0.67

expressed as γ = 1/(1 + C).

6. Experiments

We address the spam detection issue by using the
dataset of webspam-uk2006-1.2 (Castillo et al., 2006).
This collection includes 77.9 million web pages over
11, 452 hosts. We consider the spam detection issue at
the host level. In other words, we consider if a host is
spam or not. The hosts in the dataset have been manu-
ally labeled as normal, borderline, spam, and cannot
judge. Overall, 5.91% hosts are labeled as spam, and
43.45% hosts are labeled as normal. The remaining
50.69% hosts are borderline or cannot judge.

We build a directed graph over hosts as follows. Each
host can be regarded a collection of web pages. Given
two hosts, if there exists a hyperlink from some page on
one host to some page on the other host, then we say
that there is a directed edge between these two hosts.
Moreover, it is weighted by the number of such edges.
We can also describe each host by its content features
which are useful in detecting if a host is spam or not.
Each content feature of a host is built on the content
features of the web pages contained by the host. The
content features of a web page can be the fraction of
anchor text, the fraction of visible text, the average
word length, and so on. Hence each host can be rep-
resented as a feature vector. Then we normalize each
feature vector, and the similarity between two hosts is
measured as the inner product between the two cor-
responding feature vectors. Consequently a similarity
graph is built over the hosts. Obviously the similarity
graph is undirected.

In this dataset, 8, 944 hosts have been set up with

content features. We further remove the hosts which
are labeled as borderline or cannot judge. In other
words, we only consider the hosts which are clearly
judged as normal or spam. Then we extract the largest
strongly connected subgraph from the subgraph con-
sisting of those hosts. It has 2, 922 nodes, in which
156 are spam. The second largest strongly connected
subgraph contains 21 nodes. In fact, over 96% of the
strongly connected subgraphs have only a single node.

For both the host graph and the similarity graph,
we use the natural random walk following the links
uniformly at random. We compare the Markov mix-
ture model with three other transductive classifica-
tions respectively based on the host graph, the sim-
ilarity graph, and the convex combination of graph
Laplacians. For the Markov mixture model and the
graph Laplacian combination, each graph is treated
equally, i.e. αi = 0.5, i = 1, 2. In further work, we will
investigate how to choose α to measure the importance
of different graphs.

Spam detection is a highly unbalanced classification
problem. In our dataset, only 5.3% hosts are spam.
Hence we measure algorithmic performances via pre-
cision/recall which is widely used in the Information
Retrieval (IR) community. Precision is the ratio of
the number of retrieved and relevant documents to
the number of documents retrieved, and recall is the
proportion of the number of relevant documents that
are retrieved to the total number of the relevant doc-
uments available. In addition, classifying a normal
host as spam is much worse than classifying a spam
host as normal. That means precision is more crucial
than recall. In our experiments we focus on the situa-
tion of low recall (Table 1). Since those approaches
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are closely related to each other with subtle differ-
ences, their standard deviations are almost the same
and around 0.005. From the experimental results, the
Markov mixture model consistently performs better
than the single view based approaches, and also better
than convexly combining graph Laplacians. The im-
provement looks small, but it is still quite significant
since spam detection is challenging in practice. More-
over, at web scale, even a one-point improvement can
result in the discovery of a large amount of spam.

7. Conclusion

We have developed multiview spectral clustering and
transductive inference approaches. The essential in-
gredient of this work is to form a mixture of Markov
chains defined on different views. The experimental
evaluation on real-world web classification problems
demonstrates encouraging results that validate our ap-
proach. In addition to the web categorization issue
addressed in this paper, the present methodology can
be applied to a wide range of other practical problems
including social network analysis and bioinformatics.
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